

WS742905

3.5MHz Low-Power 36V Operational Amplifiers

Descriptions

WS742905 consist of dual channel independent, high gain, internally frequency compensated operational amplifiers which are designed specifically to operate from a single power supply over a wide range of voltages. These devices are particularly useful in interface circuits with digital systems and can be operated from the single common 5VDC power supply.

The WS742905 is available in 8-pin SOP and MSOP packages. Standard products are Pb-Free and halogen-Free.

Features

- Single Supply Voltage : 3~36V
- Quiescent Current per Amp : 120μA Typical
- GBWP : 3.5MHz
- Slew Rate : 2V/µs
- Offset Voltage : 3.5mV Maximum
- Offset Voltage Temp. Drift : 3µV/°C
- THD+N
- CMRR/PSRR/Gain : 130/120/125dB
- Output Short-Circuit Curr. : 18mA
- Input Common-Mode Voltage Range Includes Ground

: -100dB

- No Output Crossover Distortion
- No Phase Reversal from Overdriven Input
- Rail-to-Rail Output Swing
- -40°C to 125°C Operation Range

Applications

- Walkie-Talkie
- Battery Management Solution
- Transducer Amplifiers
- Summing Amplifier
- Multivibrators
- Oscillators
- DC Gain Blocks

Order information

Marking

w

742905 = Device code

2905 = Device code

GM = Special code

Y = Year code

= Week code

SOP-8L

Device	Package	Shipping
WS742905S-8/TR	SOP-8L	4000/Reel &Tape
WS742905M-8/TR	MSOP-8L	4000/Reel &Tape

MSOP-8L

Pin Descriptions

Pin Number	Symbol	Descriptions
1	OUTA	Output
2	-INA	Inverting input
3	+INA	Non-inverting input
4	V-	Negative supply
5	+INB	Non-inverting input
6	-INB	Inverting input
7	OUTB	Output
8	V+	Positive supply

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply Voltage	Vcc ⁽²⁾	42	V
Input Differential Voltage	V _{IDR} ⁽³⁾	±42	V
Input Common Mode Voltage Range	V _{ICR}	V ⁻ to V ⁺ -2	V
Output Short-Circuit Duration	t _{so}	Unlimited	/
Operating Fee-Air Temperature Range	T _A	-40 to 125	°C
Storage Temperature Range	T _{STG}	-65 to 150	°C
Junction Temperature Range	TJ	150	°C
Lead Temperature Range	TL	260	°C

Note:

 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are only stress ratings, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- 2. All voltage values, except differential voltage are with respect to network terminal.
- 3. Differential voltages are at IN+ with respect to IN-.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum level	Unit
НВМ	Human Body Model ESD	MIL-STD-883H Method 3015.8	±1500	V
······		JEDEC-EIA/JESD22-A114A		
CDM	Charged Device Model ESD	JEDEC-EIA/JESD22-C101E	±1500	V

Electronics Characteristics

The * denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}$ C. $V_S = 30$ V, $V_{CM} = V_{OUT} = V_S/2$, $R_{load} = 2k\Omega$, $C_{load} = 100$ pF.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
Vos	Input Offset Voltage	V _{CM} = V _{SUPPLY} /2	*	-3.5	±0.1	3.5	mV
αvos	Input Offset Voltage Drift				3		µV/°C
I _{IB}	Input Bias Current				20		pА
los	Input Offset Current				20		pА
Vn	Input Voltage Noise	f=0.1Hz to10Hz			8		μV _{P-P}
		f=1KHz			32		
en	Input voltage Noise Density	f=10KHz			23		NV/NHZ
CMRR	Common Mode Rejection Ratio	DC, V _S =30V, V _{CM} =0V to 28V	*	105	130		dB
V _{СМ}	Common Mode Input Voltage Range	V _S =5V to 30V	*	V-		V+-2	V
PSRR	Power Supply Rejection Ratio	V _S =5V to 30V	*	105	120		dB
		V _S =5V, V _{OUT} =0.1V to 4.9V, R _{LOAD} =2kΩ	*	90	95		ī
AVOL	Open Loop Large Signal Gain	V _S =15V, V _{OUT} =1V to 14V, R _{LOAD} =10kΩ	*	90	125		dΒ
		R _{LOAD} =2kΩ			13.6		
Vон	High Level Output Voltage	$R_{LOAD}=10k\Omega$			14.7		V
		$R_{LOAD}=2k\Omega$			-13.9		
VOL	Low Level Output voltage	R_{LOAD} =10k Ω			-14.7		V
I _{SC}	Output Short-Circuit Current	Source Current, Vs=30V	*	18	21		mA
		Sink Current, V _S =30V	*	18	23		
		V _s =5V No Load	*		120	165	•
IQ	Quiescent Current per Ampliller	Vs=30V No Load	*		140	175	μΑ
РМ	Phase Margin	R _{LOAD} =2kΩ, C _{LOAD} =100pF			67		0
GM	Gain Margin	R _{LOAD} =2kΩ, C _{LOAD} =100pF			-15		dB
GBWP	Gain-Bandwidth Product	f=1kHz			3.5		MHz
ts	Settling Time	A _V =1, V _{OUT} =1V, 0.1%			1.4		μs
SR	Slew Rate	A _V =1, V _S = \pm 15V, V _{OUT} =-10V to 10V, R _{LOAD} =10k Ω , C _{LOAD} =100pF			2		V/µs
FPBW	Full Power Bandwidth				58		kHz
THD+N	Total Harmonic Distortion and Noise	f=1kHz, AV=1, R _{LOAD} =2kΩ, V _{OUT} =2V _{PP}			-100		dB
Xtalk	Channel Separation	f=1kHz			95		dB

Note:

- 1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
- 2. A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely.
- 3. Thermal resistance varies with the amount of PC board metal connected to the package. The specified values are for short traces connected to the leads.
- 4. Full power bandwidth is calculated from the slew rate FPBW = SR/($\pi \cdot V_{P-P}$).

III SEMI

Typical Characteristics

 $T_A=25^{\circ}C$, $V_S=\pm15V$, $V_{CM}=0V$, $R_{load}=Open$, unless otherwise noted

Small-Siganl Step Response, 100mV Step

Negative/Positive Over-Voltage Recovery

Input Offset Voltage Distribution

Large-Siganl Step Response, 2V Step

0.1Hz to 10Hz Integrated Input Noise,

Gain = 50000

Open-Loop Gain and Phase

Typical Characteristics (continued)

 $T_A=25^{\circ}C$, $V_S=\pm15V$, $V_{CM}=0V$, $R_{load}=Open$, unless otherwise noted

Short-Circuit Current vs. Temperature

Quiescent Supply Current vs. Supply Voltage

PSRR vs. Temperature

CMRR vs. Temperature

III SEMI

Typical Characteristics (continued)

 $T_{A}\text{=}25^{\circ}\text{C}, V_{S}\text{=}\pm15\text{V}, V_{CM}\text{=}0\text{V}, R_{\text{load}}\text{=}\text{Open}, \text{unless otherwise noted}$

Input Offset Voltage vs. Common-Mode Voltage

Input Offset Voltage vs. Temperature

Input Bias Current vs. Common-Mode Voltage

Crosstalk, V_{in} +=1k Ω to GND

THD+Noise vs. Vin+

THD+Noise vs. Frequency

PACKAGE OUTLINE DIMENSIONS

SOP-8L

e e

SIDE VIEW

Symbol	Dimensions In Millimeters (mm)					
Symbol	Min.	Min. Typ.				
A	1.35	1.55	1.75			
A1	0.05	0.15	0.25			
A2	1.25	1.40	1.65			
b	0.33	-	0.51			
с	0.15	-	0.26			
D	4.70	4.90	5.10			
E	3.70	3.90	4.10			
E1	5.80	6.00	6.20			
е		1.27BSC				
L	0.40	-	1.27			
θ	0°	- 8°				

TAPE AND REEL INFORMATION

SOP-8L

Reel Dimensions

Quadrant Assignments For PIN1 Orientation In Tape

User Direction of Feed

RD	Reel Dimension	Tinch	🗹 13inch		
W	Overall width of the carrier tape	🗖 8mm	🗹 12mm		
P1	Pitch between successive cavity centers	🔲 2mm	🔲 4mm	🔽 8mm	
Pin1	Pin1 Quadrant	🔽 Q1	🗖 Q2	🗖 Q3	🗖 Q4

PACKAGE OUTLINE DIMENSIONS

TOP VIEW

SIDE VIEW

SIDE VIEW

Symbol	Dimensions In Millimeters (mm)					
	Min.	Min. Typ.				
A	-					
A1	0.02	-	0.15			
A2	0.75	0.80	0.95			
b	0.25	-	0.38			
с	0.09	-	0.23			
D	2.90	3.00	3.10			
E	4.75	4.90	5.05			
E1	2.90	3.00	3.10			
е	0.65 BSC					
L	0.40	-	0.80			
θ	0°	- 6°				

TAPE AND REEL INFORMATION

MSOP-8L

Reel Dimensions

Quadrant Assignments For PIN1 Orientation In Tape

User Direction of Feed

RD	Reel Dimension	Tinch	🗹 13inch		
W	Overall width of the carrier tape	🗖 8mm	🗹 12mm		
P1	Pitch between successive cavity centers	🔲 2mm	🔲 4mm	🔽 8mm	
Pin1	Pin1 Quadrant	🔽 Q1	🗖 Q2	🗖 Q3	🗖 Q4

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by Will Semiconductor manufacturer:

Other Similar products are found below :