WSP6582C

SwitchPro Family High Fidelity Stereo SPDT

 Switch with Pop and Click Suppression
Descriptions

With SwitchProtechnology, The WSP6582C is a Dual SPDT analog switch with ultra-low distortion, high OFF-Isolation for special stereo audio applications with negative swing audio signals capacity that features ultra-low Ron of 0.2Ω (typical) at 3.3 V VCC.

The WSP6582C operates a single power supply over a wide range from 3.0 V to 4.5 V and 1.8 V logic compatible with ultra high PSRR. With soft-start feature that eliminates pops and clicks associated at any application conditions likes switched, enable/disable and power-up.

With superior THD +N performance and other high performance, the WSP6582C is an ideal device for Hi-Fi system applications.

The WSP6582C is available in 12 Ball Wafer Level Chip Scale Package (WLCSP) with $1.2 \times 1.6 \times 0.5 \mathrm{~mm}$. All products is Pb -free and Halogen-free.

Features

- Single supply range operating from 2.5 V to 4.5 V
- -118 dB THD +N into $100 \mathrm{k} \Omega$ load at 2 V rms
- -114 dB THD +N into 32Ω load at 2 V rms
- Signal-to-Noise (SNR) Ratio 132dBA
- 100 dB PSRR at 10 kHz
- 137 dB crosstalk \& separation
- Adjust soft-start with external capacitor

Applications

- Hi-Fi Smartphones and Portable Device
- Hi-Fi SACD/DVD players
- High Quality Home Theaters
http/:www.willsemi.com

WLCSP-12B (Bottom view)

Pin configuration (Top view)

Marking
= Device code
= Year code
= Week Code

Order information

Device	Package	Shipping
WSP6582C-12/TR	WLCSP-12B	$3000 /$ Reel\&Tape

Pin descriptions

Pin Number	Symbol	
A1	L1	Left normally closed pin
A2	L	Left common pin
A3	L2	Left normally open pin
B1	VCC	Power supply
B2	SEL1	Select control pin for Left
B3	CAP	Soft-start rising time control with external ceramic capacitor
C1	MUTE	Signal mute control pin
C2	SEL2	Select control pin for Right
C3	GND	Ground
D1	R1	Right normally closed pin
D2	R	Right common pin
D3	R2	Right normally open pin

Block Diagram

Figure 1. WSP6582C Block Diagram

Function Table

MUTE	SEL1	SEL2	L1	L2	R1	R2
0	0	0	ON	OFF	ON	OFF
0	0	1	ON	OFF	OFF	ON
0	1	0	OFF	ON	ON	OFF
0	1	1	OFF	ON	OFF	ON
1	X	X	OFF	OFF	OFF	OFF

Note: X=0 or 1, don't care

Typical Applications

Figure 2. Hi-Fi Phone Application Block Diagram

Parameter	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\text {CC }}$	-0.3 ~ 5.5	V
Digital Control Input Voltage	$\mathrm{V}_{\text {IN }}$	-0.3 ~ 5.5	V
Analog Input/Output Voltage (L1,L2,R1,R2,L,R)	$\mathrm{V}_{\text {IS }}$	-4.0 ~ 4.0	V
Switch Continuous Current (L1,L2,R1,R2,L,R)	I_{10}	± 300	mA
Switch Peak Current (L1,L2,R1,R2,L,R) (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle, Max)	$\mathrm{I}_{\text {O_PK }}$	± 500	mA
Power Dissipation in Still Air	P_{D}	250	mW
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-55~150	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	T_{L}	260	${ }^{\circ} \mathrm{C}$
Thermal Resistance	$\mathrm{R}_{\text {өJA }}$	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	I/O to VCC, I/O to GND	± 6000	V
ESD protection (HBM)	I/O to I/O	± 4000	V

Recommend operating ratings ${ }^{(2)}$

Parameter	Symbol	Value	Unit
Supply Voltage	V_{CC}	$2.5 \sim 4.5$	V
Digital Control Input Voltage	V_{IN}	$0.0 \sim \mathrm{~V}_{\mathrm{CC}}$	V
Analog Input/Output Voltage (L1,L2,R1,R2,L,R)	V_{IS}	$-3.3 \sim \mathrm{~V}_{\mathrm{CC}}$	V
Operating Temperature	T_{A}	$-40 \sim 85$	${ }^{\circ} \mathrm{C}$

Note:

1. "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.
2. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

DC Electronics Characteristics

($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCC}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IS }}=2 \mathrm{Vrms}, \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{f}=1 \mathrm{kHz}, \mathrm{CAP}=0.1 \mathrm{uF}$, unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Analog Switch Characteristics						
Analog Signal Range	$\mathrm{V}_{\text {IS }}$	VCC: 3.3 ~ 4.2		2.5		Vrms
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{\text {IS }}=-3.3 \mathrm{~V} \sim+3.3 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=100 \mathrm{~mA} \end{aligned}$		0.2		Ω
RoN Matching Between Channels	$\Delta \mathrm{R}_{\text {ON }}$	$\begin{aligned} & \mathrm{V}_{\text {IS }}=-3.3 \mathrm{~V} \sim+3.3 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=100 \mathrm{~mA} \end{aligned}$		0.0015		Ω
Ron Flatness	$\mathrm{R}_{\text {flat(on) }}$	$\begin{aligned} & \mathrm{V}_{\text {IS }}=-3.3 \mathrm{~V} \sim+3.3 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=100 \mathrm{~mA} \end{aligned}$		0.0015		Ω
Dynamic Characteristics						
Total Harmonic Distortion	THD+N	$\begin{aligned} & \hline \mathrm{f}=10 \mathrm{~Hz} \text { to } 22 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{IS}}=2 \mathrm{Vrms} @ \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \end{aligned}$		-118		dB
Total Harmonic Distortion	THD+N	$\begin{aligned} & \mathrm{f}=10 \mathrm{~Hz} \text { to } 22 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{IS}}=2 \mathrm{Vrms} @ \mathrm{R}_{\mathrm{L}}=32 \Omega \end{aligned}$		-114		dB
Total Harmonic Distortion	THD+N	$\begin{aligned} & \mathrm{f}=10 \mathrm{~Hz} \text { to } 500 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{IS}}=1.55 \mathrm{Vrms} \\ & @ R L=100 \mathrm{k} \Omega \\ & \hline \end{aligned}$		-104		dB
Intermodulation Distortion	IMD	$\begin{aligned} & \text { Mode=CCIF } 19 \mathrm{k}+20 \mathrm{k} \\ & \text { Ratio }=1 \\ & \mathrm{~V}_{\text {IS }}=500 \mathrm{mVrms} \\ & @ R_{\mathrm{L}}=100 \mathrm{k} \Omega \end{aligned}$		-122		dB
Dynamic/Transient Intermodulation Distortion	IMD	Mode=DIM100 VIS=1Vrms @ RL=100k Ω		-103		dB
Signal-to-Noise Ratio	SNR	$\mathrm{f}=10 \mathrm{~Hz}$ to 22 KHz , Inputs grounded $\mathrm{R}_{\mathrm{L}}=32 \Omega$ or $100 \mathrm{k} \Omega$		132		dBA
Stereo Channel Imbalance L1 and R1, L2 and R2	IMB	$\begin{aligned} & \mathrm{f}=10 \mathrm{~Hz} \text { to } 22 \mathrm{KHz}, \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \end{aligned}$		± 0.003		dB
Off isolation (Muting)	OIRR	$\begin{aligned} & \mathrm{f}=10 \mathrm{~Hz} \text { to } 22 \mathrm{KHz}, \\ & \mathrm{~V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{R}}=2 \mathrm{Vrms} \\ & @ R_{\mathrm{L}}=32 \Omega \\ & \text { MUTE=VCC SEL="X" } \end{aligned}$		127		dB
Crosstalk (Channel-to-Channel)	Xtalk	$\begin{aligned} & \hline \mathrm{f}=10 \mathrm{~Hz} \text { to } 22 \mathrm{KHz}, \\ & \mathrm{~V}_{\text {IS }}=2 \mathrm{~V} \mathrm{rms}, \end{aligned}$ Source Impedance $=0 \Omega$ $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$		137		dB
Power Supply Ripple Rejection	PSRR	$\begin{aligned} & \hline \mathrm{f}=10 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{IS}}=0.1 \mathrm{Vrms}, \end{aligned}$ Inputs grounded		100		dB
-3dB Bandwidth	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		50		MHz
On-to-Mute Time	$\mathrm{T}_{\text {TRS-OM }}$	$\mathrm{CAP}=0.1 \mathrm{uF}$		50		ns

Mute-to-On Time	$\mathrm{T}_{\text {TRS-MO }}$	$\mathrm{CAP}=0.1 \mathrm{uF}$		160		ms
Turn-Off Time	$\mathrm{T}_{\text {OFF }}$	$\begin{aligned} & \mathrm{V}_{\text {IS }}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{~K} \Omega \\ & \mathrm{MUTE}=0 \end{aligned}$		60		ns
Turn-On Time	T_{ON}	$\begin{aligned} & \mathrm{V}_{\text {IS }}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{~K} \Omega \\ & \mathrm{MUTE}=0 \end{aligned}$		60		us
Break-Before-Make time	$\mathrm{T}_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\text {IS }}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{~K} \Omega \\ & \mathrm{MUTE}=0 \end{aligned}$		50		us
Lx, Rx Off capacitance	$\mathrm{C}_{\text {OFF }}$	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{Lx}} \text { or } \mathrm{V}_{\mathrm{Rx}}=\mathrm{V}_{\mathrm{L}} \text { or } \mathrm{V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$		110		pF
L, R On capacitance	$\mathrm{C}_{\text {ON }}$	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{Lx}} \text { or } \mathrm{V}_{\mathrm{Rx}}=\mathrm{V}_{\mathrm{L}} \text { or } \mathrm{V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$		130		pF
Power Supply Characteristics						
Supply quiescent current	I_{CC}	MUTE=0V		190		uA
		MUTE=VCC		55		uA
Digital Input Characteristics						
Digital input logic high level	$\mathrm{V}_{\text {IH }}$	VCC=3.6~4.5	1.6			V
		VCC=3.0~3.6	1.5			V
Digital input logic low level	$\mathrm{V}_{\text {IL }}$	VCC=3.6~4.5			0.5	V
		VCC=3.0~3.6			0.4	V
Digital Input leakage current	I_{N}				± 2.0	uA
SEL pull-down resistor	$\mathrm{R}_{\text {PD }}$			4		$\mathrm{M} \Omega$
MUTE pull-up resistor	$\mathrm{R}_{\text {PU }}$			4		$\mathrm{M} \Omega$

Note:

3. Flatness is defined as the difference between maximum and minimum value of ON-resistance at the specified analog signal voltage points.
4. $R_{O N}$ matching between channels is calculated by subtracting the channel with the highest max Ron value from the channel with lowest max ron value.
5. Crosstalk is inversely proportional to source impedance.

Test Circuits

ON-Resistance (R_{ON})

Crosstalk (Xtalk)

Bandwidth (BW)

ON/OFF Time Waveforms ($\mathrm{T}_{\mathrm{ON}} / \mathrm{T}_{\mathrm{OFF}}$)

Off isolation (OIRR)

THD+N

Package outline dimensions

WLCSP-12B

Top View

Bottom View

Side View

Symbol	Dimensions in millimeter		
	Min.	Typ.	Max.
X	1.180	1.205	1.230
Y	1.610	1.635	1.660
X1		0.077	
X2		0.400	0.270
X3	0.230	0.250	
Y1		0.400	0.590
Y2		0.077	0.355
Z1	0.480	0.535	0.185
Z2	0.305	0.330	0.165

TAPE AND REEL INFORMATION

Reel Dimensions

Tape Dimensions

Quadrant Assignments For PIN1 Orientation In Tape

RD	Reel Dimension	∇ 7inch \ulcorner 13inch			
W	Overall width of the carrier tape	$\nabla 8 \mathrm{~mm} \Gamma 12 \mathrm{~mm}\ulcorner 16 \mathrm{~mm}$			
P1	Pitch between successive cavity centers	$\ulcorner 2 \mathrm{~mm}$	V 4 mm	$\ulcorner 8 \mathrm{~mm}$	
Pin1	Pin1 Quadrant	V Q1	$\ulcorner\mathrm{Q} 2$	\ulcorner Q3	\ulcorner Q4

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Will Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB MAX4762ETB+ NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX DG4051EEN-T1-GE4 SLAS3158MNR2G PI5A392AQEX PI5A392AQE FSA634UCX NX3L1T5157GMZ ADG714BCPZ-REEL7 HT4051ARZ BL1551B BCT4227EMB-TR SN74LVC1G3157DBVR SN74LVC1G3157DCKR ET3157 WSP6582C-12/TR AIP74LVC1G157GC363.TR AiP74HC4066TA14.TR AIP74HC4052SA16.TR GS3157-CR 74HC4051 U7SB3157G-SM2-R CD4051 SGM330A-YS/TR AIP4052TA16.TR RS2253XTSS16 NJG1815K75-TE1 BL2556ACB5TR UM7222 TC4066BP(N,F) TMUX136RSER DG302BDJ-E3 PI5A100QEX HV2733FG-G HV2701FGG HV2301FG-G HV2301FG-G-M931 RS2117YUTQK10 RS2118YUTQK10

