WS742905

3.5MHz Low-Power 36V Operational Amplifiers

Descriptions

WS742905 consist of dual channel independent, high gain, internally frequency compensated operational amplifiers which are designed specifically to operate from a single power supply over a wide range of voltages. These devices are particularly useful in interface circuits with digital systems and can be operated from the single common 5VDC power supply.

The WS742905 is available in 8-pin SOP and MSOP packages. Standard products are Pb -Free and halogen-Free.

Features

- Single Supply Voltage : 3~36V
- Quiescent Current per Amp : $120 \mu \mathrm{~A}$ Typical
- GBWP
: 3.5 MHz
- Slew Rate
: $2 \mathrm{~V} / \mu \mathrm{s}$
- Offset Voltage $: 3.5 \mathrm{mV}$ Maximum
- Offset Voltage Temp. Drift $: 3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- THD+N :-100dB
- CMRR/PSRR/Gain : 130/120/125dB
- Output Short-Circuit Curr. : 18mA
- Input Common-Mode Voltage Range Includes Ground
- No Output Crossover Distortion
- No Phase Reversal from Overdriven Input
- Rail-to-Rail Output Swing
- $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Operation Range

Applications

- Walkie-Talkie
- Battery Management Solution
- Transducer Amplifiers
- Summing Amplifier
- Multivibrators
- Oscillators
- DC Gain Blocks

Http://www.willsemi.com

SOP-8L/MSOP-8L
Pin configuration (Top view)

SOP-8L

MSOP-8L

Order information

Device	Package	Shipping
WS742905S-8/TR	SOP-8L	4000/Reel \&Tape
WS742905M-8/TR	MSOP-8L	4000/Reel \&Tape

Pin Descriptions

Pin Number	Symbol	
1	OUTA	Output
2	-INA	Inverting input
3	+ INA	Non-inverting input
4	V-	Negative supply
5	+ INB	Non-inverting input
6	-INB	Inverting input
7	OUTB	Output
8	V+	Positive supply

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}{ }^{(2)}$	42	V
Input Differential Voltage	$\mathrm{V}_{\mathrm{IDR}}{ }^{(3)}$	± 42	V
Input Common Mode Voltage Range	$\mathrm{V}_{\mathrm{ICR}}$	V^{-}to $\mathrm{V}^{+}-2$	V
Output Short-Circuit Duration	t_{SO}	Unlimited	$/$
Operating Fee-Air Temperature Range	T_{A}	-40 to 125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{STG}}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Junction Temperature Range	T_{J}	150	${ }^{\circ} \mathrm{C}$
Lead Temperature Range	T_{L}	260	${ }^{\circ} \mathrm{C}$

Note:

1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are only stress ratings, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. All voltage values, except differential voltage are with respect to network terminal.
3. Differential voltages are at $\mathrm{IN}+$ with respect to $\mathrm{IN}-$.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum level	Unit
HBM	Human Body Model ESD	MIL-STD-883H Method 3015.8 JEDEC-EIA/JESD22-A114A	± 1500	V
CDM	Charged Device Model ESD	JEDEC-EIA/JESD22-C101E	± 1500	V

Electronics Characteristics

The * denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{S}} / 2, \mathrm{R}_{\text {load }}=2 \mathrm{k} \Omega, \mathrm{C}_{\text {load }}=100 \mathrm{pF}$.

Symbol	Parameter	Conditions		Min.	Typ.	Max.	Unit
Vos	Input Offset Voltage	$\mathrm{V}_{\text {CM }}=\mathrm{V}_{\text {SUPPLY }} / 2$	*	-3.5	± 0.1	3.5	mV
Qvos	Input Offset Voltage Drift				3		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{IB}	Input Bias Current				20		pA
los	Input Offset Current				20		pA
V_{n}	Input Voltage Noise	$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz			8		$\mu \mathrm{V}_{\text {P-P }}$
e_{n}	Input Voltage Noise Density	$\mathrm{f}=1 \mathrm{KHz}$			32		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
		$\mathrm{f}=10 \mathrm{KHz}$			23		
CMRR	Common Mode Rejection Ratio	$D C, V_{S}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$ to 28V	*	105	130		dB
$V_{\text {CM }}$	Common Mode Input Voltage Range	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ to 30 V	*	V-		$\mathrm{V}^{+}-2$	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ to 30 V	*	105	120		dB
Avol	Open Loop Large Signal Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.1 \mathrm{~V} \text { to } \\ & 4.9 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=2 \mathrm{k} \Omega \end{aligned}$	*	90	95		dB
		$\begin{aligned} & V_{S}=15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V} \text { to } \\ & 14 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=10 \mathrm{k} \Omega \end{aligned}$	*	90	125		
V OH	High Level Output Voltage	$\mathrm{R}_{\text {LOAD }}=2 \mathrm{k} \Omega$			13.6		V
		$\mathrm{R}_{\text {LOAD }}=10 \mathrm{k} \Omega$			14.7		
Vol	Low Level Output Voltage	RLOAD $=2 \mathrm{k} \Omega$			-13.9		V
		R LOAD $=10 \mathrm{k}$,			-14.7		
Isc	Output Short-Circuit Current	Source Current, $V_{\mathrm{S}}=30 \mathrm{~V}$	*	18	21		mA
		Sink Current, $\mathrm{V}_{\mathrm{s}}=30 \mathrm{~V}$	*	18	23		
I_{Q}	Quiescent Current per Amplifier	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ No Load	*		120	165	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{S}}=30 \mathrm{~V}$ No Load	*		140	175	
PM	Phase Margin	$\begin{aligned} & \mathrm{R}_{\mathrm{LOAD}}=2 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{LOAD}}=100 \mathrm{pF} \end{aligned}$			67		-
GM	Gain Margin	$\begin{aligned} & R_{\text {LOAD }}=2 \mathrm{k} \Omega, \\ & C_{\text {LOAD }}=100 \mathrm{pF} \end{aligned}$			-15		dB
GBWP	Gain-Bandwidth Product	$\mathrm{f}=1 \mathrm{kHz}$			3.5		MHz
ts	Settling Time	$\mathrm{A}_{\mathrm{V}}=1, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}, 0.1 \%$			1.4		$\mu \mathrm{S}$
SR	Slew Rate	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=1, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=-10 \mathrm{~V} \text { to } 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{LOAD}}=10 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{LOAD}}=100 \mathrm{pF} \end{aligned}$			2		$\mathrm{V} / \mu \mathrm{s}$
FPBW	Full Power Bandwidth				58		kHz
THD +N	Total Harmonic Distortion and Noise	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \mathrm{AV}=1, \\ & \mathrm{R}_{\mathrm{LOAD}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{OUT}}=2 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$			-100		dB
$\mathrm{X}_{\text {talk }}$	Channel Separation	$\mathrm{f}=1 \mathrm{kHz}$			95		dB

Note:

1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime
2. A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely.
3. Thermal resistance varies with the amount of PC board metal connected to the package. The specified values are for short traces connected to the leads.
4. Full power bandwidth is calculated from the slew rate $\mathrm{FPBW}=\mathrm{SR} /\left(\pi \cdot V_{P-p}\right)$.

Typical Characteristics

$\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm \mathbf{1 5} \mathrm{V}, \mathrm{V}_{\mathrm{Cm}}=\mathbf{0} \mathrm{V}, \mathrm{R}_{\text {load }}=$ Open, unless otherwise noted

Small-Siganl Step Response, 100mV Step

Negative/Positive Over-Voltage Recovery

Input Offset Voltage Distribution

Large-Siganl Step Response, 2V Step

0.1 Hz to 10 Hz Integrated Input Noise, Gain $=\mathbf{5 0 0 0 0}$

Open-Loop Gain and Phase

Typical Characteristics (continued)

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{cm}}=\mathbf{O V}, \mathrm{R}_{\text {load }}=$ Open, unless otherwise noted

Quiescent Supply Current vs. Temperature

PSRR vs. Temperature

Short-Circuit Current vs. Temperature

Quiescent Supply Current vs. Supply Voltage

CMRR vs. Temperature

Typical Characteristics (continued)

$\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{Cm}}=0 \mathrm{~V}, \mathrm{R}_{\text {load }}=$ Open, unless otherwise noted

Input Offset Voltage vs. Common-Mode Voltage

Input Bias Current vs. Common-Mode Voltage

THD+Noise vs. Vin+

Input Offset Voltage vs. Temperature

Crosstalk, $\mathrm{V}_{\text {in }} \mathbf{+}=1 \mathrm{k} \boldsymbol{\Omega}$ to $\mathbf{G N D}$

THD+Noise vs. Frequency

PACKAGE OUTLINE DIMENSIONS
SOP-8L

TOP VIEW

SIDE VIEW

SIDE VIEW

Symbol	Dimensions In Millimeters (mm)					
	Min.	Typ.	Max.			
A	1.35	1.55	1.75			
A1	0.05	0.15	0.25			
A2	1.25	1.40	1.65			
b	0.33	-	0.51			
c	0.15	-	0.26			
D	4.70	4.90	5.10			
E	3.70	3.90	4.10			
E1	5.80	6.00	6.20			
e					$1.27 B S C$	
L	0.40	-	1.27			
O					-	8°

TAPE AND REEL INFORMATION

SOP-8L

Reel Dimensions

Quadrant Assignments For PIN1 Orientation In Tape

User Direction of Feed

RD	Reel Dimension	Γ 7inch ∇ 13inch			
W	Overall width of the carrier tape	$\ulcorner 8 \mathrm{~mm}$	- 12 mm		
P1	Pitch between successive cavity centers	$\ulcorner 2 \mathrm{~mm}$	$\ulcorner 4 \mathrm{~mm}$	V 8 mm	
Pin1	Pin1 Quadrant	V Q1	$\ulcorner\mathrm{Q} 2$	\ulcorner Q3	\ulcorner Q4

PACKAGE OUTLINE DIMENSIONS
MSOP-8L

TOP VIEW

SIDE VIEW

SIDE VIEW

Symbol	Dimensions In Millimeters (mm)					
	Min.	Typ.	Max.			
A	-	-	1.10			
A1	0.02	-	0.15			
A2	0.75	0.80	0.95			
b	0.25	-	0.38			
c	0.09	-	0.23			
D	2.90	3.00	3.10			
E	4.75	4.90	5.05			
E1	2.90	3.00	3.10			
e	0.40	0.65 BSC				
L	0°	-	0.80			
θ					-	6°

TAPE AND REEL INFORMATION

MSOP－8L

Reel Dimensions

Quadrant Assignments For PIN1 Orientation In Tape

User Direction of Feed

RD	Reel Dimension	Γ 7inch $\sqrt{\text { a }}$ 13inch			
W	Overall width of the carrier tape	「8mm	$\sqrt{\text { V }} 12 \mathrm{~mm}$		
P1	Pitch between successive cavity centers	$\ulcorner 2 \mathrm{~mm}$	「4mm	V 8 mm	
Pin1	Pin1 Quadrant	\checkmark Q1	「Q2	Г Q3	「 Q4

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by Will Semiconductor manufacturer:
Other Similar products are found below :
OPA2991IDSGR OPA607IDCKT 007614D 633773R 635798C 635801A 702115D 709228FB 741528D NCV33072ADR2G
SC2902DTBR2G SC2903DR2G SC2903VDR2G LM258AYDT LM358SNG 430227FB 430228DB 460932C AZV831KTR-G1 409256CB 430232AB LM2904DR2GH LM358YDT LT1678IS8 042225DB 058184EB 070530X SC224DR2G SC239DR2G SC2902DG

SCYA5230DR2G 714228XB 714846BB 873836HB MIC918YC5-TR TS912BIYDT NCS2004MUTAG NCV33202DMR2G
M38510/13101BPA NTE925 SC2904DR2G SC358DR2G LM358EDR2G AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E NJM358CG-TE2 HA1630S01LPEL-E LM324AWPT HA1630Q06TELL-E

