WS7916S

CMOS High Gain GPS LNA

Descriptions

The WS7916S is a low noise amplifier (LNA) for GNSS receiver applications (including GPS, GLONASS, BeiDou and Galileo), available in a small 6-pin DFN package. The WS7916S requires only one external inductor for input matching.

The WS7916S is designed to achieve low power dissipation and good performance.

Features

- Operating frequency: 1550 MHz to 1615 MHz
- Noise figure $=0.65 \mathrm{~dB}$
- Gain $=16.5 \mathrm{~dB}$
- Input 1 dB compression point $=-5.5 \mathrm{dBm}$
- Out-of-band input IP3 $=+8.0 \mathrm{dBm}$
- Supply voltage: 1.8 V to 3.1 V
- Integrated supply decoupling capacitor
- Digital On/Off switch (1.2 V logic high level)
- Supply current: 6.9 mA
- Power-down mode leakage current $<3 \mu \mathrm{~A}$
- One external matching inductor required
- RF output internally matched to 50 Ohm
- ESD protection: HBM $>2.0 \mathrm{kV}$ for all pins
- Package: 6-pin DFN, $1.5 \times 1.0 \times 0.55 \mathrm{~mm}^{3}$
- Process: CMOS

Applications

- Cell phones
- Tablets
- Other RF front-end modules
http//:www.sh-willsemi.com

DFN1510-6L (Bottom view)

Pin configuration (Top view)

S = Device code

* $\quad=$ Month code (A~Z)

Marking (Top view)
Order information

Device	Package	Shipping
WS7916S-6/TR	DFN1510-6L	3000/Reel\&Tape

Pinning Information

Pin	Description	Trans	sparent top view	Symbol view
1	GNDRF			
2	GND			
3	RFIN			
4	VDD			
5	EN			
6	RFOUT			

Application Information

Symbol	Description	Footprint	Value	Supplier	Comment
U1	WS7916S	$1.5 \times 1.0 \times 0.55 \mathrm{~mm}^{3}$	$\mathrm{~N} / \mathrm{A}$	Will-Semi	DUT
C1	Capacitor	0402	1 nF	Various	DC blocking
C2	Capacitor	0402	1 nF	Various	Supply decoupling
L1	Inductor	0402	10 nH	Murata LQW15	Input matching

Quick Reference Data

Freq $=1575.42 \mathrm{MHz} ; \mathrm{V}_{\mathrm{CC}}=2.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{EN}}>1.2 \mathrm{~V}$; Temp $=25^{\circ} \mathrm{C}$; input matched to 50Ω with a 10 nH inductor. The condition is applied unless otherwise specified.

Symbol	Parameter	Condition	Min	Typ	Max	Unit
V_{Cc}	Supply voltage		1.8	2.8	3.1	V
I_{CC}	Supply current			6.9		mA
G_{p}	Power gain			16.5		dB
NF	Noise figure			0.65		dB
$\mathrm{IP}_{1 \mathrm{~dB}}$	Input power at 1 dB gain compression			-5.5		dBm
II_{3}	Input third-order intercept point			+8.0		dBm

Recommended Operating Conditions

Symbol	Parameter	Condition	Min	Typ	Max	Unit
V_{CC}	Supply voltage		1.8		3.1	V
Temp	Ambient temperature		-40	+25	+85	${ }^{\circ} \mathrm{C}$
V_{EN}	Input voltage on pin $6(\mathrm{EN})$	OFF state		0	0.4	V
		ON state	1.2	$\mathrm{~V}_{\mathrm{CC}}$		V

Absolute Maximum Ratings

Maximum ratings are absolute ratings, exceeding only one of these values may cause irreversible damage to the integrated circuit.

Symbol	Parameter	Condition	Min	Max	Unit
$\mathrm{V}_{\text {CC }}$	Supply voltage		-0.3	3.1	V
$\mathrm{~V}_{\text {EN }}$	Input voltage on pin EN		-0.3	3.1	V
$\mathrm{~V}_{\text {RFIN }}$	Input voltage on pin RFIN		-0.3	3.1	V
$\mathrm{~V}_{\text {RFOUT }}$	Input voltage on pin RFOUT		-0.3	3.1	V
$\mathrm{P}_{\text {in }}$	RF input power			0	dBm
$\mathrm{T}_{\text {STG }}$	Storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Junction temperature			150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ESD }}$	ESD capability all pins	Human Body Model (HBM)		± 2000	V

Electrical Characteristics

$1550 \mathrm{MHz} \leq \mathrm{f} \leq 1615 \mathrm{MHz} ; \mathrm{V}_{\mathrm{CC}}=2.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{EN}}>1.2 \mathrm{~V}$; Temp $=25^{\circ} \mathrm{C}$; input matched to 50Ω with a 10 nH inductor; The condition is applied unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
I_{CC}	Supply current	On state		6.9		mA
		Off state			3	$\mu \mathrm{~A}$
G_{p}	Power gain	$\mathrm{f}=1575 \mathrm{MHz}$		16.5		dB
$\mathrm{RL}_{\text {in }}$	Input return loss	$\mathrm{f}=1575 \mathrm{MHz}$		8		dB
$\mathrm{RL}_{\text {out }}$	Output return loss	$\mathrm{f}=1575 \mathrm{MHz}$		13.0		dB
ISL	Reverse isolation	$\mathrm{f}=1575 \mathrm{MHz}$		24.0		dB
NF	Noise figure ${ }^{[1]}$	$\mathrm{f}=1575 \mathrm{MHz}$		0.65	dB	
$\mathrm{IP}_{1 \mathrm{~dB}}$	Input power at 1 dB gain compression	$\mathrm{f}=1575 \mathrm{MHz}$	-5.5		dBm	
$\mathrm{O}^{-I I P_{3}}$	Out-of-band Input third-order intercept point $[2]$		+8.0		dBm	
K	Rollett stability factor ${ }^{[3]}$		1			
t_{on}	Turn-on time		5		$\mu \mathrm{~s}$	
$\mathrm{t}_{\text {off }}$	Turn-off time		5		$\mu \mathrm{~s}$	

$1550 \mathrm{MHz} \leq \mathrm{f} \leq 1615 \mathrm{MHz} ; \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{EN}}>1.2 \mathrm{~V}$; Temp $=25^{\circ} \mathrm{C}$; input matched to 50Ω with a 10 nH inductor; The condition is applied unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
I_{CC}	Supply current	On state		5		mA
		Off state			3	$\mu \mathrm{~A}$
G_{p}	Power gain	$\mathrm{f}=1575 \mathrm{MHz}$		15.5		dB
$\mathrm{RL}_{\text {in }}$	Input return loss	$\mathrm{f}=1575 \mathrm{MHz}$		7.5		dB
$\mathrm{RL}_{\text {out }}$	Output return loss	$\mathrm{f}=1575 \mathrm{MHz}$		13.0		dB
ISL	Reverse isolation	$\mathrm{f}=1575 \mathrm{MHz}$		24.0		dB
NF	Noise figure ${ }^{[1]}$	$\mathrm{f}=1575 \mathrm{MHz}$		0.7	dB	
$\mathrm{IP}_{1 \mathrm{~dB}}$	Input power at 1 dB gain compression	$\mathrm{f}=1575 \mathrm{MHz}$	-9.0		dBm	
$\mathrm{O}^{-I I P_{3}}$	Out-of-band Input third-order intercept point $[2]$		+8.0		dBm	
K	Rollett stability factor ${ }^{[3]}$		1			
t_{on}	Turn-on time		5		$\mu \mathrm{~s}$	
$\mathrm{t}_{\text {off }}$	Turn-off time		5		$\mu \mathrm{~s}$	

[1] Including PCB loss (PCB loss: 0.05-0.1 dB @ 1.575 GHz)
[2] $f_{1}=1713 \mathrm{MHz}, f_{2}=1851 \mathrm{MHz}, P_{\text {in }}=-20 \mathrm{dBm}$
[3] 10M~20GHz

Package Outline Dimensions

DFN1510-6L

Symbol	Dimensions In Millimeters		
	Min.	Typ.	Max.
A	0.50	N/A	0.60
A1	0.00	0.02	0.05
A3	0.15	$0.10 R E F$	0.25
b	0.90	0.20	1.10
D	1.40	1.00	1.60
E	0.40	1.50	0.60
e		0.50	
H	0.30	$0.10 R E F$	0.40
L	0.35	0.35	0.45
L1		0.40	

TAPE AND REEL INFORMATION
Reel Dimensions

Tape Dimensions

Quadrant Assignments For PIN1 Orientation In Tape

User Direction of Feed

RD	Reel Dimension	∇ 7inch \ulcorner 13inch			
W	Overall width of the carrier tape	$\checkmark 8 \mathrm{~mm}$	$\ulcorner 12 \mathrm{~mm}$	$\ulcorner 16 \mathrm{~mm}$	
P1	Pitch between successive cavity centers	$\checkmark 2 \mathrm{~mm}$	$\checkmark 4 \mathrm{~mm}$	$\ulcorner 8 \mathrm{~mm}$	
Pin1	Pin1 Quadrant	V Q1	$\ulcorner\mathrm{Q} 2$	\ulcorner Q3	$\ulcorner\mathrm{Q} 4$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by Will Semiconductor manufacturer:
Other Similar products are found below :
OPA2991IDSGR OPA607IDCKT 007614D 633773R 635798C 635801A 702115D 709228FB 741528D NCV33072ADR2G
SC2902DTBR2G SC2903DR2G SC2903VDR2G LM258AYDT LM358SNG 430227FB 430228DB 460932C AZV831KTR-G1 409256CB 430232AB LM2904DR2GH LM358YDT LT1678IS8 042225DB 058184EB 070530X SC224DR2G SC239DR2G SC2902DG

SCYA5230DR2G 714228XB 714846BB 873836HB MIC918YC5-TR TS912BIYDT NCS2004MUTAG NCV33202DMR2G
M38510/13101BPA NTE925 SC2904DR2G SC358DR2G LM358EDR2G AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E NJM358CG-TE2 HA1630S01LPEL-E LM324AWPT HA1630Q06TELL-E

