

N-Ch MOSFET

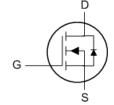
General Description

The WSF15N10G uses advanced SGTMOS technology to provide low RDS(ON), low gate charge, fast switching and excellent avalanche characteristics. This device is specially designed to get better ruggedness and suitable to use in Synchronous rectification applications

Features

- advanced SGTMOS technology
- Low gate charge
- Low R_{DS(ON)}

Product Summery


BVDSS	RDSON	ID		
100V	75mΩ	15A		

Applications

- Fast Switching
- DC-DC Power System
- Load Switch

TO-252 Pin Configuration

Absolute Maximum Ratings at Tj=25℃ unless otherwise noted

Symbol	Parameter	Rating	Units	
V_{DS}	Drain-Source Voltage	100	V	
V_{GS}	Gate-Source Voltage	±20	V	
I _D	Continuous Drain Current1)	15	Α	
I _{D, pulse}	Pulsed Drain Current ²⁾	45	Α	
E _{AS}	Single Pulse Avalanche Energy ⁴⁾	5.5	mJ	
P _D	Total Power Dissipation ³⁾	36	W	
T _{STG}	Storage Temperature Range	-55 to 150	℃	
TJ	Operating Junction Temperature Range	-55 to 150	℃	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{0JA}	Thermal Resistance Junction-ambient 5)		62	°C/W
R ₀ JC	Thermal Resistance Junction-Case		3.5	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0 V , I_D =250 u A	100			V
$\triangle BV_{DSS}/\triangle T_{J}$	BVDSS Temperature Coefficient	Reference to 25 $^{\circ}\mathrm{C}$, ID=1mA		0.098		V/°C
В	Static Drain-Source On-Resistance ²	V_{GS} =10V , I_D =5A		50	75	$m\Omega$
R _{DS(ON)}	Static Diain-Source On-Resistance	V_{GS} =4.5 V , I_D =2 A		60	90	mΩ
$V_{GS(th)}$	Gate Threshold Voltage	V_{GS} = V_{DS} , I_D =250uA	1.2	2.0	2.7	٧
	Drain-Source Leakage Current	V_{DS} =80V , V_{GS} =0V , T_{J} =25 $^{\circ}$ C			1	uA
I _{DSS}		V _{DS} =80V , V _{GS} =0V , T _J =55°C			5	
I _{GSS}	Gate-Source Leakage Current	V_{GS} = $\pm 20V$, V_{DS} = $0V$			±100	nA
R_g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		28.8		Ω
Qg	Total Gate Charge (10V)	V _{GS} =10 V ,		6.5		
Q _{gs}	Gate-Source Charge	V _{DS} =50 V,		1.4		nC
Q _{gd}	Gate-Drain Charge	I _D =5 A		1.4		
T _{d(on)}	Turn-On Delay Time	V _{GS} =10 V,		14		
Tr	Rise Time	V _{DS} =50 V,		3.2		
T _{d(off)}	Turn-Off Delay Time	$R_G=2 \Omega$,		36		ns
T _f	Fall Time	I _D =5 A		14		
Ciss	Input Capacitance	V _{GS} =0 V,		410		
C _{oss}	Output Capacitance	V _{DS} =25 V,		80		pF
C _{rss}	Reverse Transfer Capacitance	f=100 KHz		50		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _S	Continuous diode current1)	\\ -\\ -0\\ Faras Currant			15	Α
I _{SP}	Pulsed diode current ²⁾	V _G =V _D =0V , Force Current			45	Α
V_{SD}	Diode Forward Voltage ²⁾	V_{GS} =0V , I_S =5A , T_J =25 $^{\circ}$ C			1.3	V
t _{rr}	Reverse Recovery Time	IF=5A ,		36		nS
Q _{rr}	Reverse Recovery Charge	dl/dt=100A/µs , Tյ=25℃		37		nC

- 1) Calculated continuous current based on maximum allowable junction temperature.
- 2) Repetitive rating; pulse width limited by max. junction temperature.
- 3) Pd is based on max. junction temperature, using junction-case thermal resistance.
- 4) V_{DD} =50 V, R_G =25 Ω , L=0.3 mH, starting T_j =25 °C.
- 5) The value of $R_{\theta JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_a =25 °C.

Typical Characteristics

C, Capacitance (pF)

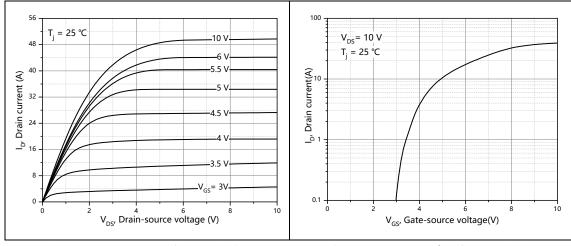


Figure 1, Typ. output characteristics

Figure 2, Typ. transfer characteristics 10³ $I_D = 5 A$ $V_{DS} = 50 \text{ V}$ Gate-source voltage(V) f=100 KHz $V_{GS} = 0 V$ 10⁰ 60 V_{DS}, Drain-source voltage (V) Q_q, Gate charge(nC)

Figure 3, Typ. capacitances

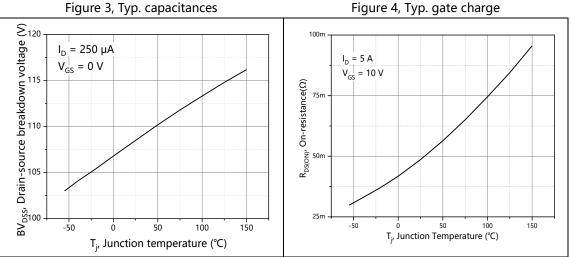


Figure 5, Drain-source breakdown voltage

Figure 6, Drain-source on-state resistance

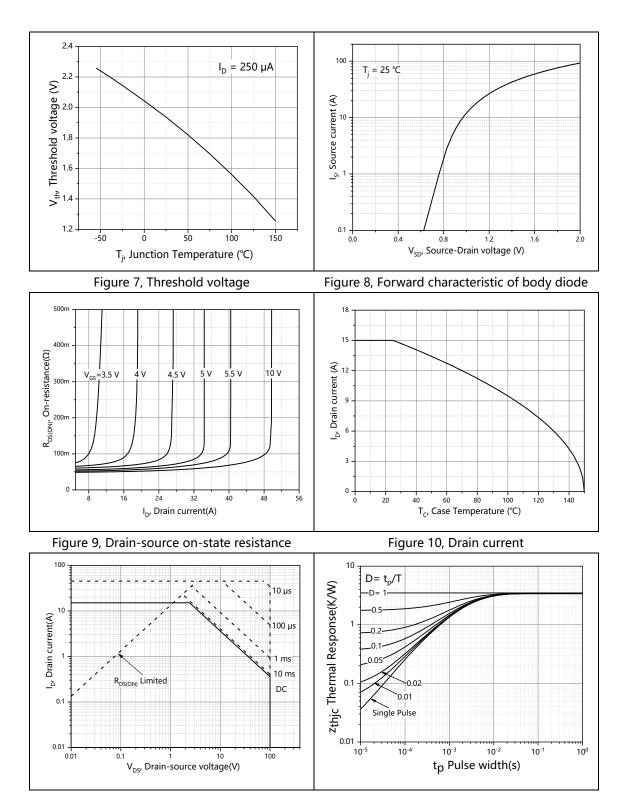
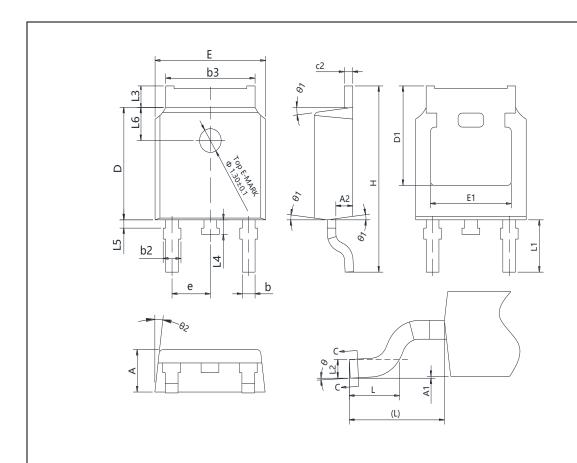



Figure 11, Safe operation area $T_C=25$ °C

Figure 12, Max. transient thermal impedance

TO-252 package outline dimension

SYMBOL	mm				
OTMIDOL	MIN	NOM	MAX		
Α	2.20	2.30	2.38		
A1	0	-	0.10		
A2	0.9	1.01	0.10		
b	0.72	-	0.85		
b1	0.71	0.76	0.81		
b2	0.72	-	0.90		
b3	5.13	5.33	5.46		
С	0.47	-	0.60		
c1	0.46	0.51	0.56		
c2	0.47	-	0.60		
D	6.00	6.10	6.20		
D1	5.25	-	•		
E	6.50	6.60	6.70		
E1	4.70	-	•		
е	2.186	2.286	2.386		
Н	9.80	10.10	10.40		
L	1.40	1.50	1.70		
L1		2.90 REF			
L2		0.508 BSC			
L3	0.90	- 1.25			
L4	0.60	0.80	1.00		
L5	0.15 - 0.75				
L6	1.80 REF				
θ	0°	-	8º		
θ1	5°	7º	90		
θ2	5°	7º	90		

Attention

- 1, Any and all Winsok power products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your Winsok power representative nearest you before using any Winsok power products described or contained herein in such applications.
- 2, Winsok power assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Winsok power products described or contained herein.
- 3, Specifications of any and all Winsok power products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- 4, Winsok power Semiconductor CO., LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- 5,In the event that any or all Winsok power products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- 6, No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of Winsok power Semiconductor CO., LTD.
- 7, Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. Winsok power believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- 8, Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the Winsok power product that you Intend to use.
- 9, this catalog provides information as of Sep.2014. Specifications and information herein are subject to change without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Winsok manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3