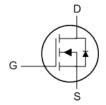


Features

- · 100% UIS + R_g Tested
- Avalanche Rated
- · Reliable and Rugged
- Lead Free and Green Devices Available (RoHS Compliant)

Applications


 Power Management in Notebook Computer, Portable Equipment and Battery Powered Systems.

Product Summery

BVDSS	RDSON	ID
25V	$3.4m\Omega_{(max.)}$	70A

DFN3.3x3.3-8-EP Pin Configuration

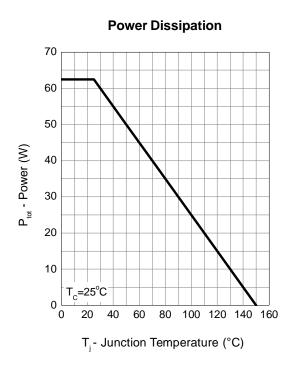
Absolute Maximum Ratings (T_A = 25°C Unless Otherwise Noted)

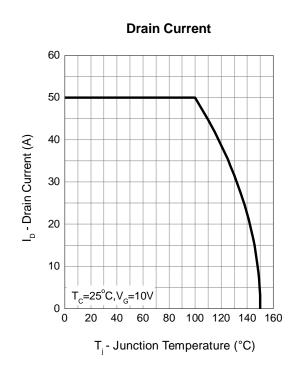
Symbol	Parameter	Rating	Unit			
Common	Common Ratings					
V _{DSS}	Drain-Source Voltage		25			
V _{GSS}	Gate-Source Voltage		±12	ן י ן		
T _J	Maximum Junction Temperature		150	- °C		
T _{STG}	Storage Temperature Range		-55 to 150	7		
Is	Diode Continuous Forward Current	T _C =25°C	70°			
	Continuous Drain Current	T _C =25°C	70°			
l _D	Continuous Diam Current	T _C =100°C	60	7 ^		
I _{DM}	Pulsed Drain Current	T _C =25°C	200 ^b	7		
В	Manipular Davida Discipation	T _C =25°C	62.5	w		
P _D	Maximum Power Dissipation	T _C =100°C	25	 		
R _{eJC}	Thermal Resistance-Junction to Case Steady State		2	°C/W		
	Continuous Drain Current	T _A =25°C	20	A		
I _D	Continuous Drain Current	T _A =70°C	16	7 ^		
Б	Maximum Dayon Discination	T _A =25°C	1.78	10/		
P _D	Maximum Power Dissipation	T _A =70°C	1.14	W		
Б	Sharmal Decistance Lunction to Angleicat	t ≤ 10s	35	°C/W		
$R_{\theta JA}$	Thermal Resistance-Junction to Ambient	Steady State	70			
I _{AS} c	Avalanche Current, Single pulse	L=0.1mH	50	Α		
E _{AS} ^c	Avalanche Energy, Single pulse	L=0.1mH	125	mJ		

Note a : Package is limited by 50A.

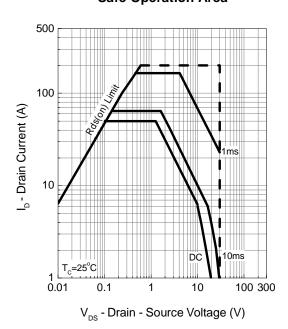
Note b: Pulse width is limited by maximum junction temperature.

Note c: UIS tested and pulse width is limited by maximum junction temperature 150° C (initial temperature $T_J = 25^{\circ}$ C).

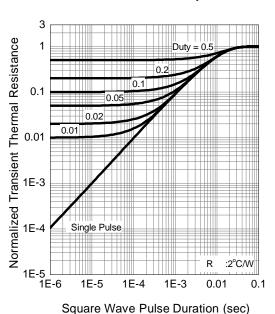

Electrical Characteristics (T_A = 25°C Unless Otherwise Noted)


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Static Cha	aracteristics			'		•
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _{DS} =250μA	25	-	-	V
_	Zoro Coto Voltago Proin Current	V _{DS} =24V, V _{GS} =0V	-	-	1	
I _{DSS}	Zero Gate Voltage Drain Current	T _J =85°C	-	-	30	μΑ
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{DS}=250\mu A$	0.5	0.8	1.1	V
I _{GSS}	Gate Leakage Current	$V_{GS}=\pm 12V, V_{DS}=0V$	-	-	±10	μΑ
		V _{GS} =4.5V, I _{DS} =20A	-	2.5	3.4	
R _{DS(ON)} ^d	Drain-Source On-state Resistance	T _J =125°C	-	3.9	-	mΩ
		V_{GS} =2.5V, I_{DS} =20A	-	3.0	4.0	
Gfs	Forward Transconductance	V_{DS} =5V, I_{DS} =20A	-	74	-	S
Diode Ch	aracteristics					
V _{SD} d	Diode Forward Voltage	I _{SD} =20A, V _{GS} =0V	•	0.7	1.1	V
t _{rr}	Reverse Recovery Time		-	14.8	-	ns
t _a	Charge Time	1 20A dl /dk 400A/va	-	7.1	-	
t _b	Discharge Time	I_F =20A, dI_{SD}/dt =100A/ μ s	-	7.7	-	
Q_{rr}	Reverse Recovery Charge		-	3.9	-	nC
Dynamic	Characteristics ^e			•	•	•
R_{G}	Gate Resistance	V _{GS} =0V,V _{DS} =0V, F=1MHz	<u>-</u>	0.85	-	Ω
C _{iss}	Input Capacitance	V _{GS} =0V,	-	4920	-	
C _{oss}	Output Capacitance	$V_{DS}=15V$,	-	510	-	pF
C _{rss}	Reverse Transfer Capacitance	Frequency=1.0MHz	-	350	-	
t _{d(ON)}	Turn-on Delay Time		-	16.6	31	
t _r	Turn-on Rise Time	V_{DD} =15V, R_L =15 Ω ,	-	12.2	23	
t _{d(OFF)}	Turn-off Delay Time	I_{DS} =1A, V_{GEN} =10V, I_{R_G} =6 Ω	-	135	244	ns
t _f	Turn-off Fall Time		-	48	87	
Gate Cha	rge Characteristics ^e					ı
Qg	Total Gate Charge	V _{DS} =15V, V _{GS} =4.5V, I _{DS} =20A	-	47	66	
Qg	Total Gate Charge		-	96	134	
Q_{gth}	Threshold Gate Charge	V _{DS} =15V, V _{GS} =10V,	-	2.75	3.8	nC
Q _{gs}	Gate-Source Charge	I _{DS} =20A	-	5.5	7.7	
Q_{gd}	Gate-Drain Charge		-	16	22	

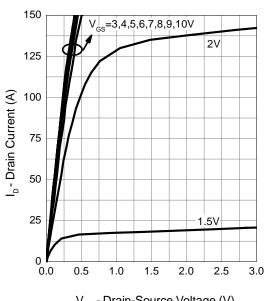
Note d : Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. Note e : Guaranteed by design, not subject to production testing.

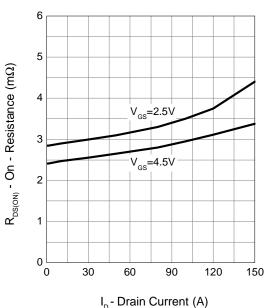


Typical Operating Characteristics

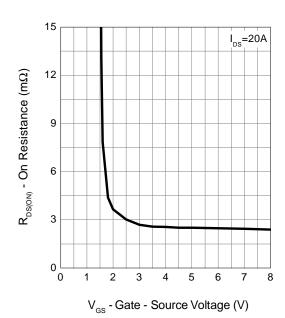


Safe Operation Area

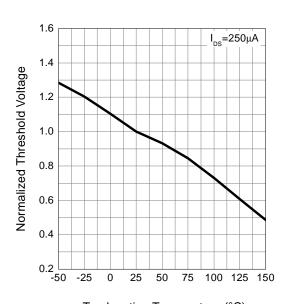

Thermal Transient Impedance


Typical Operating Characteristics (Cont.)

Output Characteristics

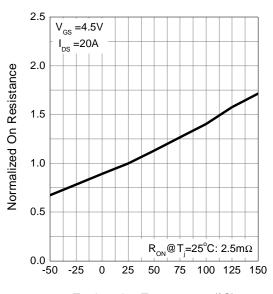


 $V_{\scriptscriptstyle DS}$ - Drain-Source Voltage (V)

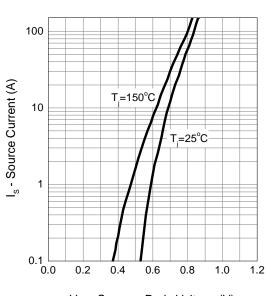

Drain-Source On Resistance

Gate-Source On Resistance

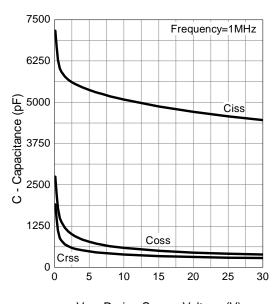
Gate Threshold Voltage



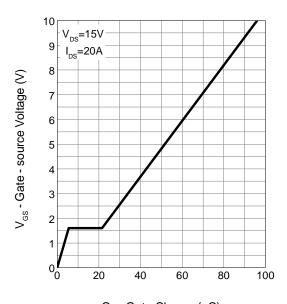
T_i - Junction Temperature (°C)


Typical Operating Characteristics (Cont.)

Drain-Source On Resistance

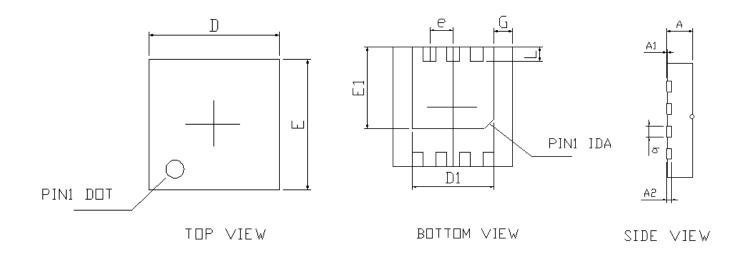

T_i - Junction Temperature (°C)

Source-Drain Diode Forward

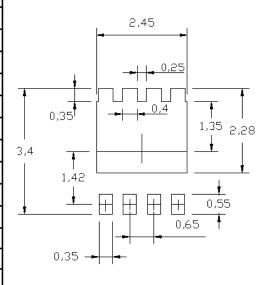

 V_{SD} - Source - Drain Voltage (V)

Capacitance

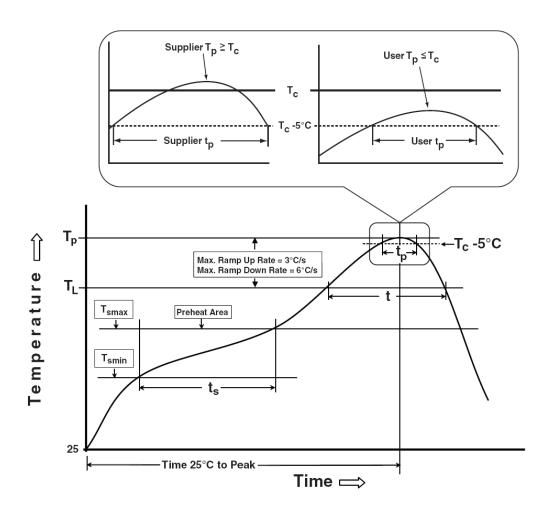
 $V_{\scriptscriptstyle DS}$ - Drain - Source Voltage (V)


Gate Charge

 $\mathbf{Q}_{_{\mathbf{G}}}$ - Gate Charge (nC)



DFN3.3x3.3B-8_EP1-S


	DFN3.3x3.3B-8_EP1_S					
SYMBOLS	MILLIM	MILLIMETERS		INCHES		
	MIN.	MAX.	MIN.	MAX.		
Α	0.700	0.800	0.028	0.032		
A1	0.000	0.050	0.000	0.002		
A2	0.100	0.250	0.004	0.010		
b	0.240	0.350	0.009	0.014		
D	3.150	3.400	0.124	0.134		
D1	2.100	2.350	0.083	0.093		
E	3.150	3.400	0.124	0.134		
E1	2.150	2.350	0.850	0.093		
ē	0.600	0.700	0.024	0.028		
G	0.475	0.575	0.019	0.023		
L	0.350	0.450	0.014	0.018		

RECOMMENDED LAND PATTERN

Classification Profile

Classification Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Preheat & Soak Temperature min (T_{smin}) Temperature max (T_{smax}) Time $(T_{smin}$ to $T_{smax})$ (t_s)	100 °C 150 °C 60-120 seconds	150 °C 200 °C 60-120 seconds
Average ramp-up rate (T _{smax} to T _P)	3 °C/second max.	3°C/second max.
Liquidous temperature (T_L) Time at liquidous (t_L)	183 °C 60-150 seconds	217 °C 60-150 seconds
Peak package body Temperature (T _p)*	See Classification Temp in table 1	See Classification Temp in table 2
Time (t _P)** within 5°C of the specified classification temperature (T _c)	20** seconds	30** seconds
Average ramp-down rate (T _p to T _{smax})	6 °C/second max.	6 °C/second max.
Time 25°C to peak temperature	6 minutes max.	8 minutes max.
	ure (T_p) is defined as a supplier minimum perature (t_p) is defined as a supplier n	

Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)

Package Thickness	Volume mm ³ <350	Volume mm³ ³350
<2.5 mm	235 °C	220 °C
≥2.5 mm	220 °C	220 °C

Table 2. Pb-free Process – Classification Temperatures (Tc)

Package	Volume mm ³	Volume mm ³	Volume mm ³
Thickness	<350	350-2000	>2000
<1.6 mm	260 °C	260 °C	260 °C
1.6 mm – 2.5 mm	260 °C	250 °C	245 °C
≥2.5 mm	250 °C	245 °C	245 °C

Reliability Test Program

Test item	Method	Description
SOLDERABILITY	JESD-22, B102	5 Sec, 245°C
HTRB	JESD-22, A108	1000 Hrs, 80% of VDS max @ Tjmax
HTGB	JESD-22, A108	1000 Hrs, 100% of VGS max @ Tjmax
PCT	JESD-22, A102	168 Hrs, 100%RH, 2atm, 121°C
TCT	JESD-22, A104	500 Cycles, -65°C~150°C

Attention

- 1, Any and all Winsok power products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your Winsok power representative nearest you before using any Winsok power products described or contained herein in such applications.
- 2, Winsok power assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Winsok power products described or contained herein.
- 3, Specifications of any and all Winsok power products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- 4, Winsok power Semiconductor CO., LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- 5,In the event that any or all Winsok power products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- 6, No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of Winsok power Semiconductor CO., LTD.
- 7, Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. Winsok power believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- 8, Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the Winsok power product that you Intend to use.
- 9, this catalog provides information as of Sep.2014. Specifications and information herein are subject to change without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Winsok manufacturer:

Other Similar products are found below:

614233C 648584F FDPF9N50NZ IRFD120 IRFF430 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2267(Q) 2SK2545(Q,T)
405094E 423220D MIC4420CM-TR VN1206L 614234A 715780A SSM6J414TU,LF(T 751625C PSMN4R2-30MLD

TK31J60W5,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7

NTE2384 NTE2969 NTE6400A DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 SSM6P54TU,LF DMP22D4UFO-7B

IPS60R3K4CEAKMA1 DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 STU5N65M6 C3M0021120D DMN13M9UCA6-7

BSS340NWH6327XTSA1 MCM3400A-TP DMTH10H4M6SPS-13 IPS60R1K0PFD7SAKMA1 IPS60R360PFD7SAKMA1

IPS60R600PFD7SAKMA1 IPS60R210PFD7SAKMA1 DMN2990UFB-7B