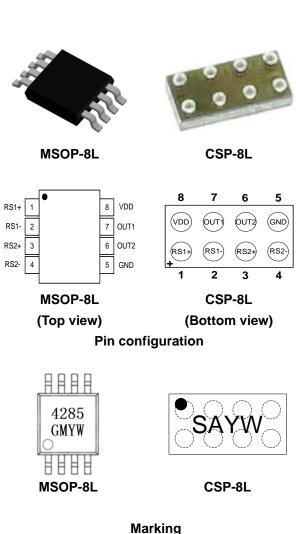


Dual-Channel High-Precision High-Voltage Current-Sense Amplifier

Descriptions

The WS74285 dual-channel high-side current-sense amplifier has precision accuracy specifications of V_{OS} less than $70\mu V$ (max) and gain error less than 0.1%(max).

The WS74285 features an input common-mode voltage range from 2.7V to 76V with 400kHz of small-signal bandwidth, which makes it ideal for interfacing with a SARADC for multichannel multiplexed data acquisition systems.


The WS74285 operates over the -40° C to $+125^{\circ}$ C temperature range. The WS74285 is offered in 8-pin MSOP and CSP package.

Applications

- Base Stations and Communication Equipment
- Power Management Systems
- Server Backplanes
- Industrial Control and Automation

Features

- 2.7V to 76V Input Common Mode
- Low 70µV (max) Input Offset Voltage
- Low 0.1% (max) Gain Error
- Gain Options
 - G = 12.5V/V (WS74285x1)
 - G = 20V/V (WS74285)
 - G = 50V/V (WS74285x3)
 - G = 100V/V (WS74285x4)
- 8-Pin MSOP Package
- 8-Pin CSP Package

Http://www.omnivision-group.com

warking					
4285	= Device code				
GM, SA	= Special code				
Y	= Year code				
W	= Week code				

Order Information

Device	Package Shipping	
WS74285M-8/TR	MSOP-8L	4000/Reel &Tape
WS74285C-8/TR	CSP-8L	3000/Reel &Tape

Pin Descriptions

Pin Number	Symbol	Descriptions		
1	RS1+	Channel 1 External Resistor Power-Side Connection		
2	RS1-	Channel 1 External Resistor Load-Side Connection		
3	RS2+	Channel 2 External Resistor Power-Side Connection		
4	RS2-	Channel 2 External Resistor Load-Side Connection		
5	GND	Ground		
6	OUT2	Output Channel2		
7	OUT1	Output Channel1		
8	VDD	Supply Voltage		

Absolute Maximum Ratings(1)

Parameter	Symbol	Value	Unit
Supply Voltage, ([V+] – [V-])	Vs ⁽²⁾	6	V
RS+, RS- to GND		80	V
RS+ to RS-		±10	V
Continuous Input Current (Any Pin)		±10	mA
Output Short-Circuit Duration	tso	Unlimited	/
Operating Fee-Air Temperature Range	T _A	-40 to 125	°C
Storage Temperature Range	T _{STG}	-65 to 150	°C
Junction Temperature Range	TJ	206	°C
Lead Temperature Range	TL	300	°C
Soldering Temperature		260	°C

Note:

- Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are only stress ratings, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- 2. All voltage values, except differential voltage are with respect to network terminal.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum level	Unit
HBM	Human Body Model ESD	MIL-STD-883H Method 3015.8	+2000	V
		JEDEC-EIA/JESD22-A114A		
MM	Machine Model ESD	JEDEC-EIA/JESD22-A115	±400	V
CDM	Charged Device Model ESD	JEDEC-EIA/JESD22-C101E	±2000	V

Electronics Characteristics

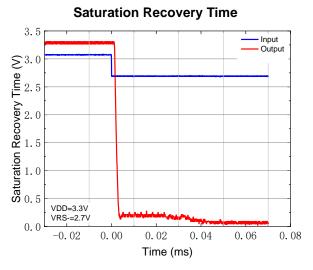
 $V_{RS+} = V_{RS-} = +76V$, $V_{DD} = +3.3V$, $V_{SENSE} = V_{RS+} - V_{RS-} = 1mV$, $T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.

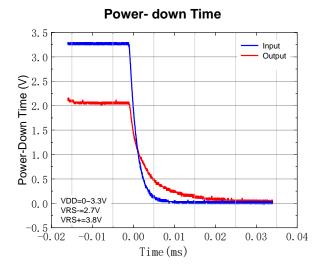
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
DC Chara	icteristics						
V _{DD}	Supply Voltage	Guaranteed by PSRR	2.7		5.5	V	
		T _A = +25°C		200	680	μA	
DD	Supply Current	-40°C < T _A < +125°C				μA	
PSRR	Power-Supply Rejection Ratio	2.7V ≤ V _{DD} ≤ 5.5V	100	130		dB	
V _{CM}	Input Common-Mode Voltage Range	Guaranteed by CMRR	2.7		76	V	
I _{RS+} , I _{RS-}	Input Bias Current at V_{RS+} and V_{RS-} (Note 3)			45	70	μA	
Irs+, Irs-	Input Offset Current (Note 3)			100		nA	
I _{RS+} , I _{RS-}	Input Leakage Current (Note 3)	V _{DD} = 0V, V _{RS+} = 76V		50		nA	
CMRR	Common-Mode Rejection Ratio	2.7V < V _{RS+} < 76V	120	150		dB	
Vos	Input Offset Voltage (Note	T _A = +25°C		±10	±70	μV	
VOS	3)	$-40^{\circ}C \le T_A \le +125^{\circ}C$		±20		μV	
TCV _{os}	Input Offset Voltage Drift (Note 3)			100		nV/°C	
		G = 12.5 V/V		200			
V	Input Sanaa Valtaga	G = 20 V/V		125			
VSENSE	Input Sense Voltage	G = 50 V/V		50		- mV	
		G = 100 V/V		25			
G	Gain	Full-scale V _{SENSE} = 125mV		20		V/V	
		T _A = +25°C		0.01			
GE	Gain Error (Note 3)	$-40^{\circ}C \le T_{A} \le +85^{\circ}C$				%	
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$				1	
Max		Sink 500µA		8		mV	
V _{OL}	Output Low Voltage	No load		3		mV	
Vон	Output High Voltage to rail	Source 500µA		7		mV	
AC Chara	icteristics						
BW -3dB	Signal Bandwidth	All gain configurations V _{SENSE} > 5mV		400		kHz	
AC PSRR	AC Power-Supply Rejection Ratio	f = 200kHz		68		dB	

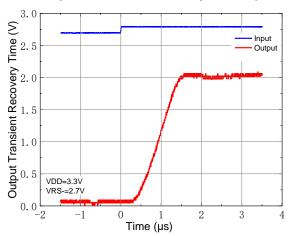
Electronics Characteristics (continued)

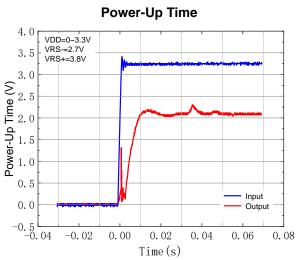
 $V_{RS+} = V_{RS-} = +76V$, $V_{DD} = +3.3V$, $V_{SENSE} = V_{RS+} - V_{RS-} = 1mV$, $T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.

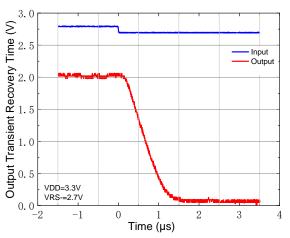
AC CMRR	AC CMRR	f 200kUz	1mV sine wave	87	dD
		f = 200kHz	20mV sine wave	80	dB
	Output Transient Recovery Time	ΔVOUT = 2VP-P		1.5	μs
0			olation resistor	20	nF
C_{LOAD}	Capacitive Load Stability	Without any isolation resistor		200	pF
en	Input Voltage-Noise Density	f = 1kHz		20	nV/ √ Hz
THD	Total Harmonic Distortion (Up to 7th Harmonics)	f = 1kHz, V _{OUT} = 1V _{P-P}		60	dB
	Power-Up Time (Note 5)			50	μs
	Saturation Recovery Time			20	μs

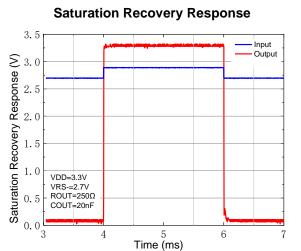

Note:


- 1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
- 2. All devices are 100% production tested at $T_A = +25^{\circ}C$. All temperature limits are guaranteed by design.
- 3. Specifications are guaranteed by design, not production tested.
- 4. Gain and offset voltage are calculated based on two point measurements: V_{SENSE1} and V_{SENSE2}. V_{SENSE1} = 20% x Full Scale V_{SENSE}. V_{SENSE2} = 80% x Full Scale V_{SENSE}.
- 5. Output is high-Z during power-up.

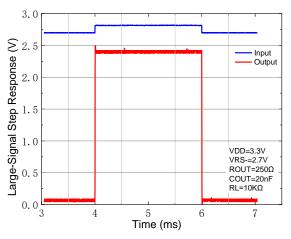

Typical Characteristics


 $V_{RS+} = V_{RS-} = 76V$, $V_{DD} = 3.3V$, $V_{SENSE} = V_{RS+} - V_{RS-} = 1mV$, $T_A = +25^{\circ}C$, unless otherwise noted.

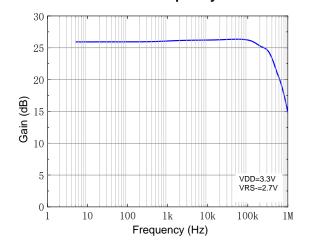


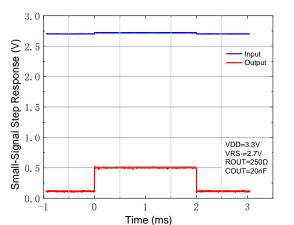

Output Transient Recovery Time Up

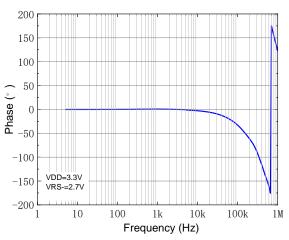
Output Transient Recovery Time Down

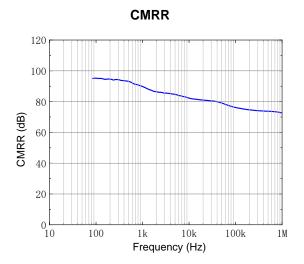


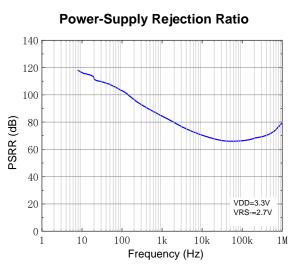
Typical Characteristics (continued)


 $V_{RS+} = V_{RS-} = 76V$, $V_{DD} = 3.3V$, $V_{SENSE} = V_{RS+} - V_{RS-} = 1mV$, $T_A = +25^{\circ}C$, unless otherwise noted.

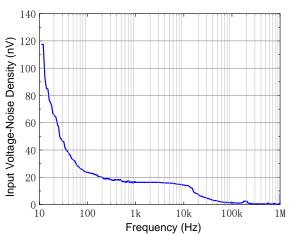

Large-Signal Step Response

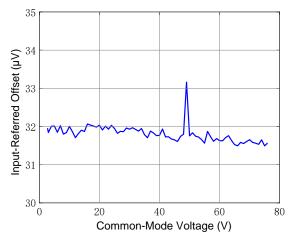



Gain vs. Frequency

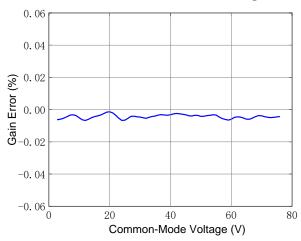


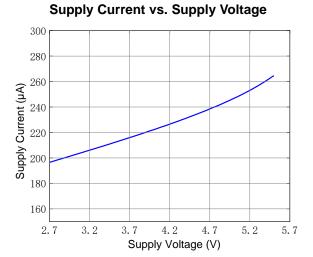
Phase vs. Frequency



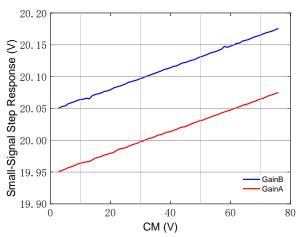

Typical Characteristics (continued)

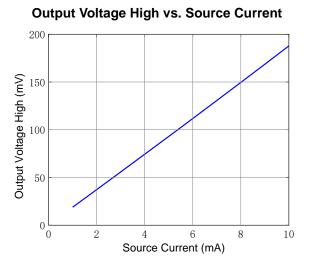
 $V_{\text{RS+}} = V_{\text{RS-}} = 76V, V_{\text{DD}} = 3.3V, V_{\text{SENSE}} = V_{\text{RS+}} - V_{\text{RS-}} = 1mV, T_{\text{A}} = +25^{\circ}C, \text{ unless otherwise noted}.$


Input Voltage-Noise Density

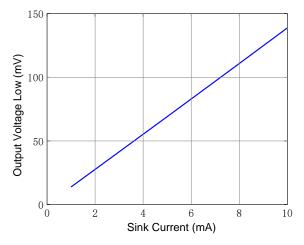


Input-Referred Offset vs. Common-Mode Voltage

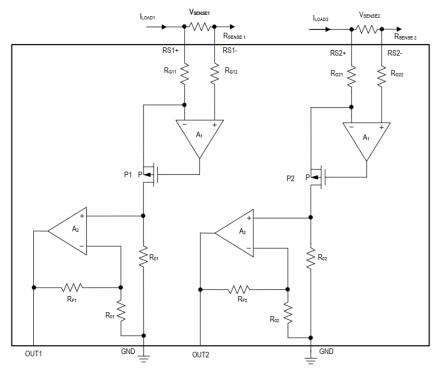



Gain Error vs. Common-Mode Voltage

Gain vs. CM



Typical Characteristics (continued)


 $V_{RS+} = V_{RS-} = 76V$, $V_{DD} = 3.3V$, $V_{SENSE} = V_{RS+} - V_{RS-} = 1mV$, $T_A = +25^{\circ}C$, unless otherwise noted.

Output Voltage Low vs. Sink Current

Functional Diagram

Detailed Description

The WS74285 high-side, current-sense amplifier features a 2.7V to 76V input common-mode range that is independent of supply voltage. This feature allows the monitoring of supply voltage. This feature allows the monitoring of current out of a battery as low as 2.7V and enables high-side current sensing at voltages greater than the supply voltage (V_{DD}). The WS74285 monitors current through a current-sense resistor and amplifies the voltage across the resistor.

High-side current monitoring does not interfere with the ground path of the load being measured, making the WS74285 particularly useful in a wide range of high-voltage systems. The WS74285 operates as follows: current from the source flows through R_{SENSE} to the load (see Functional Diagram), creating a sense voltage, V_{SENSE} . The internal op amp A1 is used to force the current through an internal gain resistor R_{G11} at RS1+ pin, such that its voltage drop equals the voltage drop (V_{SENSE}) across the external sense resistor (R_{SENSE}). The internal resistor at RS1- pin (R_{G12}) has the same value as R_{G11} to minimize error p-channel FET. Its source current is the same as the drain current which flows through a second gain resistor, R_{01} producing a voltage $V_{R01} = V_{SENSE} \times R_{01}/R_{G11}$.

The output voltage V_{OUT1} is produced from a second op amp A2 with the gain (1+ RF1/R01). Hence, the V_{OUT1}= $I_{LOAD1} \times R_{SENSE1}$ (R_{01}/R_{G11}) x (1+ R_{F1}/R_{01}) for channel 1 and Vout2= $I_{LOAD2} \times R_{SENSE2}$ (R_{02}/R_{G21}) x (1+ R_{F2}/R_{02}) for channel 2. Internal resistor $R_{01} = R_{02}$, $R_{G11} = R_{G21} = R_{G22}$, $R_{F1} = R_{F2}$. The gain-setting resistors R_{01} , R_{02} , R_{G11} , R_{G21} , R_{G21} , R_{G22} , R_{F1} and R_{F2} are available in Table1).

Total gain = 12.5V/V for WS74285x1, 20V/V for the WS74285T, 50V/V for the WS74285x3, and 100V/V for the WS74285x4.

Applications Information

Recommended Component Values

Ideally, the maximum load current develops the full-scale sense voltage across the current-sense resistor. Choose the gain needed to yield the maximum output voltage required for the application:

$V_{OUT} = V_{SENSE} x A_V$

Where V_{SENSE} is the full-scale sense voltage, 200mV for gain of 12.5V/V, 125mV for gain of 20V/V, 50mV for gain of 50V/V, 25mV for gain of 100V/V, and A_V is the gain of the device.

In applications monitoring a high current, ensure that R_{SENSE} is able to dissipate its own I²R loss. If the resistor's power dissipation exceeds the nominal value, its value may drift or it may fail altogether. The WS74285 senses a wide variety of currents with different sense-resistor values.

Choosing the Sense Resistor

Choose R_{SENSE} based on the following criteria:

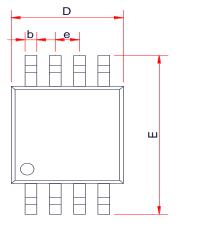
Voltage Loss : A high R_{SENSE} value causes the power- source voltage to degrade through IR loss. For minimal voltage loss, use the lowest R_{SENSE} .

Accuracy: A high R_{SENSE} value allows lower currents measured more accurately. This is due to offsets becoming less significant when the sense voltage is larger. For best performance select R_{SENSE} to provide approximately 200mV (gain of 12.5V/V), 125mV (gain of 20V/V), or 50mV (gain of 50V/V), 25mV (gain of 100V/V) of sense voltage for the full-scale current in each application.

Efficiency and Power Dissipation: At high current levels the I²R losses in R_{SENSE} can be significant. Consider this when choosing the resistor value and its power dissipation (wattage) rating. In addition, the sense resistor's value might drift if it heats up excessively.

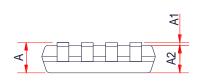
Inductance: Keep inductance low if I_{SENSE} has a large high-frequency component. Wire-wound resistors have the highest inductance, while metal film is somewhat better. Low-inductance, metal-film resistors are also available. Instead of being spiral wrapped around a core, as in metal-film or wire wound resistors, they are a straight band of metal and are available in values under 1 Ω .

Take care to eliminate parasitic trace resistance from causing errors in the sense voltage because of the high currents that flow through R_{SENSE}. Either use a four terminal current-sense resistor or use Kelvin (force and sense) PCB layout techniques.


Base Station Application Circuit


An example of a typical application (Figure 1) of this high-voltage, high-precision current-sense amplifier is in base-station systems where there is a need to monitor the current flowing in the power amplifier. Such amplifiers, depending on the technology, can be biased up to 50V or 60V thus requiring a current-sense amplifier like the WS74285 with high-voltage common mode. The very low input offset voltage of the WS74285 minimizes the value of the external sense resistor thus resulting in system power-saving.

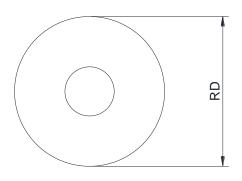
PACKAGE OUTLINE DIMENSIONS

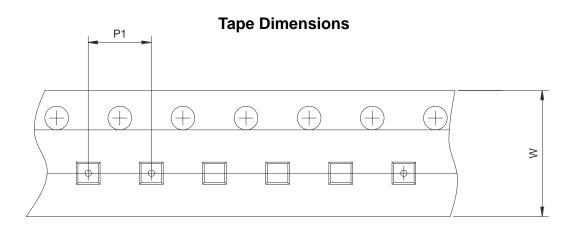


TOP VIEW

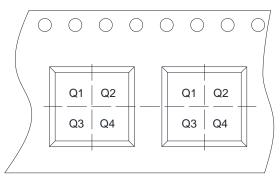
SIDE VIEW

SIDE VIEW


Symbol	Dimensions In Millimeters (mm)				
	Min.	Тур.	Max.		
А	-	-	1.10		
A1	0.02	-	0.15		
A2	0.75	0.80 0.95			
b	0.25	-	0.38		
С	0.09	-	0.23		
D	2.90	3.00	3.10		
E	4.75	4.90 5.05			
E1	2.90	3.00 3.10			
е	0.65 BSC				
L	0.40	-	0.80		
θ	0°	-	6°		

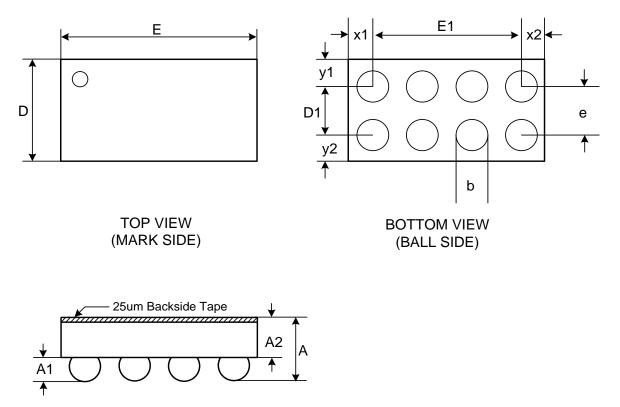


TAPE AND REEL INFORMATION


MSOP-8L

Reel Dimensions

Quadrant Assignments For PIN1 Orientation In Tape

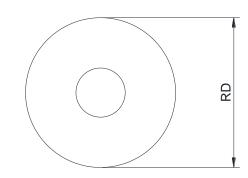

User Direction of Feed

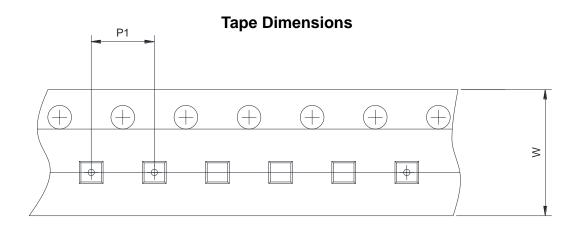
RD	Reel Dimension	🗖 7inch	🔽 13inch		
W	Overall width of the carrier tape	🗖 8mm	🔽 12mm		
P1	Pitch between successive cavity centers	🗖 2mm	🗌 4mm	🗹 8mm	
Pin1	Pin1 Quadrant	🗹 Q1	🗖 Q2	🗖 Q3	🗖 Q4

PACKAGE OUTLINE DIMENSIONS

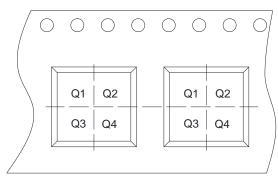
SIDE VIEW

Symbol	Dimensions In Millimeters (mm)				
	Min.	Min. Typ.			
A	0.595	0.640	0.685		
A1	0.220	0.240	0.260		
A2	0.375	0.400	0.425		
D	1.020	1.020 1.050 1.080			
D1	0.500BSC				
E	1.940	1.940 1.970 2.000			
E1		1.500 BSC			
b	0.300 0.320 0.340				
е		0.500 BSC			
x1		0.235 REF			
x2	0.235 REF				
y1	0.275 REF				
y2		0.275 REF			


Will Semiconductor Ltd.



TAPE AND REEL INFORMATION


CSP-8L

Reel Dimensions

Quadrant Assignments For PIN1 Orientation In Tape

User Direction of Feed

RD	Reel Dimension	🗹 7inch	🗌 13inch		
W	Overall width of the carrier tape	🔽 8mm	🗌 12mm		
P1	Pitch between successive cavity centers	🗖 2mm	🔽 4mm	🔲 8mm	
Pin1	Pin1 Quadrant	🗖 Q1	✓ Q2	🗖 Q3	🗖 Q4

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Current Sense Amplifiers category:

Click to view products by Will Semiconductor manufacturer:

Other Similar products are found below :

COSINA180A3 LMP8278QMMX/NOPB LT6107HS5#TRPBF INA241A2IDDFR INA241A3IDDFR INA241A5IDDFR INA241B2QDDFRQ1 INA281A3IDBVR INA296A3IDDFR INA241A1IDDFR WS74285C-8/TR INA296A2QDDFRQ1 INA296A5IDDFR INA241B2IDDFR INA211CIRSWR INA296A1QDDFRQ1 INA296A3QDDFRQ1 INA212BIDCKR MAX9937AXK+T MAX4080FAUA+T MAX4073FAXK+T NTE955M INA240A3PWR INA199C3DCKT LTC6102CMS8#TRPBF LT6106CS5#TRPBF INA214CIDCKR INA199C2DCKT AD8211WYRJZ-R7 INA199C1DCKT MAX9610HEXK+T INA199C1DCKR LMP8480ATQDGKRQ1 INA212BIRSWR INA199C1QDCKRQ1 INA199C2DCKR INA211BIRSWR INA210CIDCKT INA214BQDCKRQ1 INA199C3RSWR INA213CQDCKRQ1 INA212CIDCKR LMP8480ASQDGKRQ1 INA212CIRSWT LMP8481AHQDGKRQ1 INA231AIYFDR INA211CIRSWT INA213CIDCKR INA214CIRSWR LMP8481ASQDGKRQ1