

W5100S

(W5100S-L & W5100S-Q) Version 1.0.0

W5100S

W5100S designed with Hardwired TCP/IP, WIZnet technology, is an embedded Internet Controller Chip. W5100S supporting Full Hardwired, Ethernet MAC (Media Access Control), and 10Base-T/100Base-TX Ethernet PHY is Internet Connectivity One-chip Solution for Internet Protocol (TCP/IP).

With W5100S, Host (User MCU) simply handles variety Internet Protocol such as IPv4, TCP, UDP, ICMP, IGMP, ARP, PPPoE and etc. And W5100S supports each 8KB Memory for Transmit and Receive to minimize using memory on Low-end level Host. Host also independently uses 4 Hardwired SOCKETs to develop vary Internet Applications in each Hardwired SOCKETs.

W5100S supports SPI and Parallel System BUS Interface for Host Interface. It also provides Low Power / Low Heat design, WOL (Wake On LAN), Ethernet PHY Power Down Mode and etc.

W5100S is Low-cost chip that improves on W5100. Any Firmware using on W5100 can be used on W5100S without any modification. Also, W5100S has 48 Pin LQFP & QFN Lead-Free Package, smaller than W5100 for product miniaturization.

Features

- Support Hardwired Internet protocols
 - : TCP, UDP, WOL over UDP, ICMP, IGMPv1/v2, IPv4, ARP, PPPoE
- Support 4 independent SOCKETs simultaneously
- Support SOCKET-less command
 - : ARP-Request, PING-Request
- Support Ethernet Power down mode & Main Clock gating for power save
- Support Wake on LAN over UDP
- Support Serial & Parallel Host Interface
 - : High Speed SPI (MODE 0/3), System Bus with 2 Address signal & 8bit Data
- Internal 16Kbytes Memory for TX/ RX Buffers
- 10BaseT/100BaseTX Ethernet PHY Integrated
- Support Auto Negotiation (Full and half duplex, 10 and 100-based)
- Support Auto-MDIX only when Auto-Negotiation mode
- Not support IP Fragmentation
- 3.3V operation with 5V I/O signal tolerance
- Network Indicator LEDs (Full/Half duplex, Link, 10/100 Speed, Active)
- 48 Pin LQFP & QFN Lead-Free Package (7x7mm, 0.5mm pitch)

Target Applications

W5100S is well-suited for many embedded applications, including:

- User product based on W5100 : No modify firmware
- Home Network Devices: Set-Top Boxes, PVRs, Digital Media Adapters
- Serial-to-Ethernet: Access Controls, LED displays, Wireless AP relays, etc.
- Parallel-to-Ethernet: POS / Mini Printers, Copiers
- USB-to-Ethernet: Storage Devices, Network Printers
- GPIO-to-Ethernet: Home Network Sensors
- Security Systems: DVRs, Network Cameras, Kiosks
- Factory, Building, Home Automations
- Medical Monitoring Equipment
- Embedded Servers
- Internet of Thing (IoT) Devices
- IoT Cloud Devices

Block Diagram

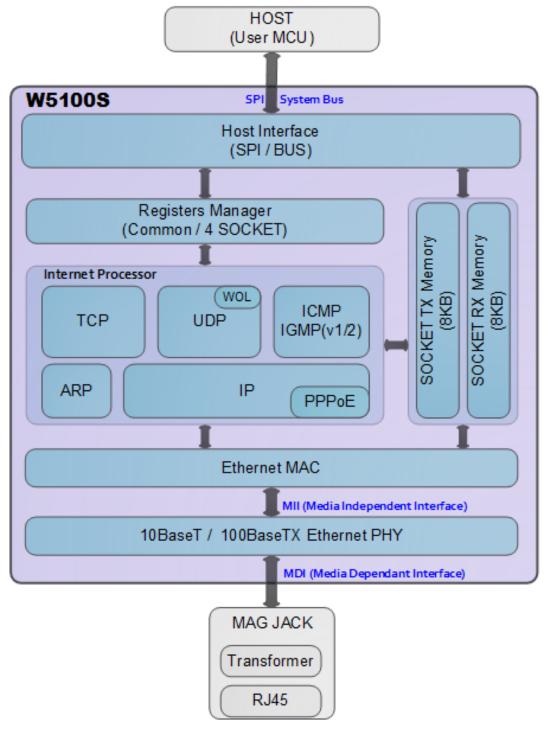


Figure 1 Block Diagram

Contents

1	PIN	Description	on	11
	1.1	PIN	Description	12
2	Men	nory Map		16
	2.1	W51	00S Registers	18
		2.1.1	Common registers	18
		2.1.2	SOCKET Registers	20
3	Reg	ister Desc	riptions	22
	3.1	Com	nmon Registers	24
		3.1.1	MR (Mode Register)	24
		3.1.2	GWR (Gateway IP Address Register)	24
		3.1.3	SUBR (Subnet Mask Register)	24
		3.1.4	SHAR (Source Hardware Address Register)	25
		3.1.5	SIPR (Source IP Address Register)	25
		3.1.6	INTPTMR (Interrupt Pending Time Register)	25
		3.1.7	IR (Interrupt Register)	25
		3.1.8	IMR (Interrupt Mask Register)	26
		3.1.9	RTR (Retransmission Time Register)	27
		3.1.10	RCR (Retransmission Count Register)	27
		3.1.11	RMSR (RX Memory Size Register)	27
		3.1.12	TMSR (TX Memory Size Register)	28
		3.1.13	IR2 (Interrupt Register 2)	28
		3.1.14	IMR2 (Interrupt Mask Register 2)	29
		3.1.15	PTIMER (PPP Link Control Protocol Request Timer Register)	29
		3.1.16	PMAGIC (PPP Link Control Protocol Magic number Register)	29
		3.1.17	UIPR (Unreachable IP Address Register)	30
		3.1.18	UPORTR (Unreachable Port Register)	30
		3.1.19	MR2 (Mode Register 2)	30
		3.1.20	PHAR (Destination Hardware Address Register on PPPoE)	32
		3.1.21	PSIDR (Session ID Register on PPPoE)	32
		3.1.22	PMRUR (PPPoE Maximum Receive Unit Register)	32
		3.1.23	PHYSR (PHY Status Register)	32
		3.1.24	PHYRAR (PHY Register Address Register)	33
		3.1.25	PHYDIR (PHY Data Input Register)	34
		3.1.26	PHYDOR (PHY Data Output Register)	34
		3.1.27	PHYACR (PHY Access Control Register)	34
		3.1.28	PHYDIVR (PHY Division Register)	34
		3.1.29	PHYCR0 (PHY Control Register 0)	34

	3.1.30	PHYCR1 (PHY Control Register 1)	. 35
	3.1.31	SLCR (SOCKET-less Command Register)	. 36
	3.1.32	SLRTR (SOCKET-less Retransmission Time Register)	. 36
	3.1.33	SLRCR (SOCKET-less Retransmission Count Register)	. 37
	3.1.34	SLPIPR (SOCKET-less Peer IP Address Register)	. 37
	3.1.35	SLPHAR (SOCKET-less Peer Hardware Address Register)	. 37
	3.1.36	PINGSEQR (PING Sequence-number Register)	. 37
	3.1.37	PINGIDR (PING ID Register)	. 38
	3.1.38	SLIMR (SOCKET-less Interrupt Mask Register)	. 38
	3.1.39	SLIR (SOCKET-less Interrupt Register)	. 38
	3.1.40	CLKLCKR (Clock Lock Register)	. 39
	3.1.41	NETLCKR (Network Lock Register)	. 39
	3.1.42	PHYLCKR (PHY Lock Register)	. 39
	3.1.43	VERR (Version Register)	. 39
	3.1.44	TCNTR (Ticker Counter Register)	. 39
	3.1.45	TCNTCLR (Ticker Counter Clear Register)	40
3.2	SOC	KET Register	41
	3.2.1	Sn_MR (SOCKET n Mode Register)	. 41
	3.2.2	Sn_CR (SOCKET n Command Register)	42
	3.2.3	Sn_IR (SOCKET n Interrupt Register)	. 44
	3.2.4	Sn_SR (SOCKET n Status Register)	45
	3.2.5	Sn_PORTR (SOCKET n Source Port Register)	46
	3.2.6	Sn_DHAR (SOCKET n Destination Hardware Address Register)	46
	3.2.7	Sn_DIPR (SOCKET n Destination IP Address Register)	47
	3.2.8	Sn_DPORTR (SOCKET n Destination Port Register)	47
	3.2.9	Sn_MSS (SOCKET n Maximum Segment Size Register)	47
	3.2.10	Sn_PROTOR (SOCKET n IP Protocol Register)	48
	3.2.11	Sn_TOS (SOCKET n IP Type Of Service Register)	48
	3.2.12	Sn_TTL (SOCKET n IP Time To Live Register)	48
	3.2.13	Sn_RXBUF_SIZE (SOCKET n RX Buffer Size Register)	48
	3.2.14	Sn_TXBUF_SIZE (SOCKET n TX Buffer Size Register)	49
	3.2.15	Sn_TX_FSR (SOCKET n TX Free Size Register)	49
	3.2.16	Sn_TX_RD (SOCKET n TX Read Pointer Register)	49
	3.2.17	Sn_TX_WR (SOCKET n TX Write Pointer Register)	50
	3.2.18	Sn_RX_RSR (SOCKET n RX Received Size Register)	50
	3.2.19	Sn_RX_RD (SOCKET n RX Read Pointer Register)	50
	3.2.20	Sn_RX_WR (SOCKET n RX Write Pointer Register)	. 51
	3.2.21	Sn_IMR (SOCKET n Interrupt Mask Register)	. 51
	3.2.22	Sn_FRAGR (SOCKET n Fragment Offset in IP Header Register)	51

		3.2.23	Sn_MR2 (SOCKET n Mode register 2)	51
		3.2.24	Sn_KPALVTR (SOCKET n Keep Alive Timer Register)	53
		3.2.25	Sn_RTR (SOCKET n Retransmission Time Register)	53
		3.2.26	Sn_RCR (SOCKET n Retransmission Count Register)	53
4	Fun	ctional De	escription	54
	4.1	W51	00S RESET	54
	4.2	Initi	alization	54
		4.2.1	Basic Setting	54
		4.2.2	Network Information Setting.	54
		4.2.3	SOCKET TX/RX Buffer Setting	55
	4.3	TCP		56
		4.3.1	TCP Server	57
		4.3.2	TCP Client	65
		4.3.3	Other Functions	67
	4.4	UDP		68
		4.4.1	UDP Unicast	68
		4.4.2	UDP Broadcast	71
		4.4.3	UDP Multicast	72
		4.4.4	Other Functions	74
	4.5	IPRA	w	75
	4.6	MAC	RAW	78
	4.7	SOC	KET-less Command (SLCR)	81
		4.7.1	ARP Request (SLCR [ARP] = '1')	81
		4.7.2	PING Command (SLCR [PING] = '1')	83
	4.8	Retr	ansmission	86
		4.8.1	ARP & PING Retransmission	86
		4.8.2	TCP Retransmission	86
	4.9	Othe	ers Function	88
		4.9.1	System Clock(SYS_CLK) Switching	88
		4.9.2	Ethernet PHY Operation Mode Configuration	88
		4.9.3	Ethernet PHY Parallel Detection	89
		4.9.4	Ethernet PHY Auto MDIX	89
		4.9.5	Ethernet PHY Power Down Mode	90
		4.9.6	Ethernet PHY's Registers Control	91
5	HOS	T Interfac	ce Mode	92
	5.1	SPI <i>I</i>	Mode	92
		5.1.1	SPI Frame	93
		5.1.2	SPI Write	93
		5.1.3	SPI Read	94

	5.2	Pa	arallel Bus Mode	95			
		5.2.1	Parallel Bus Data Write	95			
		5.2.2	Parallel Bus Data Write	96			
6	Cloc	ck & Tra	nsformer Requirements	97			
	6.1	Qı	uartz Crystal requirements	97			
	6.2	Os	scillator requirements	98			
	6.3	Tr	ansformer Characteristics	98			
7	Elec	ctrical S	pecification	99			
	7.1	Ab	osolute Maximum ratings	99			
	7.2	Ab	osolute Maximum ratings (Electrical Sensitivity)	99			
	7.3	DC	Characteristics	99			
	7.4	AC	Characteristics	100			
		7.4.1	Reset Timing	100			
		7.4.2	BUS ACCESS TIMING	102			
		7.4.3	SPI ACCESS TIMING	103			
		7.4.4	Transformer Characteristics	104			
		7.4.5	MDIX	104			
	7.5	PC	OWER DISSPATION	104			
8	Pac	kage Inf	ormation	106			
	8.1	LC	QFP48	106			
	8.2	QF	FN48	107			
9	Doc	ocument Revision History					

List of Figures

Figure 1 Block Diagram	4
Figure 2 W5100S Pin Layout	11
Figure 3 Memory Map	16
Figure 4 State Diagram	46
Figure 5 TCP SERVER and TCP CLIENT	56
Figure 6 TCP Server Operation Flow	57
Figure 7 TCP Client Operation Flow	65
Figure 8 UDP Operation Flow	68
Figure 9 Received UDP DATA in SOCKETn RX Buffer Block	69
Figure 10 IPRAW Operation Flow	75
Figure 11 Received Data in IPRAW Mode SOCKET RX Buffer Block	
Figure 12 MACRAW Operation Flow	78
Figure 13 Received DATA Format in MACRAW	79
Figure 14 SOCKET-less Command Operation Flow	81
Figure 15 SCSn controlled by Host	92
Figure 16 SPI Mode 0 & Mode 3	92
Figure 17 SPI Frame	93
Figure 18 W5100 Mode Write SPI Frame	94
Figure 19 W5100 Mode Read SPI Frame	94
Figure 20 Direct & Indirect Mode Control by Host	95
Figure 21 Parallel Bus N-Bytes Data Write	96
Figure 22 Indirect Mode Continuous Read Access	96
Figure 23 Quartz Crystal Model	97
Figure 24 Transformer Type	98
Figure 25 Reset Timing	101
Figure 26 Bus Read Timing	102
Figure 27 BUS Write Timing	102
Figure 28 SPI Read Timing	103
Figure 29 SPI Write Timing	103
Figure 30 Transformer Type	104

List of Tables

Table 1 Pin Type Notation	11
Table 2 PIN Description	12
Table 3 Common Registers	18
Table 4 Socket Registers	20
Table 5 Internet Protocol Supported In IPRAW Mode	75
Table 6 W5100 Mode SPI Command	93
Table 7 Indirect Mode Address Value	95
Table 8 Quartz Crystal	97
Table 9 Crystal Recommendation Characteristics	97
Table 10 Oscillator Characteristics	98
Table 11 Transformer Characteristics	98
Table 12 Absolute Maximum ratings	99
Table 13 Electro Static Discharge (ESD)	99
Table 14 Latch up Test	99
Table 15 DC Characteristics	99
Table 16 Reset Table	101
Table 17 BUS Read Timing	102
Table 18 BUS Write timing	103
Table 19 SPI Read Timing	103
Table 20 SPI Write Timing	104
Table 21 Transformer Characteristics	104
Table 22 Power Dissipation	104
Table 23 LQFP48 VARIATIONS (ALL DEMINSIONS SHOWN IN MM)	106
Table 24 OFN48 VARIATIONS (ALL DEMINSIONS SHOWN IN MM)	107

1 PIN Description

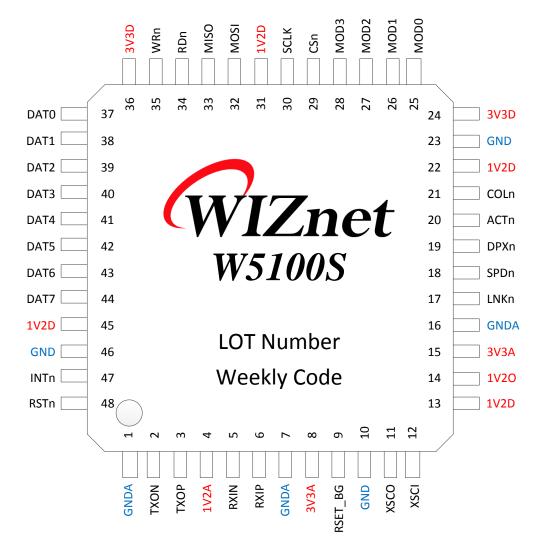


Figure 2 W5100S Pin Layout

Table 1 Pin Type Notation

Туре	Description		
l Input			
O Output			
М	Alternate (Multi-function) Signal		
U	Internal pulled-up 75K Ω resistor		
D Internal pulled-down 75KΩ resistor A Analog			
		Р	Power & Ground

1.1 PIN Description

Table 2 PIN Description

1 GNDA AP Analog Ground 2 TXON AO Differential Transmitted Signal Pair 3 TXOP AO Differential Data is transmitted to Media via TXOP/signal pair on MDI Mode. 4 1V2A AP Analog 1.2V Power Supplied from 1V20 voltage source	TXON
3 TXOP AO Differential Data is transmitted to Media via TXOP/signal pair on MDI Mode. 4 1V2A AP Analog 1.2V Power	TXON
3 TXOP AO signal pair on MDI Mode. 4 1V2A AP Analog 1.2V Power	TXON
signal pair on MDI Mode. Analog 1.2V Power 4 1V2A AP	
4 1V2A AP	
Supplied from 1V20 voltage source	
5 RXIN Al Differential Received Signal Pair	
6 RXIP AI Differential Data is received from Media via RXIP.	/RXIN
signal pair on MDI Mode.	
7 GNDA AP Analog Ground	
8 3V3A AP Analog 3.3V Power	
Off-chip Bias Resistor	
9 RSET_BG AO Must be connected to analog Ground through ext	ernal
12.3KΩ, error 1% Resistance.	
10 GND AP Digital Ground	
11 XSCO AO 25MHz Clock	
25MHz Crystal Oscillator (TXAL) or Oscillator (OSC	are
used for Internal oscillator stabilization.	
W5100S uses 25MHz (Low Frequency Mode) or 10	0MHz
12 XSCI AI (Normal Mode) as Internal Clock from External 2	5MHz
Clock Source.	
If OSC is used, 25MHz@1.2V must be used and only	XSCI
must be connected and XSCO must be floated.	
For more information, refer to <u>Clock Selection Guid</u>	<u>de</u> .
Digital 1.2V Power	
Supplied from 1V20 voltage source	
Internal Regulator 1.2V Power Output	
Internal Regulator for W5100S needs Max 150mA for	1.2V
Power Output.	
Make sure to supply 1V2D and 1V2A for Ext	ernal
14 1V2O PO Capacitor 3.3uF stabilization.	
1V2O must use Ferrite Bead. 1V2D and 1V2A mu	st be
separated and be supplied.	
This power is only for W5100S. It must not be use	d for
other device.	

15	3V3A	AP	Analog 3.3V Power
16	GNDA	AP	Analog Ground
			Link Status LED -
			It is valid on SPI and Parallel Bus Mode.
17	LNKn	OU	
			Low : Link up
			High: Link down
			Link Speed LED-
			It is valid on SPI and Parallel Bus Mode.
18	SPDn	OU	
			Low: 100Mbps
			High: 10Mbps
			Link Duplex LED
			It is valid on SPI and Parallel Bus Mode.
19	DPXn	OU	
			Low: Full-Duplex
			High : Half-Duplex
			Link Activity LED
	ACTn	OU	It is valid on SPI and Parallel Bus Mode.
20			
			No Flash: Link up state without TX/RX
			Flash: Link up state with TX/RX data
			High: Link-down state
			Link Collision Detect LED
	COLn	COLn OU	It is valid on SPI and Parallel Bus Mode.
21			It indicates a collision during Data transmission.
			Low: Collision Detected
			High: No Collision
22	1V2D	Р	Digital 1.2V Power Supplied from 1V20 voltage source.
23	GND	Р	Digital Ground
24	3V3D	P	Digital 3.3V power
25	MOD[0]	ID	W5100S Interface Mode Selection
26	MOD[0]	ID	Interface Mode is selected by MOD [3:0].
27	MOD[1]	ID	
	11100[2]	טו	"0000": SPI Mode
28	MOD[3]	ID	"010X" : Parallel Bus Mode
29	CSn	IU	W5100S Chip Select
	1	<u>I</u>	<u> </u>

				Low : Select
				High: No Select
				SPI Clock
	20	CCLV	ın	On SPI Mode, it is used to SPI Clock.
	30	SCLK	ID	But on Parallel Bus Mode, it must be connected to GND
				or be floated.
•	24	41/25	D	Digital 1.2V Power
	31	1V2D	Р	Supplied from 1V20 voltage source.
		MOCI		SPI Master Output Slave Input / Address 0
	32	MOSI	IDM	MOSI : On SPI Mode, SPI Data is received from HOST.
		/ADDR0		ADDRO : On Parallel Bus Mode, it is used to Address 0.
•		MICO		SPI Master Input Slave Output / Address 1
	33	MISO	IOPM	MISO : On SPI Mode, SPI Data is transmitted to HOST.
		/ADDR1		ADDR1 : On Parallel Bus Mode, It is used to Address 1.
•				Read Strobe
	34	RDn	IU	On Parallel Bus Mode, it indicates Read Operation.
				On SPI Mode, it must be connected to 3V3D or be floated.
	25	WRn		Write Strobe
35	35		IU	On Parallel Bus Mode, it indicates Write Operation.
•	36	3V3D	Р	Digital 3.3V Power
•	37	DAT0	IOU	8 Bits Data Bus
	38	DAT1	IOU	On Parallel Bus Mode, DAT [7:0] receives Data from HOST
•	39	DAT2	IOU	or W5100S.
•	40	DAT3	IOU	
•	41	DAT4	IOU	On SPI Mode, DAT [7:0] must be floated.
•	42	DAT5	IOU	
•	43	DAT6	IOU	
•	44	DAT7	IOU	
	45	1V2D	Р	Digital 1.2V Power
•	46	GND	Р	Digital Ground
•				Interrupt
				When the event occurs during W5100S Ethernet
				Communication, INTn notices to HOST.
	47	INTn	OP	Low : Interrupt Occurred
				High: No Interrupt
				Refer to IEN (Interrupt pin Enable) in MR2 (Mode Register
				2), INTPTMR (Interrupt Pending Time Register), IMR
-				<u> </u>

•				(Interrupt Mask Register), IMR2 (Interrupt Mask Register
				2), SLIMR (SOCKET-less Interrupt Mask Register)
				Reset
				RSTn initializes W5100S. RSTn must be asserted to Low
				longer than 500ns. After asserted RSTn, W5100S spends
	48	RSTn	IP	60.3ms for initialization. (Ref 7.4.1 Reset Timing)
				Low: W5100S initialized.
				High: Normal Operation.

2 Memory Map

W5100S has the same Memory Map as W5100 for compatibility and additional Common Register for improved functionality. The below Figure 3 shows W5100S Memory Map.

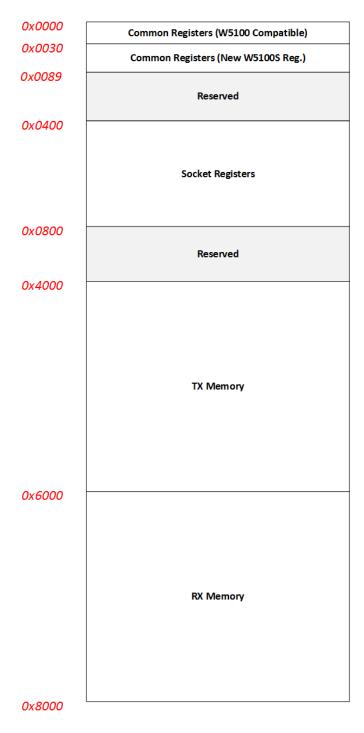


Figure 3 Memory Map

Figure 3 shows the Address Offset of Common & SOCKET Register Block and TX/RX Memory Block. At W5100S Reset, each SOCKET n TX/RX Buffer are assigned with 2KB/2KB from TX/RX Memory Block.

After W5100S Reset, each SOCKET n TX/RX Buffer Size are set by TMSR (TX Memory Size Register) and RMSR (RX Memory Size Register) or by SOCKET n TX/RX Buffer Size Register (Sn_TXBUF_SIZE / Sn_RXBUF_SIZE). The total Buffer Size of SOCKET n TX/RX must not be exceeded by 8 Kbytes.

2.1 W5100S Registers

2.1.1 Common registers

Table 3 Common Registers

Address	Register
0x0000	Mode (MR)
0x0001 0x0002 0x0003 0x0004	Gateway Address (GAR0) (GAR1) (GAR2) (GAR3)
0x0005 0x0006 0x0007 0x0008	Subnet Mask Address (SUBR0) (SUBR1) (SUBR2) (SUBR3)
0x0009 0x000A 0x000B 0x000C 0x000D 0x000E	Source Hardware Address (SHAR0) (SHAR1) (SHAR2) (SHAR3) (SHAR4) (SHAR5)
0x000F 0x0010 0x0011 0x0012	Source IP Address (SIPR0) (SIPR1) (SIPR2) (SIPR3)
0x0013 0x0014	Interrupt Pending Time (INTPTMR0) (INTPTMR1)
0x0015	Interrupt (IR)
0x0016 0x0017 0x0018	Interrupt Mask (IMR) Retransmission Time (RTR0) (RTR0)
0x0019	Retransmission Time (RCR)
0x001A	RX Memory Size (RMSR)
0x001B	TX Memory Size (TMSR)

Address	Register
0x001C ~ 0x001F	Reserved
0x0020	Interrupt2 (IR2)
0x0021	Interrupt2 Mask (IMR2)
0x0022 ~ 0x0027	Reserved
0x0028	PPP LCP Request Timer (PTIMER)
0x0029	PPP LCP Magic Number (PMAGIC)
0x002A 0x002B 0x002C 0x002D	Unreachable IP Address (UIPR0) (UIPR1) (UIPR2) (UIPR3)
0x002E 0x002F	Unreachable Port (UPORTR0) (UPORTR1)
0x0030	Mode2 (MR2)
0x0031	Reserved
0x0032 0x0033 0x0034 0x0035 0x0036 0x0037	Destination Hardware Address on PPPoE (PHAR0) (PHAR1) (PHAR2) (PHAR3) (PHAR4) (PHAR5)
0x0038 0x0039	Session ID on PPPoE (PSIDR0) (PSIDR1)
0x003A 0x003B	Maximum Receive Unit on PPPoE (PMRUR0) (PMRUR1)
0x003C	PHY Status (PHYSR0)

Address	Register
0x003E	PHY Address Value (PHYAR)
0x003F	PHY Register Address (PHYRAR)
00040	PHY Data Input
0x0040 0x0041	(PHYDIR0)
UXUU41	(PHYDIR1)
0x0042	PHY Data Output
0x0042	(PHYDOR0)
<u> </u>	(PHYDOR1)
0x0044	PHY Access (PHYACR)
0x0045	PHY Division (PHYDIVR)
0x0046	PHY Control
0x0040	(PHYCR0)
	(PHYCR1)
0x0048	
~	Reserved
0x004B	
0x004C	SOCKET-less Command (SLCR)
0x004D	SOCKET-less Retransmission Time
0x004E	(SLRTR0)
0,0012	(SLRTR1)
0x004F	SOCKET-less Retransmission Count
	(SLRCR)
0x0050	SOCKET-less Peer IP Address
0x0051	(SLPIPRO)
0x0052	(SLPIPR1)
0x0053	(SLPIPR2)
	(SLPIPR3)
0x0054	SOCKET-less Peer Hardware Address
0x0055	(SLPHARO)
0x0056	(SLPHAR1)
0x0057	(SLPHAR2)
0x0058	(SLPHAR3)
0x0059	(SLPHAR4)
	(SLPHAR5)
0x005A	PING Sequence Number
0x005B	(PINGSEQRO)
	(PINGSEQR1)
0x005C	PING ID
0x005D	(PINGIDRO)
	(PINGIDR1)

Address	Register
0.0055	SOCKET-less Interrupt
0x005E	Mask (SLIMR)
0x005F	SOCKET-less Interrupt (SLIR)
0x0060	
~	Reserved
0x006A	
0x0070	Clock Lock (CLKLCKR)
0x0071	Network Lock (NETLCKR)
0x0072	PHY Lock (PHYLCKR)
0x0073	
~	Reserved
0x007F	
0x0080	Chip Version (VERR)
0x0081	Reserved
0x0082	100us Tick Counter
0x0083	(TCNTR0)
0,0003	(TCNTR1)
0x0084	
~	Reserved
0x0087	
0x0088	TCNTCLR

2.1.2 SOCKET Registers

Table 4 Socket Registers

		Table 4 Socket Registe	Add	ress		
Symbol	Description	Sn_	SO_	S1_	S2_	S3_
Sn_MR	SOCKET n Mode	0x0400+(0x0100 x n)	0x0400	0x0500	0x0600	0x0700
Sn_CR	SOCKET n Command	0x0401+(0x0100 x n)	0x0401	0x0501	0x0601	0x0701
Sn_IR	SOCKET n Interrupt	0x0402+(0x0100 x n)	0x0402	0x0502	0x0602	0x0702
Sn_SR	SOCKET n Status	0x0403+(0x0100 x n)	0x0403	0x0503	0x0603	0x0703
Sn_PORTR0	SOCKET n	0x0404+(0x0100 x n)	0x0404	0x0504	0x0604	0x0704
Sn_PORTR1	Source Port	0x0405+(0x0100 x n)	0x0405	0x0505	0x0605	0x0705
Sn_DHAR0		0x0406+(0x0100 x n)	0x0406	0x0506	0x0606	0x0706
Sn_DHAR1		0x0407+(0x0100 x n)	0x0407	0x0507	0x0607	0x0707
Sn_DHAR2	SOCKET n	0x0408+(0x0100 x n)	0x0408	0x0508	0x0608	0x0708
Sn_DHAR3	Destination Hardware Address	0x0409+(0x0100 x n)	0x0409	0x0509	0x0609	0x0709
Sn_DHAR4		0x040A+(0x0100 x n)	0x040A	0x050A	0x060A	0x070A
Sn_DHAR5		0x040B+(0x0100 x n)	0x040B	0x050B	0x060B	0x070B
Sn_DIPR0		0x040C+(0x0100 x n)	0x040C	0x050C	0x060C	0x070C
Sn_DIPR1	SOCKET n	0x040D+(0x0100 x n)	0x040D	0x050D	0x060D	0x070D
Sn_DIPR2	Destination IP Address	0x040E+(0x0100 x n)	0x040E	0x050E	0x060E	0x070E
Sn_DIPR3	Addicas	0x040F+(0x0100 x n)	0x040F	0x050F	0x060F	0x070F
Sn_DPORTR0	SOCKET n	0x0410+(0x0100 x n)	0x0410	0x0510	0x0610	0x0710
Sn_DPORTR0	Destination Port	0x0411+(0x0100 x n)	0x0411	0x0511	0x0611	0x0711
Sn_MSS0	SOCKET n	0x0412+(0x0100 x n)	0x0412	0x0512	0x0612	0x0712
Sn_MSS1	Maximum Segment Size	0x0413+(0x0100 x n)	0x0413	0x0513	0x0613	0x0713
Sn_PROTOR	SOCKET n IP Protocol	0x0414+(0x0100 x n)	0x0414	0x0514	0x0614	0x0714
Sn_TOS	SOCKET n IP Type Of Service	0x0415+(0x0100 x n)	0x0415	0x0515	0x0615	0x0715
Sn_TTL	SOCKET n IP Time To Live	0x0416+(0x0100 x n)	0x0416	0x0516	0x0616	0x0716
Reserved	Reserved	0x0417+(0x0100 x n)	0x0417	0x0517	0x0617	0x0717
Reserved	Reserved	0x041D+(0x0100 x n)	0x041D	0x051D	0x061D	0x071D
Sn_RXBUF_SIZE	SOCKET n RX Buffer Size	0x041E+(0x0100 x n)	0x041E	0x051E	0x061E	0x071E
Sn_TXBUF_SIZE	SOCKET n TX Buffer Size	0x041F+(0x0100 x n)	0x041F	0x051F	0x061F	0x071F
Sn_TX_FSR0	SOCKET n	0x0420+(0x0100 x n)	0x0420	0x0520	0x0620	0x0720

Sn_TX_FSR1	TX Free Size	0x0421+(0x0100 x n)	0x0421	0x0521	0x0621	0x0721
Sn_TX_RD0	SOCKET n	0x0422+(0x0100 x n)	0x0422	0x0522	0x0622	0x0722
Sn_TX_RD1	TX Read Pointer	0x0423+(0x0100 x n)	0x0423	0x0523	0x0623	0x0723
Sn_TX_WR0	SOCKET n	0x0424+(0x0100 x n)	0x0424	0x0524	0x0624	0x0724
Sn_TX_WR1	TX Write Pointer	0x0425+(0x0100 x n)	0x0425	0x0525	0x0625	0x0725
Sn_RX_RSR0	SOCKET n	0x0426+(0x0100 x n)	0x0426	0x0526	0x0626	0x0726
Sn_RX_RSR1	RX Received Size	0x0427+(0x0100 x n)	0x0427	0x0527	0x0627	0x0727
Sn_RX_RD0	SOCKET n	0x0428+(0x0100 x n)	0x0428	0x0528	0x0628	0x0728
Sn_RX_RD1	RX Read Pointer	0x0429+(0x0100 x n)	0x0429	0x0529	0x0629	0x0729
Sn_RX_WR0	SOCKET n	0x042A+(0x0100 x n)	0x042A	0x052A	0x062A	0x072A
Sn_RX_WR1	RX Write Pointer	0x042B+(0x0100 x n)	0x042B	0x052B	0x062B	0x072B
Sn_IMR	SOCKET n Interrupt Mask	0x042C+(0x0100 x n)	0x042C	0x052C	0x062C	0x072C
Sn_FRAGR0	SOCKET n	0x042D+(0x0100 x n)	0x042D	0x052D	0x062D	0x072D
Sn_FRAGR1	Fragment Offset in IP Header	0x042E+(0x0100 x n)	0x042E	0x052E	0x062E	0x072E
Sn_MR2	SOCKET n Mode 2	0x042F+(0x0100 x n)	0x042F	0x052F	0x062F	0x072F
Sn_KPALVTR	SOCKET n Keep-alive Timer	0x0430+(0x0100 x n)	0x0430	0x0530	0x0630	0x0730
Sn_RTR0	SOCKET n	0x0432+(0x0100 x n)	0x0432	0x0532	0x0632	0x0732
Sn_RTR1	Retransmission Time	0x0433+(0x0100 x n)	0x0433	0x0533	0x0633	0x0733
Sn_RCR	SOCKET n Retransmission Count	0x0434+(0x0100 x n)	0x0434	0x0534	0x0634	0x0734

3 Register Descriptions

Register Notation

* Register Symbol (Register full Name)

- [Register Type][Address Offset][Reset Value]

Register Description....

7	6	5	4	3	2	1	0
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Bit Type							

Sn_IR [3: 0] indicates a Register Symbol [Upper Bit: Lower Bit].

 $Sn_{R} [3: 0] = 0001' indicates Sn_{R} [3] = 0', Sn_{R} [2] = 0', Sn_{R} [1] = 0', Sn_{R} [0] = 1'.$

[Register/Bit Type]: Type of Register and Bit.

- [RW]: Both reading and writing are possible.

- [R=W]: The value read and written are the same.

- [RO]: Read Only

- [WO] : Write Only

- [W]: Write Only

- [WC]: Cleared by written '1'.

- [W0]: Must be written only '0'.

- [W1]: Must be written only '1'.

- [AC]: Auto Clear

- [1]: Always read '1'

[0]: Always read '0'

- [-]: Not available

[Address Offset]: Register Address Offset

[Reset Value]: Default Value.

Ex1)

3.1.1 MR (Mode Register)

[RW][0x0000][0x03]

MR is abbreviation for Mode Register. This Register is possible to be read and written.

The Register Address Offset is '0x0000' and it is set to '0x03' after Reset.

7	6	5	4	3	2	1	0
RST	-	-	PB	PPPoE	-	Al	IND
AC	W0	W0	R=W	R=W	-	1	1

Ex2) MR [RST]

MR [RST] means RST Bit in MR.

Ex3) MR [7:0]

MR [7:0] means the Bits from 7^{th} to 0^{th} bit in MR.

3.1 Common Registers

3.1.1 MR (Mode Register) [RW][0x0000] [0x03]

MR is used for Reset, PING Block and PPPoE Enable

7	6	5	4	3	2	1	0
RST	-	-	PB	PPPoE	-	-	-

Bit	Symbol	Description
		Reset
7	RST	If this Bit is '1', All W5100S Registers will be initialized.
		It will be automatically cleared as '0' after 3 SYS_CLK
[6:5]	-	Reserved
		PING Response Block
4	4 PB	If this Bit is '1', it blocks the Response to a ping request.
4		1 : Disable PING Response
		0 : Enable PING Response
		PPPoE Enable
3	PPPoE	1 : Enable PPPoE
		0 : Disable PPPoE
[2:0]		Reserved

3.1.2 GWR (Gateway IP Address Register)

[R=W] [0x0001-0x0004] [0x00]

GWR configures the Gateway Address when NETLCKR (Network Lock Register) is on Unlock Mode.

Ex) GWR = "192.168.0.1"

GWR0(0x0001)	GWR1(0x0002)	GWR2(0x0003)	GWR3(0x0004)
192 (0xC0)	168 (0xA8)	0 (0x00)	1 (0x01)

3.1.3 SUBR (Subnet Mask Register)

[R=W] [0x0005-0x0008] [0x00]

SUBR configures the Subnet Mask Address when NETLCKR (Network Lock Register) is on Unlock Mode.

Ex) SUBR = "255.255.255.255"

SUBR0(0x0005)	SUBR0(0x0006)	SUBR0(0x0007)	SUBR0(0x0008)
255 (0xFF)	255 (0xFF)	255 (0xFF)	255 (0xFF)

3.1.4 SHAR (Source Hardware Address Register) [R=W] [0x0009-0x000E] [0x00]

SHAR configures the Source MAC Address when NETLCKR (Network Lock Register) is on Unlock Mode.

Ex) SHAR = "11:22:33:AA:BB:CC"

SHAR0(0x0009)	SHAR1(0x000A)	SHAR2(0x000B)
0x11	0x22	0x33
SHAR3(0x000C)	SHAR4(0x000D)	SHAR5(0x000E)
0xAA	0xBB	0xCC

3.1.5 SIPR (Source IP Address Register)

[R=W] [0x000F-0x0012] [0x00]

SIPR configures the Source IP Address when NETLCKR (Network Lock Register) is on Unlock Mode.

Ex) SIPR = "192.168.0.100"

SIPRO(x000F)	SIPR1(0x0010)	SIPR2(0x0011)	SIPR3(0x0012)	
192 (0xC0)	168 (0xA8)	0 (0x00)	100(0x64)	

3.1.6 INTPTMR (Interrupt Pending Time Register) [RW][0x0013-0x0014][0x0000]

INTPTMR sets internal Interrupt Pending Timer Count. When INTn is de-asserted to High, Timer Count is initialized to INTPTMR and decreased by 1 from initial value to '0' every SYS_CLK x 4. When Interrupt occurs and the corresponding Interrupt Mask is set and INTPTMR is '0', INTn is asserted to Low.

Ex) INTPTMR = 1000(0x03EB)

INTPTMR0(0x0013)	INTPTMR1(0x0014)
0x03	0xEB

3.1.7 IR (Interrupt Register) [RW] [0x0015] [0x00]

When W5100S or SOCKET n Event occurs, the corresponding Bit in IR is set to '1'. If the Event occurs and the corresponded Interrupt Mask Bit in IMR is set to '1' and internal Interrupt

Pending Timer Counter is '0', INTn is asserted to Low. When the Event is cleared or the corresponding Mask Bit is set to '0', INTn is de-asserted to High.

7	6	5	4	3	2	1	0
CONFLICT	UNREACH	PPPTERM	-	S3_INT	S2_INT	S1_INT	SO_INT
WC	WC	WC	-	AC	AC	AC	AC

Bit	Symbol	Description
		IP Conflict
7	CONFLICT	Read 1: IP Conflict
		Read 0 : -
		Destination Port Unreachable
		When receiving the ICMP (Destination port unreachable) packet, this
		Bit is set as '1'. And Destination Information, IP Address and Port
6	UNREACH	Number, is written on UIPR & UPORTR.
		Read 1 : Unreachable Packet receive
		Read 0 : -
		PPPoE Terminated
5	PPPTERM	Read 1: Received PPPT or LCPT Packet only on PPPoE
		Read 0 : -
4	-	Reserved
		SOCKET n Interrupt
[3:0]	Sn_INT	Read 1: Each n-th Bit describes SOCKET n-th Interrupt.
		Read 0: When Sn_IR is 0x00, Sn_INT bit is Auto-Clear as '0'

3.1.8 IMR (Interrupt Mask Register) [R=W] [0x0016] [0x00]

IMR is used for the corresponding IR Bit Mask.

7	6	5	4	3	2	1	0
CNFT	UNREACH	PPPTERM	-	S3_INT	S2_INT	S1_INT	S0_INT
R=W	R=W	R=W		R=W	R=W	R=W	R=W

Bit	Symbol	Description					
		IP Conflict Interrupt Mask					
7	7 CNFT	1 : Enable IP Conflict Interrupt					
		0 : Disable IP Conflict Interrupt					
6	UNREACH	Destination Port Unreachable Interrupt Mask					

		1 : Enable Destination Port Unreachable Interrupt
		0 : Disable Destination Port Unreachable Interrupt
		PADT/LCPT Interrupt Mask
5	PPPTERM	1 : Enable PADT/LCPT Interrupt
		0 : Disable PADT/LCPT Interrupt
4	-	Reserved
		SOCKET 3 Interrupt Mask
3	S3_INT	1 : Enable SOCKET 3 Interrupt
		0 : Disable SOCKET 3 Interrupt
	S2_INT	SOCKET 2 Interrupt Mask
2		1 : Enable SOCKET 2 Interrupt
		0 : Disable SOCKET 2 Interrupt
		SOCKET 1 Interrupt Mask
1	S1_INT	1 : Enable SOCKET 1 Interrupt
		0 : Disable SOCKET 1 Interrupt
		SOCKET 0 Interrupt Mask
0	S0_INT	1 : Enable SOCKET 0 Interrupt
		0 : Disable SOCKET 0 Interrupt

3.1.9 RTR (Retransmission Time Register) [R=W] [0x0017-0x0018] [0x07D0]

RTR sets initial value of Sn_RTR (SOCKET n Retransmission Time Register). The unit is 100us. RTR and RCR (Retransmission Counter Register) set ARP & TCP Retransmission. (Ref 4.8 Retransmission)

Ex) RTR = 5000 (0x1388) 5000*100us = 0.5s

RTR0(0x0017)	RTR1(0x0018)
0x13	0x88

3.1.10 RCR (Retransmission Count Register) [R=W] [0x0019] [0x08]

RCR sets initial value of Sn_RCR (SOCKET n Retransmission Count Register). RTR and RCR set ARP & TCP Retransmission. (Ref 4.8 Retransmission)

3.1.11 RMSR (RX Memory Size Register) [R=W] [0x001A] [0x55]

RMSR configures each SOCKET n RX Buffer Size. And the Sum of SOCKET n RX Buffer Size must not exceeded 8 Kbytes. (Ref Sn_RXBUF_SIZE (SOCKET n RX Buffer Size Register))

7	6	5	4	3	2	1	0
SOCI	SOCKET 3 SOCKET 2		(ET 2	SOCKET 1		SOCKET 0	
S 1	S0	S 1	S0	S 1	S0	S 1	S0

Each SOCKET n RX Buffer Size is set by S0 and S1.

Buffer Size	S 1	S0
1 KB	0	0
2 KB	0	1
4 KB	1	0
8 KB	1	1

3.1.12 TMSR (TX Memory Size Register) [R=W] [0x001B] [0x55]

TMSR configures each SOCKET n TX Buffer Block Size. And the sum of SOCKET n TX Buffer Block Size must not be exceeded 8 Kbytes. (Ref Sn_TXBUF_SIZE (SOCKET n TX Buffer Size Register))

7	6	5	4	3	2	1	0
SOCK	KET 3	SOC	(ET 2	SOC	KET 1	SOC	KET 0
S 1	S0	S 1	S0	S 1	SO	S 1	S0

Each SOCKET n TX Buffer Block Size is set by SO and S1.

Buffer Size	S 1	SO
1 KB	0	0
2 KB	0	1
4 KB	1	0
8 KB	1	1

3.1.13 IR2 (Interrupt Register 2) [RW] [0x0020] [0x00]

When WOL Event occurs, IR2 [WOL] is set to '1'. If the Event occurs and IMR2 [WOL] is set to '1' and internal Interrupt Pending Timer Counter is '0', INTn is asserted to Low. When the Event is cleared or IMR2 [WOL] is set to '0', INTn is de-asserted to High.

7 6 5 4 3 2 1 0

-	-	-	-	-	-	-	WOL	
-	-	-	-	-	-	-	WC	

Bit	Symbol	Description
[7:1]	-	Reserved
		WOL MAGIC Packet Interrupt
0	WOL	1 : Received UDP based WOL Magic Packet.
		0:-

3.1.14 IMR2 (Interrupt Mask Register 2)

[R=W] [0x0021] [0x00]

IMR2 is used for the corresponding IR2 Bit Mask.

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	WOL
-	-	-	-	-	-	-	R=W

Bit	Symbol	Description
[7:1]	-	Reserved
	WOL	WOL MAGIC Packet Interrupt Mask
0		1 : Enable WOL MAGIC Packet Interrupt
		0 : Disable WOL MAGIC Packet Interrupt

3.1.15 PTIMER (PPP Link Control Protocol Request Timer Register)

[R=W] [0x0028] [0x28]

PTIMER configures the sending period for LCP Echo Request. The unit is 25ms.

Ex) PTIMER = 200 (0xC8), 200 * 25ms = 5s

3.1.16 PMAGIC (PPP Link Control Protocol Magic number Register)

[R=W] [0x0029] [0x00]

PMAGIC configures 4 Bytes Magic Number for LCP Echo Request.

Ex) PMAGIC = 0x01

PMAGIC(0x0029)

0x01

LCP Magic Number = 0x01010101

3.1.17 UIPR (Unreachable IP Address Register)

[RO] [0x002A-0x002D] [0x0000]

When W5100S received Unreachable Packet (IR [UNR] = '1'), Peer IP Address in the Packet is written on UIPR.

Ex) UIPR = "192.169.0.21"

UIPR0(0x002A)	UIPR1(0x002B)	UIPR2(0x002C)	UIPR3(0x002D)
192(0xC0)	168(0xA8)	0(0x00)	21(0x15)

3.1.18 UPORTR (Unreachable Port Register)

[RO] [0x002E-0x002F] [0x0000]

When W5100S received Unreachable Packet (IR [UNR] = '1'), Peer PORT Number in the Packet is written on UPORTR.

Ex) UPORTR = 3000 (0x0BB8)

UPORTR0(0x002E)	UPORTR1(0x002F)
0x0B	0xB8

3.1.19 MR2 (Mode Register 2)

[R=W] [0x0030] [0x40]

MR2 configures System Operation Clock (SYS_CLK), Interrupt Activation, TCP & UDP Scan Prevention, WOL (Wake On LAN) and Force ARP.

7	6	5	4	3	2	1	0
CLKSEL	IEN	NOTCPRST	UDPURB	WOL	-	FARP	-
R=W	R=W	R=W	R=W	R=W	W0	R=W	W0

Bit	Symbol	Description
7	CLKSEL	System Operation Clock(SYS_CLK) Select When CLKLCKR (Clock Lock Register) is Unlock, this bit can only set. (Ref to 3.1.40 CLKLCKR (Clock Lock Register) [WO] [0x0070] [0x00]) 1: 25MHz

	0 : Depends on PHYCR1[PWDN]						
		SYS_CLK selected by PHCR1 configuration.					
		PHYCR1[PWDN]	SYS_CLK				
		0	100 MHz				
		1	25 MHz				
		INTn Enable / Disable					
6	IEN	1 : INTn Enable					
		0 : INTn Disable (INTn is Always I	ligh)				
		TCP RST Packet Block					
		If Peer transmits TCP Packet to	a Port that does not exist on W5100S.				
		W5100S automatically transmits	RST Packet. But it could be the target				
		for Port Scan Attack.					
5	NOTCPRST	But if this Bit is set as '1', W5100	does not transmit RST Packet against				
		Peer TCP Packet having wrong pe	ort.				
		1 : Block sending RST Packet					
		0 : Normal					
		UDP Port Unreachable Packet Block					
		If Peer transmits UDP Packet to a Port that does not exist on W5100S.					
		W5100S automatically transmits ICMP Packet (Destination Port					
		Unreachable) to Peer. But it could be the target for Port Scan Attack.					
4	UDPURB	But if this Bit is set as '1', W5100S does not transmit ICMP Packet					
		(Destination Port Unreachable).					
		,	estination Port Unreachable Message)				
		0 : Normal					
		Wake On LAN					
		This Bit decides receiving WOL P	acket.				
3	WOL						
		1 : Receive WOL					
		0 : No Receive WOL					
2	-	Reserved					
		Force ARP					
			P Request once before the first UDP				
			continuously to the same Peer. But if				
1 FARP this Bit is set to '1', it sends AR		this Bit is set to '1', it sends ARP	Request for every UDP Data Packet.				
		1 . Transmit ADD Dazuest for sur	any LIDD Data Dadiot				
		1 : Transmit ARP Request for eve	ry our data racket				
		0 : Normal					

0	-	Reserved
---	---	----------

3.1.20 PHAR (Destination Hardware Address Register on PPPoE) [R=W] [0x0032-0x0037] [0x0000]

PHAR configures PPPoE Server Hardware Address only on PPPoE.

Ex) PHAR = "11:22:33:AA:BB:CC"

PHAR0(0x0032)	PHAR1(0x0033)	PHAR2(0x0034)
0x11	0x22	0x33
PHAR3(0x0035)	PHAR4(0x0036)	PHAR5(0x0037)
0xAA	0xBB	0xCC

3.1.21 PSIDR (Session ID Register on PPPoE) [R=W] [0x0038-0x0039] [0x0000]

PSID configures PPPoE Sever Session ID on PPPoE.

Ex) PSIDR = 0x1234

PSIDR0(0x0038)	PSIDR1(0x0039)
0x12	0x34

3.1.22 PMRUR (PPPoE Maximum Receive Unit Register) [R=W] [0x003A-0x003B] [0xFFFF]

PMRUR configures MRU (Maximum Receive Unit) on PPPoE and the value must not be exceeded 1472. If it is set bigger than 1472, it is configured 1472. And also PMRUR must be configured before SOCKET OPEN (Sn_CR [OPEN] = '1').

Ex) PMUR = 1000 (0x03E8)

PMUR0(0x0038)	PMUR1(0x0039)
0x03	0xE8

3.1.23 PHYSR (PHY Status Register)

[RO] [0x003C] [0x00]

PHYSR indicates PHY Operation Mode and LINK status configured by PHYCR0 (PHY Control Register 0)

7	6	5	4	3	2	1	0
CABOFF	-	AUTO	SPD	DPX	FDPX	FSPD	LINK
RO		RO	RO	RO	RO	RO	RO

Bit	Symbol	Description
		Cable OFF Bit
7	CABOFF	1 : Cable Unplugged
		0 : Cable Plugged
6	-	Reserved
		Auto Negotiation Bit configured by PHYCR0[2]
5	AUTO	1 : Disable Auto Negotiation
		0 : Enable Auto Negotiation
		Speed Bit configured by PHYCR0[1]
4	SPD	1:10Mbps
		0:100Mbps
	DPX	Duplex Bit configured by PHYCR0[0]
3		1 : Half Duplex
		0 : Full Duplex
		Flag Duplex Bit (When Link up)
2	FDPX	1 : Half Duplex
		0 : Full Duplex
		Flag Speed Bit (When Link up)
1	FSPD	1:10Mbps
		0:100Mbps
		Flag Link Bit
0	LNK	1 : Link Up
		0 : Link Down

3.1.24 PHYRAR (PHY Register Address Register)

[R=W] [0x003F] [0x00]

PHYRAR configures PHY Register Address of Internal Ethernet PHY.

7	6	5	4	3	2	1	0
-	-	-	A4	А3	A2	A1	A0
			R=W	R=W	R=W	R=W	R=W

Bit	Symbol	Description
7	-	Reserved
6	-	Reserved
5	-	Reserved
[4:0]	A[4:0]	PHY Register Address

3.1.25 PHYDIR (PHY Data Input Register)

[R=W] [0x0040-0x0041] [0x0000]

PHTDIR writes PHY Register specified by PHYAR.

Ex) PHYDIR = 0x1234

PHYDIR0(0x0040)	PHYDIR1(0x0041)
0x34	0x12

3.1.26 PHYDOR (PHY Data Output Register)

[RO] [0x0042-0x0043] [0x0000]

PHYDOR reads the PHY Register specified by PHYAR

Ex) PHYDOR = 0x1234

PHYDOR0(0x0042)	PHYDPR1(0x0043)
0x34	0x12

3.1.27 PHYACR (PHY Access Control Register) [AC] [0x0044] [0x00]

PHYACR configures Access Type of PHY Register specified by PHYAR

Access Type	Value
Write	0x01
Read	0x02

3.1.28 PHYDIVR (PHY Division Register)

[R=W] [0x0045] [0x01]

Internal Ethernet PHY uses the divided Clock of System Operation Clock (SYS_CLK). And this divided Clock must not be exceeded 2.5MHz.

Value	Divider	SYS_CLK=100MHz	SYS_CLK=25MH	
0x00	1/32	3.125MHz (N/A)	781.25KHz	
0x01	1/64	1.5625MHz	390.625KHz	
others	others 1/128		195.3125KHz	

3.1.29 PHYCR0 (PHY Control Register 0)

[WO] [0x0046] [0x00]

PHYCR configures Ethernet PHY Operation Mode such as Auto Negotiation, Speed and Duplex.

Before set PHYCR, PHYLCKR (PHY Lock Register) must be on Unlock Mode.

7	6	5	4	3	2	1	0
-	-	-	-	-	AUTO	SPD	DPX
					WO	WO	WO

Bit	Symbol	Description
[7:3]	-	Reserved
		Auto Negotiation
		If AUTO is set to '1', SPD and DPX are ignored.
2	AUTO	
		1 : Disable Auto Negotiation
		0 : Enable Auto Negotiation
		10/100 Speed
		When AUTO is '0', it can configures 10Mbps or 100Mbps
1	SPD	
		1:10 Mbps
		0:100 Mbps
		Full/Half Duplex
		When AUTO is '0', it can configures Half Duplex or Full Duplex
0	DPX	
		1: HDX
		0:FDX

3.1.30 PHYCR1 (PHY Control Register 1)

[R=W] [0x0047] [0x41]

PHYCR configures Ethernet PHY Operation Mode such as PHY Power Down Mode, PHY Reset. Before set PHYCR, PHYLCKR (PHY Lock Register) must be on Unlock Mode.

7	6	5	4	3	2	1	0
-	-	PWDN	-	-	-	-	Reset
W0	W0	R=W	W0	W0	W0	W0	AC

Bit	Symbol	Description
[7:6]	-	Reserved
5	PWDN	PHY Power Down 1 : Enable Power Down Mode and SYS_CLK switching 25MHz 0 : Disable Power Down Mode and SYS_CLK selected by MR2[CLKSEL]

			MR2[CLKSEL]	SYS_CLK		
			0	100 MHz	•	
			1	25 MHz		
		(Ref 7.4.1 Rese	t Timing)			
[4:1]	-	Reserved				
0	RST	PHY Reset When PHY Reset Bit is set to '0', SYS_CLK is switched to 25MHz. After PHY Reset completed, this Bit is automatically cleared and SYS_CLK is turn back to the previous clock. (Ref 7.4.1 Reset Timing) 1: Normal 0: PHY H/W Reset				

3.1.31 SLCR (SOCKET-less Command Register) [RW] [0x004C] [0x00]

SLCR configures ARP and PING Request Transmission Command. Each Command must not be executed at the same time and not configured before SLCR cleared. The results of each Command is shown via SLIR (SOCKET-less Interrupt Register)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	ARP	PING
-	-	-	-	-	-	AC	AC

Bit	Symbol	Description		
[7:2]	-	Reserved		
		ARP Request Transmission Command		
1	ARP	1 :Transmit ARP packet		
		0 : Ready		
0	PING	PING Request Transmission Command		
		1: Transmit PING Request		
		0: Ready		

3.1.32 SLRTR (SOCKET-less Retransmission Time Register) [R=W] [0x004D-0x004E] [0x07D0]

SLRTR sets SLCR Retransmission Time. The unit is 100us. If there is no Response for ARP or PING Request Packet transmitted by SLCR, W5100S automatically retransmits Request Packet every SLRTR. (Ref *4.8 Retransmission*)

Ex) SLRTR = 5000 (0x1388),

5000 * 100us = 0.5s

SLRTR0(0x004D)	SLRTR1(0x004E)
0x013	0x88

3.1.33 SLRCR (SOCKET-less Retransmission Count Register) [R=W] [0x004F] [0x00]

SLRCR sets SLCR Retransmission Number. If the number of Retransmission exceeds SLRCR, SOCKET-less Timeout (SLIR [TIMEOUT] = '1') occurs. (Ref 4.8 Retransmission)

3.1.34 SLPIPR (SOCKET-less Peer IP Address Register) [R=W] [0x0050-0x0053] [0x00000000]

SLPIPR configures Peer IP Address for ARP or Ping Request Packet transmitted by SLCR.

Ex) SLPIPR = "192.169.0.21"

SLPIPR0(0x0050)	PIPR0(0x0050) SLPIPR1(0x0051) SLPIPR2(0x0052)		SLPIPR3(0x0053)
192(0xC0)	168(0xA8)	0(0x00)	21(0x15)

3.1.35 SLPHAR (SOCKET-less Peer Hardware Address Register) [RO] [0x0054-0x0059] [0x00000000000]

If W5100S received ARP Reply against SLCR [ARP] and SLIPR [ARP] is set to '1', Peer Hardware Address from ARP Reply is written on SLPHAR.

Ex) SLPHAR = "11:22:33:AA:BB:CC"

SLPHAR0(0x0054)	SLPHAR1(0x0055)	SLPHAR2(0x0056)
0x11	0x22	0x33
SLPHAR3(0x0057)	SLPHAR4(0x0058)	SLPHAR5(0x0059)
0xAA	0xBB	0xCC

3.1.36 PINGSEQR (PING Sequence-number Register) [R=W] [0x005A-0x005B] [0x0000]

PINGSEQR configures Sequence Number for PING Request Packet and it is not automatically increased.

Ex) PINGSEQR = 1000 (0x03E8)

PINGSEQR0(0x005A)	PINGSEQR1(0x005B)
0x03	0xE8

3.1.37 PINGIDR (PING ID Register)

[R=W] [0x005C-0x005D] [0x0000]

PINGIDR configures ID for PING Request Packet.

Ex) PINGIDR = 256 (0x0100)

PINGIDR0(0x005C)	PINGIDR1(0x005D)
0x01	0x00

3.1.38 SLIMR (SOCKET-less Interrupt Mask Register) [R=W] [0x005E] [0x00]

SLIMR is used for corresponding SLIR (SOCKET-less Interrupt Register) Bit Mask.

7	6	5	4	3	2	1	0
-	-	-	-	-	TIMEOUT	ARP	PING
-	-	-	-	-	R=W	R=W	R=W

Bit	Symbol	Description	
[7:3]	-	Reserved	
	TIMEOUT Interrupt Mask		
2	TIMEOUT	1 : Enable TIMEOUT Interrupt	
		0 : Disable TIMEOUT Interrupt	
	ARP Interrupt Mask		
1	ARP	1 : Enable ARP Interrupt	
		0 : Disable ARP Interrupt	
		PING Interrupt Mask	
0	PING	1 : Enable PING Interrupt	
		0 : Disable PING Interrupt	

3.1.39 SLIR (SOCKET-less Interrupt Register) [RW] [0x005F] [0x00]

When SOCKET-less Event occurs, the corresponding Bit in SLIR is set to '1'. If the Event occurs and the corresponded Interrupt Mask Bit in SLIMR is set to '1' and internal Interrupt Pending Timer Counter is '0', INTn is asserted to Low. When the Event is cleared or the corresponding Mask Bit is set to '0', INTn is de-asserted to High.

7	6	5	4	3	2	1	0
-	-	-	-	-	TIMEOUT	ARP	PING
-	-	-	-	-	WC	WC	WC

Bit	Symbol	Description	
[7:3]	-	Reserved	
2	TIMEOUT Interrupt		
	TIMEOUT	When TIMEOUT occurs, this Bit is set to '1'.	
1	ADD	ARP Interrupt	
	When ARP Reply received, this Bit is set to '1'.		
0	PING	PING Interrupt	
	PING	When PING Reply received, this Bit is set to '1'.	

3.1.40 CLKLCKR (Clock Lock Register)

[WO] [0x0070] [0x00]

CLKLCKR status must be Unlock to set MR2 [CLKSEL]. Before HOST changes CLKLCKR status, CLKLCKR has the previous status.

Unlock	Lock
0xCE	Others

3.1.41 NETLCKR (Network Lock Register)

[WO] [0x0071] [0x00]

NETLCKR status must be Unlock to set GWR, SUBR, SHAR and SIPR. Before HOST changes NETLCKR status, LETLCKR has the previous status.

Unlock	Lock
0xC5	0x3A

3.1.42 PHYLCKR (PHY Lock Register)

[WO] [0x0072] [0x00]

PHYLCKR status must be Unlock to set PHYCR0 and PHYCR1. Before HOST changes PHYLCKR status, PHYLCKR has the previous status.

Unlock	Lock
0x53	Others

3.1.43 VERR (Version Register)

- [RO] [0x0080] [0x51]

VERR shows W5100S Version.

3.1.44 TCNTR (Ticker Counter Register)

[RO][0x0082-0x0083][0x0000]

TCNTR is W5100S Internal Counter, it has automatically increased since SYS_CLK operating. The unit is 100us.

3.1.45 TCNTCLR (Ticker Counter Clear Register) [w0][0x0088][0x00]

With TCNTCLR Write Access, TCNTR Counter value is initialized.

3.2 SOCKET Register

3.2.1 Sn_MR (SOCKET n Mode Register)

[R=W] [0x0000+0x0100*(n+4)] [0x00]

Sn_MR configures SOCKET Mode and Option. Sn_MR must be set before SOCKET OPEN (Sn_CR [OPEN] = '1').

7	6	5	4	3	2	1	0
MULTI	MF	ND / MC	-	Р3	P2	P1	Р0
R=W	R=W	R=W	-	R=W	R=W	R=W	R=W

Bit	Symbol	Description
7	MULTI	UDP Multicast This Bit is valid only on UDP Mode. (Ref 4.4.3 UDP Multicast)
		1 : Enable UDP Multicast 0 : Disable UDP Multicast
		MAC Filter Enable
		This Bit is valid only on MACRAW Mode.
		If This Bit is set to '1', W5100S block all Packets without Multicast,
6	MF	Broadcast and the Packets no having Source MAC (SHAR).
		1 : Enable MAC Filter.
		0 : Disable MAC Filter
		No Delayed ACK (ND)
		This Bit is valid only on TCP Mode.
		If this Bit is set to '1', TCP Mode SOCKET transmits ACK Packet without
		waiting RTR after receiving Data Packet from Peer.
		1 : Enable No Delayed ACK
		0 : Disable No Delayed ACK
5	ND / MC	Ref) After Sn_CR[RECV] Command operating, If TCP Mode SOCKET Window Size is smaller than MSS, it sends ACK packet immediately. (no concerned with ND Bit)
		Multicast IGMP Version (MC) This Bit is valid only on UDP Multicast Mode (Sn_MR[3:0] = 'UDP' & Sn_MR[MULTI] = '1')

			0: Using IGMP version 2 1: Using IGMP version 1					
				version	1			
4	-	Reserv	ed					
					Protocol	Mode.	MACRAW Mode is used only	
			P 3	P2	P1	P0	Protocol Mode	
F2 07	DF2 01							
[3:0]	P[3:0]		0	0	0	0	SOCKET Closed	
[3:0]	P[3:0]		0	0	0 0	0 1	SOCKET Closed TCP	
[3:0]	P[3:0]			•	•			
[3:0]	P[3:0]		0	0	0	1	ТСР	

3.2.2 Sn_CR (SOCKET n Command Register) [RW][AC] [0x0001+0x0100*(n+4)] [0x00]

Sn_CR configures SOCKET n Command. After W5100S executes SOCKET Command, the corresponding Sn_CR Bit is automatically cleared. Next SOCKET Command must be configured after previous SOCKET Command Bit cleared.

Value	Symbol	Description					
		SOCKET OPEN Command Before OPEN Command, HOST must be set SOCKET Mode with Sn_MF After OPEN Command done, Sn_SR shows SOCKET Status.	R.				
001	ODEN	Sn_MR (P[3:0]) Sn_SR					
0x01	OPEN	Sn_MR_CLOSE ('0000') SOCK_CLOSED (0x00)					
		Sn_MR_TCP ('0001') SOCK_INIT (0x13)					
		Sn_MR_UDP ('0010') SOCK_UDP (0x22)					
		Sn_MR_IPRAW ('0011') SOCK_IPRAW (0x32)					
		S0_MR_MACRAW ('0100') SOCK_MACRAW (0x42)					
	LISTEN	TCP LISTEN Command After LISTEN Command, TCP Mode SOCKET waits for SYN Packet from	m				
0x02		Peer for TCP Connection in SOCK_INIT (Sn_SR = '0x13').					
		(Ref 4.3.1 TCP Server)					
		TCP CONNECT Command					
0x04	CONNECT	After CONNECT Command, TCP Mode SOCKET transmits SYN Packet t	to				
		Peer for TCP Connection in SOCK_INIT (Sn_SR = '0x13').					

	<u> </u>	
		(Ref 4.3.2 TCP Client)
		TCP DISCON Command
0x08	DISCON	After DISCON Command, TCP Mode SOCKET transmits FIN Packet to Peer
UXUO	DISCON	for TCP Disconnection in SOCK_ESTABLESHED (Sn_SR = '0x17') or
		SOCK_CLOSE_WAIT (Sn_SR = '0x1C').
		SOCKET CLOSE Command
		After CLOSE Command, SOCKET is closed (Sn_SR = '0x00').
0x10	CLOSE	*Caution: Sn_SR is changed to SOCK_CLOSE without FIN Packet sending in TCP
		Mode
		SOCKET SEND Command
		After SEND Command, SOCKET sends Data as much as the calculated size
		between Sn_TX_WR (SOCKET n TX Write Point Register) and Sn_TX_RD
		(SOCKET n RX Read Pointer Register). The Sent Data must not be
		exceeded Sn_RX_FSR (SOCKET n TX Free Buffer Size Register). HOST
		must execute next SEND Command after Sn_IR [SENDOK] is set to '1'.
0x20		must execute next send command after sin_ik [sendok] is set to 1.
	SEND	On TCP and UDP Mode, if the calculated size is over MSS (Maximum
		Segment Size), Data is separated by MSS and sent.
		On the other hands, on IPRAW and MACRAW Mode, if Data is over MSS,
		HOST must separate it by less than MSS.
		On TCP Mode, if Peer receives Data (It means TCP Mode SOCKET receives
		ACK Packet from Peer), Sn_RX_FSR is automatically increased by sent
		Data Size. But if not, Sn_IR [TIMEOUT] is set to '1' and Sn_SR is changed
		to SOCK_CLOSED.
		On UDP, IPRAW and MACRAW Mode, Sn_TX_FSR is increased by sent Data
		Size after Sn_IR [SENDOK] is set to '1'.
		SOCKET SEND_MAC Command
		SEND_MAC Command is used only on UDP and IPRAW Mode. Only the
0x21	SEND_MAC	different with SEND Command is that it skips ARP Process. Before using
•/		SEND_MAC Command, HOST must set Sn_DHAR (SOCKET n Destination
		Hardware Address Register) with Peer MAC Address.
		SOCKET SEND_KEEP Command
		SEND_KEEP Command is used only on TCP Mode. Before using SEND_KEEP
0x22	CENU REED	
UXZZ	SEND_KEEP	Command, TCP Mode SOCKET must send more than 1 byte Data to Peer.
		After SEND_KEEP Command, TCP Mode SOCKET continues to send Keep
		alive (KA) Packet and check the TCP connection. If there is no Peer

		response, KA Packet is retransmitted. After Retransmission Time, Sn_IR				
		[TIMEOUT] is set to '1' and Sn_SR is changed to SOCK_CLOSED.				
		(Ref 4.3.3.2 Keep AliveKeep)				
		SOCKET RECV Command				
		After reading received Data from SOCKET n RX Buffer Block, HOST				
		updates Sn_RX_RD (SOCKET n Read Pointer Register) with RECV				
		Command.				
0x40	RECV					
(Ref <i>오류! 참조 원</i>		(Ref 오류! 참조 원본을 찾을 수 없습니다. 오류! 참조 원본을 찾을				
수 없습니다., 3.2.19 Sn_RX_RI		수 없습니다., 3.2.19 Sn_RX_RD (SOCKET n RX Read Pointer Register) and				
		오류! 참조 원본을 찾을 수 없습니다. 오류! 참조 원본을 찾을 수				
		<i>없습니다</i> .)				

3.2.3 Sn_IR (SOCKET n Interrupt Register) [RW] [0x0002+0x0100*(n+4)] [0x00]

When Sn_IR Event occurs, the corresponding Interrupt Bit is set to '1'.

7	6	5	4	3	2	1	0
-	-	-	SENDOK	TIMEOUT	RECV	DISCON	CON
			WC	WC	WC	WC	WC

Bit	Symbol	Description
[7:5]	-	Reserved
		SEND OK Interrupt
4	SENDOK	1 : When SEND Command is completed
		0 : When others
		TIMEOUT Interrupt
3	TIMEOUT	1 : When the number of retransmission is exceeded Sn_RCR (SOCKET
J	TIMEOUT	Retransmission Count Register) in ARP or TCP communication.
		0 : When others
	RECV	RECEIVED Interrupt
2		1 : When SOCKET received Data or Data still remained in SOCKET n RX
2		Buffer Block after Sn_CR [RECV]
		0 : When others
		DISCONNECTED Interrupt
1	DISCON	1: When FIN Packet sent and disconnection completed, or When FIN
!	DISCON	Packet received or RST Packet received.
		0 : When others
0	CON	CONNECTED Interrupt

1: When TCP Connection is successfully done. (Sn_MR [3:0]='TCP)

0: When others

3.2.4 Sn_SR (SOCKET n Status Register)

[RO] [0x0003+0x0100*(n+4)] [0x00]

Sn_SR describes the Status of SOCKET. Sn_SR is set by Sn_CR or Data transmit/receive.

Value	Symbol	Description
0x00	SOCK_CLOSED	SOCKET Closed
0x13	SOCK_INIT	SOCKET Opened as TCP Mode
0x14	SOCK_LISTEN	SOCKET is TCP Mode and wait for Peer Connection
0x17	SOCK_ESTABLISHED	SOCKET is TCP Mode and TCP Connection is done
0x1C	SOCK_CLOSE_WAIT	SOCKET is TCP Mode and received disconnection request
0x22	SOCK_UDP	SOCKET Opened as UDP Mode
0x32	SOCK_IPRAW	SOCKET Opened as IPRAW Mode
0x42	SOCK_MACRAW	SOCKET Opened as MACRAW Mode

The below table shows a temporary status indicated during changing the status of SOCKET n.

Value	Symbol	Description			
0x15	SOCK_SYNSENT	SOCKET n sent the Connect request			
0x16	SOCK_SYNRECV	SOCKET n received the Connect request			
0x18	SOCK_FIN_WAIT				
0X1B	SOCK_TIME_WAIT	SOCKET n is in SOCKET Closed			
0X1D	SOCK_LAST_ACK				

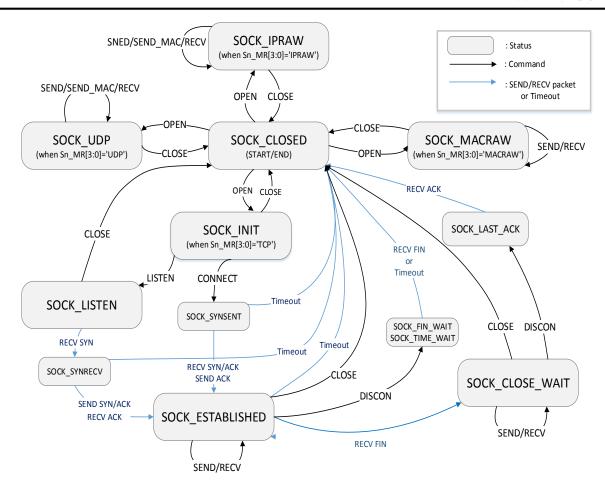


Figure 4 State Diagram

3.2.5 Sn_PORTR (SOCKET n Source Port Register)

[R=W] [0x0004+0x0100*(n+4), 0x0005+0x0100*(n+4)] [0x0000]

Sn_PORTR configures Source Port Number of SOCKET n.

Ex) $SO_PORTR = 5000 (0x1388)$

S0_PORTR0(0x0404)	S0_PORTR1(0x0405)		
0x013	0x88		

3.2.6 Sn_DHAR (SOCKET n Destination Hardware Address Register)

[RW] [0x0006+0x0100*(n+4), 0x0007+0x0100*(n+4), 0x0008+0x0100*(n+4), 0x0009+0x0100*(n+4), 0x000A+0x0100*(n+4), 0x000B+0x0100*(n+4)] [0x00000000000]

Peer MAC Address in Peer Packet is written on Sn_DHAR. On TCP Mode, Sn_DHAR is valid after CONNECT Command. On UDP and IPRAW Mode, Sn_DHAR is valid after SEND Command. If HOST uses SEND_MAC Command, Sn_DHAR must be set with Peer MAC Address before Command. On UDP Multicast Mode, Sn_DHAR must be configured with Multicast Group MAC

Address. (Ref 4.4.3 UDP Multicast)

Ex) S0_DHAR = "11:22:33:AA:BB:CC"

S0_DHAR0(0x0406)	S0_DHAR1(0x0407)	S0_DHAR2(0x0408)
0x11	0x22	0x33
S0_DHAR3(0x0409)	S0_DHAR4(0x040A)	S0_DHAR5(0x040B)
0xAA	0xBB	0xCC

3.2.7 Sn_DIPR (SOCKET n Destination IP Address Register) [RW] [0x000C+0x0100*(n+4), 0x000D+0x0100*(n+4), 0x000E+0x0100*(n+4), 0x000F+0x0100*(n+4)] [0x00000000]

Sn_DIPR is set with Peer IP Address. On TCP Mode, Sn_DIPR must be set with Peer IP Address before Connection, or indicates IP Address of connected Peer. On UDP and IPRAW Mode, Sn_DIPR must be set with Peer IP Address before sending Data.

On UDP Multicast Mode, Sn_DIPR must be configured with Multicast Group IP Address. (Ref 4.4.3 UDP Multicast)

On UDP, UDP Multicast and IPRAW Mode, Peer IP Address is stored with Data in SOCKET n RX Buffer.

Ex) S0_DIPR = "192.168.0.11"

S0_DIPR0(0x040C)	S0_DIPR1(0x040D)	S0_DIPR2(0x040E)	S0_DIPR3(0x040F)
192 (0xC0)	168 (0xA8)	0 (0x00)	11 (0x0B)

3.2.8 Sn_DPORTR (SOCKET n Destination Port Register) [R=W] [0x0010+0x0100*(n+4), 0x0011+0x0100*(n+4)] [0x0000]

Sn_DPORTR is set with Peer Port Number. On TCP Mode, Sn_DPORTR must be set with Peer Port Number before Connection, or indicates Port Number of connected Peer. On UDP and IPRAW Mode, Sn_DPORTR must be set with Peer Port Number before sending Data.

On UDP Multicast Mode, Sn_DPORTR must be configured with Multicast Group Port Number. (Ref 4.4.3 UDP Multicast)

On UDP, UDP Multicast and IPRAW Mode, Peer Port Number is stored with Data in SOCKET n RX Buffer.

Ex) $SO_DPORTR = 5000 (0x1388)$,

S0_DPORTR0(0x0410)	S0_DPORTR1(0x0411)
0x13	0x88

3.2.9 Sn_MSS (SOCKET n Maximum Segment Size Register) [R=W] [0x0012+0x0100*(n+4), 0x0013+0x0100*(n+4) [0xFFFF]

Sn_MSS sets SOCKET n MSS and it must be set before Sn_CR [OPEN]. Sn_MSS must not be exceeded specified size as below table.

Mode	Normal (MR [PPPoE]='0') Range	PPPoE (MR [PPPoE]='1') Range
TCP	1~1460	1~1452
UDP	1~1472	1~1464
IPRAW	1480	1472
MACRAW	1514	

Ex) $S0_MSS = 1460 (0x05B4)$,

S0_MSS0(0x0412)	S0_MSS1(0x0413)
0x05	0xB4

3.2.10 Sn_PROTOR (SOCKET n IP Protocol Register)

[R=W] [0x0014+0x0100*(n+4)] [0x0000]

Sn_PROTOR configures Protocol Number (Ref <u>IANA_Protocol Number</u>) of IP Header except for TCP (0x06), UDP (0x11) and IGMP (0x01).

On IPRAW Mode, only the Protocol configured in Sn_PROTR can be transmitted and received.

Ex) ICMP (Internet Control Message Protocol) = 0x01

3.2.11 Sn_TOS (SOCKET n IP Type Of Service Register) [R=W] [0x0015+0x0100*(n+4)] [0x00]

Sn_TOS configures the TOS (Type Of Service) of IP Header. (Ref IANA_IP Parameters)

3.2.12 Sn_TTL (SOCKET n IP Time To Live Register) [R=W] [0x0016+0x0100*(n+4)] [0x80]

Sn_TTL configures TTL (Time To Live) of IP header. (Ref <u>IANA_IP Parameters</u>)

3.2.13 Sn_RXBUF_SIZE (SOCKET n RX Buffer Size Register) [RW] [0x001E+0x0100*(n+4)] [0x02]

Sn_RXBUF_SIZE configures SOCKET n RX Buffer Size as 0, 1, 2, 4 and 8 Kbytes. RX Memory is sequentially allocated from SOCKET 0 to SOCKET 3. The total sum of Sn_RXBUF_SIZE must not be exceeded 8 Kbytes. Sn_RXBUF_SIZE can also be configured by RMSR.

Value (Dec)	0	1	2	4	8
Buffer size	0KB	1KB	2KB	4KB	8KB

Ex) SO_RXBUF_SIZE = 8KB

S0_RXBUF_SIZE(0x041E)	
0x08	

3.2.14 Sn_TXBUF_SIZE (SOCKET n TX Buffer Size Register) [RW] [0x001F+0x0100*(n+4)] [0x02]

Sn_TXBUF_SIZE configures SOCKET n TX Buffer Size as 0, 1, 2, 4 and 8 Kbytes. TX Memory is sequentially allocated from SOCKET 0 to SOCKET 3. The total sum of Sn_TXBUF_SIZE must not be exceeded 8 Kbytes. Sn_TXBUF_SIZE can also be configured by RMSR.

Value (Dec)	0	1	2	4	8
Buffer size	0KB	1KB	2KB	4KB	8KB

Ex) SO_TXBUF_SIZE= 4KB

S0_TXBUF_SIZE(0x041F)

0x04

3.2.15 Sn_TX_FSR (SOCKET n TX Free Size Register) [R0] [0x0020+0x0100*(n+4), 0x0021+0x0100*(n+4)] [0x0800]

Sn_TX_FSR indicates SOCKET n TX Free Buffer Size.

In UDP, IPRAW and MACRAW mode,

Sn_TX_FSR = | Sn_TX_WR⁽¹⁾ - Sn_TX_RD⁽²⁾ | + 1

In TCP mode,

Sn_TX_FSR = | Sn_TX_WR - Internal Pointer⁽³⁾ | + 1

- (1) SOCKET n TX Write Pointer Register
- (2) SOCKET n TX Read Pointer Register
- (3) TCP ACK Pointer managed by W5100S

Data to be stored in SOCKET n TX Buffer must not be bigger than Sn_TX_FSR.

 $Ex) SO_TX_FSR = 1024 (0x0400)$

S0_TX_FSR0(0x0420)	S0_TX_FSR1(0x0421)
0x04	0x00

3.2.16 Sn_TX_RD (SOCKET n TX Read Pointer Register)

[RO] [0x0022+0x0100*(n+4), 0x0023+0x0100*(n+4)] [0x0000]

Sn_TX_RD indicates the last Data Address in SOCKET n TX Buffer Block after transmitting.
Sn_TX_RD is initialized by Sn_CR [OPEN]. On TCP Mode, Sn_TX_RD is re-configured in TCP
Connection Process. By Sn_CR [SEND] and Sn_CR [SEND_MAC], Sn_TX_WR (SOCKET n TX Write

Pointer Register) is increased to Data Size. After transmitting Data, Sn_TX_RD increases by Sn_TX_WR and Sn_IR [SENDOK] occurs.

Ex) $SO_TX_RD = 0xd4b3$

S0_TX_RD0(0x0422)	S0_TX_RD1(0x0423)
0xd4	0xb3

3.2.17 Sn_TX_WR (SOCKET n TX Write Pointer Register) [RW] [0x0024+0x0100*(n+4), 0x0025+0x0100*(n+4)] [0x0000]

Sn_TX_WR indicates the last stored Data Address in SOCKET n TX Buffer Block. Sn_TX_RD is initialized by Sn_CR [OPEN]. On TCP Mode, Sn_TX_RD is re-configured in TCP Connection Process. Before Sn_CR [SEND] and Sn_CR [SEND_MAC], Sn_TX_WR must be set as transmitting Data Size.

Ex) $S0_TX_WR = 0x0800$

S0_TX_WR0(0x0424)	S0_TX_WR1(0x0425)
0x08	0x00

3.2.18 Sn_RX_RSR (SOCKET n RX Received Size Register)

[RO] [0x0026+0x0100*(n+4), 0x0027+0x0100*(n+4)] [0x0000]

Sn_RX_RSR indicates received Data Size in SOCKET n RX Buffer Block.

In TCP, UDP, IPRAW and MACRAW mode, $Sn_RX_RSR = | Sn_RX_WR^{(1)} - Sn_RX_RD^{(2)} |$

- (1) SOCKET n RX Write Pointer Register
- (2) SOCKET n RX Read Pointer Register

 $Ex) SO_RX_RSR = 2048 (0x0800)$

S0_RX_RSR0(0x0426)	S0_RX_RSR1(0x0427)
0x08	0x00

3.2.19 Sn_RX_RD (SOCKET n RX Read Pointer Register)

[RW] [0x0028+0x0100*(n+4), 0x0029+0x0100*(n+4)] [0x0000]

Sn_RX_RD is the last Data Address read by HOST in SOCKET n RX Buffer Block. HOST is available to read Data from Sn_RX_RD to Sn_RX_WR in SOCKET n RX Buffer Block. After setting Sn_RX_RD as much as Data read, HOST must set Sn_CR [RECV] to update Sn_RX_RD.

Ex) $SO_RX_RD = 1536(0x0600)$

S0_RX_RD0(0x0428)	S0_RX_RD1(0x0429)
-------------------	-------------------

0x06	0x00
07100	07100

3.2.20 Sn_RX_WR (SOCKET n RX Write Pointer Register)

[RO] [0x002A+0x0100*(n+4), 0x002B+0x0100*(n+4)] [0x0000]

Sn_RX_WR is the last received Data Address in SOCKET n RX Buffer Block. If received Data is smaller than Sn_RX_RSR, it is stored in SOCKET n RX Buffer Block and Sn_RX_WR increases by stored Data Size.

Ex) $S0_RX_WR = 1536(0x0600)$

S0_RW_WR0(0x042A)	S0_RW_WR1(0x042B)
0x06	0x00

3.2.21 Sn_IMR (SOCKET n Interrupt Mask Register) [R=W] [0x002C+0x0100*(n+4)] [0xFF]

Sn_IMR is used for the corresponding Sn_IR Bit Mask.

7	6	5	4	3	2	1	0
-	-	-	SENDOK	TIMEOUT	RECV	DISCON	CON
-	-	-	R=W	R=W	R=W	R=W	R=W

Bit	Symbol	Description
[7:5]	-	Reserved
4	SENDOK	Sn_IR[SENDOK] Interrupt Mask
3	TIMEOUT	Sn_IR[TIMEOUT] Interrupt Mask
2	RECV	Sn_IR[RECV] Interrupt Mask
1	DISCON	Sn_IR[DISCON] Interrupt Mask
0	CON	Sn_IR[CON] Interrupt Mask

3.2.22 Sn_FRAGR (SOCKET n Fragment Offset in IP Header Register)

 $[R=W] \ [0x002D+0x0100*(n+4), \ 0x002E+0x0100*(n+4)] \ [0x4000]$

Sn_FRAGR configures Fragment Offset in IP Header.

Ex) S0_FRAG0 = 0x0000 (Don't Fragment)

S0_FRAGR0(0x042D)	S0_FRAGR1(0x042E)
0x00	0x00

3.2.23 Sn_MR2 (SOCKET n Mode register 2)

[R=W] [0x002F+0x0100*(n+4)] [0x00]

Sn_MR2 configures SOCKET n Option. Sn_MR2 must be set before Sn_CR[OPEN] = '1'.

7	6	5	4	3	2	1	0
-	MBBLK	MMBLK	IPV6BLK	-	-	BRDB	UNIB
-	R=W	R=W	R=W	-	-	R=W	R=W

D:4	C hl	Description
Bit	Symbol	Description
7	-	Reserved
		Broadcast Blocking on MACRAW Mode
		On MACRAW Mode, this Bit is set to '1' to block Broadcast Packet.
6	MBBLK	
		0 : Disable Broadcast Blocking
		1 : Enable Broadcast Blocking
		Multicast Blocking on MACRAW Mode
		On MACRAW Mode, this Bit is set to '1' to block Multicast Packet.
5	MMBLK	
		0 : Disable Multicast Blocking
		1 : Enable Multicast Blocking
		IPv6 Packet Blocking on MACRAW Mode
		On MACRAW Mode, this Bit is set '1' to block IPv6 Packet.
4	IPV6BLK	
		0 : Disable IPv6 Blocking
		1 : Enable IPv6 Blocking
[3:2]	-	Reserved
		Broadcast Blocking on UDP Mode/ Force PSH on TCP Mode
		*Broadcast Blocking on UDP Mode
		On UDP Mode, this Bit is set '1' to block UDP Broadcast Packet.
		0 : Disable Broadcast Blocking
		1 : Enable Broadcast Blocking
1	BRDB	
		* Force PSH on TCP Mode
		On TCP Mode, this Bit is set to '1' to set PSH Flag in all transmitting
		Data Packet.
		1: Force PSH Flag
		0: No Force PSH Flag
0	UNIB	Unicast Blocking on UDP Multicast Mode

On UDP Multicast Mode, this Bit is set to '1' to block UDP Unicast Packet.

0: Disable Unicast Blocking
1: Enable Unicast Blocking

3.2.24 Sn_KPALVTR (SOCKET n Keep Alive Timer Register) [RO] [0x0030+0x0100*(n+4)] [0x00]

Sn_KPALVTR sets 'Keep Alive (KA)' Packet transmission time. The unit is 5 sec. TCP Mode SOCKET transmits KA Packet every Sn_KPALVTR. Before transmitting KA Packet, SOCKET must transmit Data (over 1 Byte) Packet at least once. By Sn_CR [SENDKEEP], KA Packet is transmitted without Sn_KPALVTR setting.

\$0_KPALVRT(0x0430) 0x0A

3.2.25 Sn_RTR (SOCKET n Retransmission Time Register) [R=W] [0x0032+0x0100*(n+4), 0x0033+0x0100*(n+4)] [0x0000]

Sn_RTR sets SOCKET n Retransmission Time. If Sn_RTR is zero, SOCKET n Retransmission Time is set by RTR. (Ref 4.8 Retransmission)

S0_RTR0(x0432)	S0_RTR1(0x0433)
0x013	0x88

3.2.26 Sn_RCR (SOCKET n Retransmission Count Register) [R=W] [0x0034+0x0100*(n+4)] [0x00]

Sn_RCR sets SOCKET n Retransmission Counter. If Sn_RCR is zero, SOCKET n Retransmission Counter is set by RCR. (Ref *4.8 Retransmission*)

4 Functional Description

W5100S provides Internet Connectivity with simple register control. In this chapter, the Initialization of W5100S, Data Communication method according to each TCP, UDP, IPRAW, MACRAW Mode and the additional functions are described step by step based on the pseudo code.

4.1 W5100S RESET

- Set Hardware before Reset. (Ref 7.4.1 Reset Timing)
- Set HOST Interface Mode with MOD [3:0] pin.
- Supply the Reset signal longer than 500ns on RSTn pin for Hardware Reset.
- Wait for T_{STA} (Ref 7.4.1 Reset Timing)

4.2 Initialization

The Network Information and SOCKET n TX / RX buffer are set in the W5100S Initialization Process.

4.2.1 Basic Setting

To operate the W5100S properly, set the following Registers according to User's Application.

- Mode Register (MR)
- Interrupt Mask Register (IMR)
- Retransmission Time Register (RTR)
- Retransmission Count Register (RCR)

More Information for the above registers can be found in each Register Descriptions.

4.2.2 Network Information Setting

Set the basic Network Information for Internet Communication.

```
NETWORK SETTING:

{
    /* W5100S MAC Address, 11:22:33:AA:BB:CC */
    SHAR[0:5] = { 0x11, 0x22, 0x33, 0xAA, 0xBB, 0xCC };

    /* W5100S Gateway IP address, 192.168.0.1 */
    GAR[0:3] = { 0xC0, 0xA8, 0x00, 0x01 };
```



```
/* W5100S Subnet MASK Address, 255.255.255.0 */
SUBR[0:3] = { 0xFF, 0xFF, 0x00};

/* W5100S IP Address, 192.168.0.100 */
SIPR[0:3] = {0xC0, 0xA8,0x00, 0x64};
}
```

4.2.3 SOCKET TX/RX Buffer Setting

Determine SOCKET n TX/RX Buffer Size using TMSR/RMSR or Sn_TXBUF_SIZE/Sn_RXBUF_SIZE. SOCKET n TX / RX Buffer is a RING-Buffer structure. So, calculation of the base address and MASK value for SOCKET n TX / RX Buffer control must be required.

Please make sure that the Sum of SOCKET n TX / RX Buffer Size must not be exceed 8 KB.

The pseudo-code for setting the SOCKET n TX/RX Buffer is described below.

```
In case of, assign 2KB TX/RX memory per SOCKET
  // set Base Address of TX/RX Memory for SOCKET n
  gSO_RX_BASE = 0x8000; // TX Memory Block Base Address
  gSO_RX_BASE = 0xC000; // RX Memory Block Base Address
  TxTotalSize = 0;
                         // For check the total size of SOCKET n TX Buffer
  RxTotalSize = 0; // For check the total size of SOCKET n RX Buffer
 for (n=0; n<3; n++) {
   Sn_TXBUF_SIZE = 2; // assign 2 Kbytes TX memory per SOCKET
   Sn_RXBUF_SIZE = 2; // assign 2 Kbytes RX memory per SOCKET
    // 0x07FF, for getting offset address within assigned SOCKET n TX/RX memory
    gSn_TX_MASK = (1024 * Sn_TXBUF_SIZE) - 1;
   gSn_RX_MASK = (1024 * Sn_RXBUF_SIZE) - 1;
   if( n != 0) {
      gSn_TX_BASE = gSn_1_TX_BASE + (1024 * Sn_1_TXBUF_SIZE);
      gSn_RX_BASE = gSn-1_RX_BASE + (1024 * Sn-1_RXBUF_SIZE);
   } // end if
    TxTotalSize = TxTotalSize + Sn_TXBUF_SIZE;
    RxTotalSize = RxTotalSize + Sn_RXBUF_SIZE;
    If( TxTotalSize > 8 or RxTotalSize > 8 ) goto ERROR; // invalid Total Size
 } // end for
```


4.3 TCP

TCP (Transmission Control Protocol) is a bidirectional Data Transmission Protocol based on a 1:1 communication on Transport Layer. It also provides Communication between Applications by using Port Number.

TCP 1:1 communication needs the Connection Process such as transmitting Connection Request to Peer or receiving Connection Request from Peer.

In this Connection Process, the side transmitting Connection Request is 'TCP CLIENT' and the other side receiving Connection Request is 'TCP SERVER'.

TCP also provides reliable, ordered and error-checked delivery of a stream Data between applications running on hosts communicating by an IP network.

'TCP SERVER' and 'TCP CLIENT' are maintaining transmit and receive Data until the TCP connection is terminated.

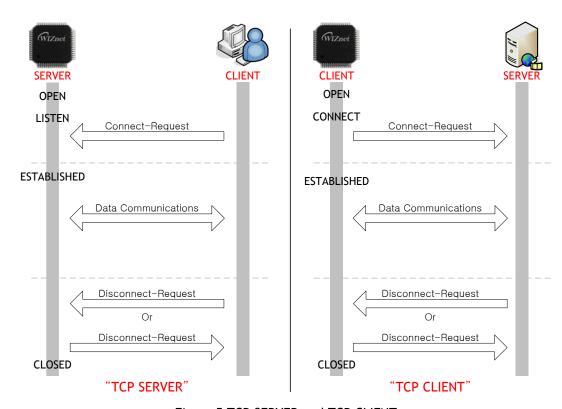


Figure 5 TCP SERVER and TCP CLIENT

4.3.1 TCP Server

Figure 6 show 'TCP SERVER' Operation Flow.

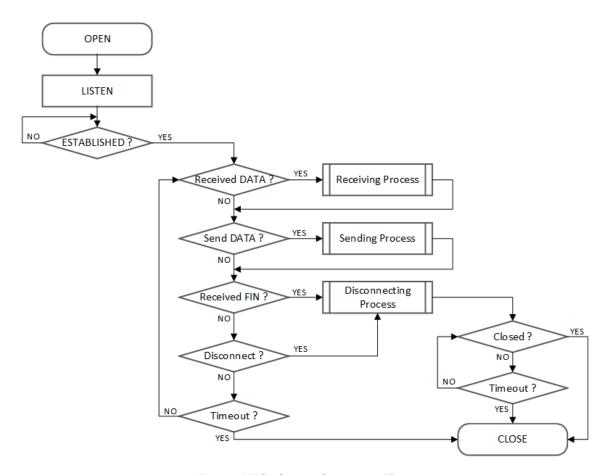


Figure 6 TCP Server Operation Flow

• OPEN

HOST configures SOCKET n to TCP Mode.

```
START:
    Sn_MR[3:0] = '0001';    /* set TCP Mode */
    Sn_PORTR[0:1] = {0x13,0x88};    /* set PORT Number, 5000(0x1388) */

    /* configure SOCKET Option when you need it. */
    // Sn_MR[ND] = '1';    /* set No Delay ACK */

    Sn_CR[OPEN] = '1';    /* set OPEN Command */
    while(Sn_CR != 0x00);    /* wait until OPEN Command is cleared*/

    if(Sn_SR != SOCK_INIT) goto START;    /* check SOCKET Status */
```


}

• LISTEN

SOCKET n is operated as 'TCP SERVER' by Sn_CR [LISTEN]. 'TCP SERVER' waits for SYN Packet in Sn_SR (SOCK_LISTEN)

```
{
    Sn_CR = LISTEN; /* set LISTEN Command */
    while(Sn_CR != 0x00); /* wait until LISTEN Command is cleared*/
    if(Sn_SR != SOCK_LISTEN) goto OPEN; /* check SOCKET Status */
}
```

• ESTABLISHED?

'TCP SERVER' keeps Sn_SR (SOCK_LISTEN) until received SYN Packet. If 'TCP SERVER' receives SYN Packet from 'TCP CLIENT', it transmits SYN/ACK Packet to 'TCP CLIENT' and the Connection Process between 'TCP SERVER' and 'TCP CLIENT' is completed.

If there is no response from Peer against of transmitted SYN Packet or SYN/ACK Packet within the Retransmission Time, Sn_IR [TIMEOUT] is set to '1'.

```
First method:

{
    /* check SOCKET Interrupt */
    if (Sn_IR[CON] == '1')
    {
        /* clear SOCKET Interrupt */
        Sn_IR[CON] = '1';
        goto Received DATA?; /* or goto Send DATA?; */
    }
    else if(Sn_IR[TIMEOUT] == '1') goto Timeout?;
}

Second method:
{
    if (Sn_SR == SOCK_ESTABLISHED)
    {
        /* clear SOCKET Interrupt */
        Sn_IR[CON] = '1';
        goto Received DATA? /* or goto Send DATA?; */
    }
```



```
else if(Sn_IR[TIMEOUT] == '1') goto Timeout?;
}
```

• Receive DATA?

Whether SOCKET n Data is received is confirmed by Sn_IR [RECV] or Sn_RX_RSR.

• Receiving Process

Received Data is read from SOCKET n RX Buffer Block.

The Read Offset Address of Received Data in RX Memory Block is calculated by gSn_RX_BASE, gSn_RX_MASK and Sn_RX_RD. (Ref 4.2.3 SOCKET TX/RX Buffer Setting)

After reading received Data, Sn_RX_RD must be increased by Data read Size and Sn_CR [RECV] must be set to '1'. If there is remain Data in SOCKET n RX Buffer Block after Sn_CR [RECV] Command, Sn_IR [RECV] is set to '1'.

When Read Offset Address calculated, it is cautious to over the boundary Address (n=0,1,2: $gSn_RX_BASE \sim gSn+1_RX_BASE$, n=3: $gS3_RX_BASE \sim 0xFFFF$) of SOCKET n RX Buffer Block.

```
{
    /* get Received Size */
    get_size = Sn_RX_RSR;

/* calculate SOCKET n RX Buffer Size & Offset Address */
    gSn_RX_MAX = Sn_RXBUF_SIZE * 1024;
    get_offset = Sn_RX_RD & gSn_RX_MASK;
```



```
/* calculate Read Offset Address */
    get_start_address = gSn_RX_BASE + get_offset;
    /* if overflow the upper boundary of SOCKET n RX Buffer */
    If( (get_offset + get_size) > gSn_RX_MAX )
      /* copy upper_size bytes of get_start_address to destination_address
        - destination_address is user data memory address */
      upper_size = gSn_RX_MAX - get_offset;
      memcpy(get_start_address, destination_address, upper_size);
      destination_address += upper_size;
      /* copy the remained size bytes of gSn_RX_BASE to destination_address */
      remained_size = get_size - upper_size;
      memcpy(gSn_RX_BASE, destination_address, remained_size);
    }
    else
    {
      /* copy get_size of get_start_address to destination_address */
      memcpy(get_start_address, destination_address, get_size);
    }
    /* increase Sn_RX_RD as get_size */
    Sn_RX_RD += get_size;
    /* set RECV Command */
    Sn_CR[RECV] = '1';
    while(Sn_CR != 0x00); /* wait until RECV Command is cleared*/
}
```

Send DATA? / Sending Process

Written Data in SOCKET n TX Buffer Block is transmitted.

The Write Offset Address in TX Memory Block is calculated by gSn_TX_BASE, gSn_TX_MASK and Sn_TX_WD. (Ref 4.2.3 SOCKET TX/RX Buffer Setting). And Data to be transmitted form the Write Offset Address is written. After writing Data, Sn_TX_WD must be increased by written Data Size and the Data is transmitted by Sn_CR [SEND].

Before Sn_IR [SENDOK] = '1', next Data Transmission Process is not executed. How long time until Sn_IR [SENDOK] = '1' after transmitting Data is depending on SOCKET Count, Data Size and Network Traffic. Also Sn_IR [TIMEOUT] could be occurred. (Ref 4.8.2 TCP Retransmission)

When Write Offset Address calculated, it is cautious to over the boundary Address (n=0,1,2: $gSn_TX_BASE \sim gSn+1_TX_BASE$, n=3: $gS3_TX_BASE \sim 0xC000$) of SOCKET n TX Buffer Block. If there is no response from Peer against of transmitted Data Packet within the Retransmission Time, Sn_IR [TIMEOUT] is set to '1'.

```
{
  /* calculate SOCKETn TX Buffer Size & Offset Address */
  gSn_TX_MAX = Sn_TXBUF_SIZE * 1024;
  get_offset = Sn_TX_WR & gSn_TX_MASK;
  /* check the max size of DATA(send_size) & Free Size of SOCKETn TX
     Buffer(Sn_TX_FSR)*/
  if( send_size >gSn_TX_MAX ) send_size = gSn_TX_MAX;
  while(send <= Sn_TX_FSR); // Wait until SOCKET n TX Buffer is free */
  /* If you don't want to wait TX Buffer Free
    send_size = Sn_TX_FSR; // write Data as size of Free Buffer
  /* calculate Write Offset Address */
  get_start_address = gSn_TX_BASE + get_offset;
  /* if overflow the upper boundary of SOCKET n TX Buffer */
  If( (get_offset + send_size) > gSn_TX_MAX )
  {
    /* copy upper size bytes of source_address to get_start_address
      - source_address is the start address of user data */
    upper_size = gSn_TX_MAX - get_offset;
    memcpy(source_address, get_start_address, upper_size);
    /* copy the Remained Size Bytes of source_address to gSn_TX_BASE */
    source_address += upper_size;
    remained_size = send_size - upper_size;
    memcpy(source_address, gSn_TX_BASE, remained_size);
  }
  else
  {
    /* copy send_size bytes of source_address to get_start_address
     - source_address is the start address of user data */
```



```
memcpy(source_address, get_start_address, send_size);
}

/* increase Sn_TX_WR as send_size */
Sn_TX_WR += send_size;

/* set SEND Command */
Sn_CR = SEND;
while(Sn_CR != 0x00); /* wait until SEND Command is cleared*/

/* wait until SEND Command is completed or TIMEOUT Interrupt is occurred*/
while(Sn_IR[SENDOK] == '0' and Sn_IR[TIMEOUT] = '0');

/* clear SOCKET Interrupt*/
if(Sn_IR[SENDOK] == '1') Sn_IR[SENDOK] = '1';
else goto Timeout?;
}
```

• Received FIN (Passive Close)

When FIN Packet received from Peer.

```
First Method:
{
    If(Sn_SR == SOCK_CLOSE_WAIT) goto Disconnecting Process;
}
Second Method:
{
    If(Sn_IR[DISCON] == '1') goto Disconnecting Process;
}
```

• Disconnected (Active Close)

When FIN Packet transmitted to Peer.

```
{
    /* send FIN Packet */
    Sn_CR[DISCON] = '1';
    while(Sn_CR != 0x00); /* wait until DISCON Command is cleared*/
    goto Disconnecting Process;
}
```


• Disconnecting Process

In Passive Close, if FIN Packet is received from Peer and there is no Data to be transmitted, SOCKET transmits FIN Packet and it will be closed. If there is no response from Peer against of transmitted FIN Packet within the Retransmission Time, Sn_IR [TIMEOUT] is set to '1'.

In Active Close, if SOCKET transmits FIN Packet to Peer, SOCKET waits for Peer FIN Packet. SOCKET will be closed after receiving FIN Packet from Peer. If there is no response from Peer against of transmitted FIN Packet within the Retransmission Time, Sn_IR [TIMEOUT] is set to '1'.

```
Passive Close: /* received FIN Packet from Peer */
{
  /* send FIN Packet */
  Sn_CR = DISCON;
  while(Sn_CR != 0x00); /* wait until DISCON Command is cleared*/
  /* wait unit ACK Packet is received*/
  while(Sn_IR[DISCON] == '0' and Sn_IR[TIMEOUT] == '0');
  if (Sn_IR[DISCON] == '1')
  {
    /* clear Interrupt */
    Sn_IR[DISCON] = '1';
    goto CLOSED;
  }
  else goto Timeout?;
Active Close: /* sent FIN Packet to Peer */
  /* wait until FIN Packet is received*/
  while(Sn_IR[DISCON] == '0' and Sn_IR[TIMEOUT] == '0') ;
  if (Sn_IR[DISOCN] == '1')
  {
    /* clear Interrupt */
    Sn_IR[DISCON] = '1';
    goto CLOSED;
  }
  else goto Timeout?;
```


• Timeout?

If there is no response from Peer against of transmitted SYN or SYN/ACK or FIN or Data Packet within the Retransmission Time, Sn_IR [TIMEOUT] is set to '1'. (Ref 4.8.2 TCP Retransmission)

```
{
    /* check TIMEOUT Interrupt */
    if(Sn_IR[TIMEOUT] == '1')
    {
        /* clear Interrupt */
        Sn_IR[TIMEOUT] = '1';
        goto CLOSE;
    }
}
```

• CLOSE

SOCKET n is closed by the Disconnect Process, Sn_IR [TIMEOUT] = '1' and Sn_CR [CLOSE] = '1'.

```
{
  /*wait until SOCKET n is closed*/
  while(Sn_SR != SOCK_CLOSED);
}
```


4.3.2 TCP Client

Figure 7 shows 'TCP CLIENT' Operation Flow.

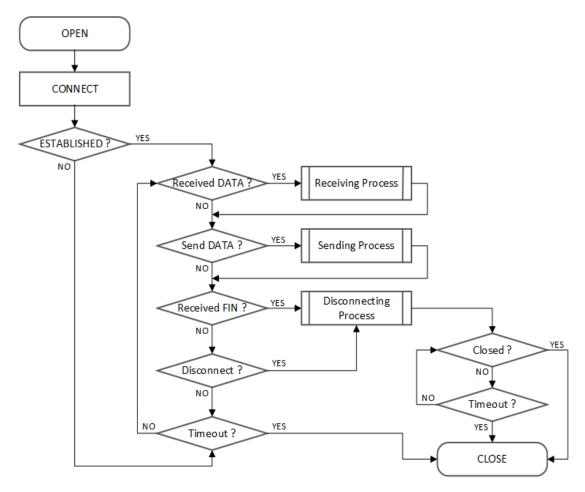


Figure 7 TCP Client Operation Flow

• OPEN

Refer to 4.3.1 TCP Server: OPEN

CONNECT

SOCKET n is operated as 'TCP CLIENT' by Sn_CR [CONNECT]. SYN Packet is transmitted to 'TCP SERVER' by Sn_CR [CONNECT].

```
{
    /* set Destination IP Address, 192.168.0.11 */
    Sn_DIPR[0:3] ={ 0xC0, 0xA8, 0x00, 0x0B};

    /* set Destination PORT Number, 5000(0x1388) */
    Sn_DPORTR[0:1] = {0x13, 0x88};
```



```
/* set CONNECT Command */
Sn_CR = CONNECT;
while(Sn_CR != 0x00); /* wait until CONNECT Command is cleared*/
goto ESTABLISHED?;
}
```

• ESTABLISHED?

'TCP CLIENT' is in Sn_SR (SOCK_SYNSENT) until receiving SYN/ACK Packet from 'TCP SERVER' against of SYN Packet transmitted. If SYN/ACK Packet is received from 'TCP SERVER', the Connection Process between 'TCP SERVER' and 'TCP CLIENT' is completed.

If there is no response from Peer against of transmitted SYN Packet within the Retransmission Time, Sn_IR [TIMEOUT] is set to '1'.

(Ref 4.3.1 TCP Server : Received DATA?)

• Others flow

Refer to 4.3.1 TCP Server.

4.3.3 Other Functions

4.3.3.1 TCP SOCKET Options

Before Sn_CR [OPEN] is set to '1', SOCKET Option can be set by Sn_MR and Sn_MR2.

• No Delayed ACK: Sn_MR [NDACK] = '1'

If No Delayed ACK option is set, SOCKET sends ACK Packet against of Peer Data Packet without Delay.

• Delayed ACK: Sn_MR [NDACK] = '0'

If No Delayed ACK option is not set, SOCKET sends ACK Packet against of Peer Data Packet after RTR or TCP Window Size increased.

• Force PSH: Sn_MR2 [BRDB]='1'

If Force PSH option is set, SOCKET puts PSH flag in every Data Packet to be transmitted.

• Auto PSH: Sn_MR2 [BRDB]='0'

If Force PSH option is not set, SOCKET puts PSH flag in the last Data Packet to be transmitted.

4.3.3.2 Keep Alive

Keep Alive (KA) is a message sent by Peer to check that the link is operating, or to prevent the link from being broken. Keep Alive sends the last 1 Byte from the last transmitted Data. So, Data bigger than 1 Byte must be transmitted before Keep Alive.

If there is no response from Peer against of KA Packet within the Retransmission Time, Sn_IR [TIMEOUT] is set to '1'.

The period of KA Packet transmit is set by Sn_KPALVTR. If Sn_KPALVTR is zero, KA Packet is able to be transmitted by Sn_CR [SEND_KEEP].

4.4 UDP

UDP (User Datagram Protocol) is a Datagram Communication Protocol and doesn't guarantee the stability in Transport Layer above the IP Layer. It also provides Communication between Applications using Port Numbers. UDP can communicate with more than one Peer and doesn't require the Connection Process. On the other hand, UDP has Data Loss and receives Data from any Peers because UDP has no guarantee reliability. UDP Transmission Methods are Unicast, Broadcast and Multicast according to Data transmit/receive range.

Figure 8 shows UDP Operation Flow.

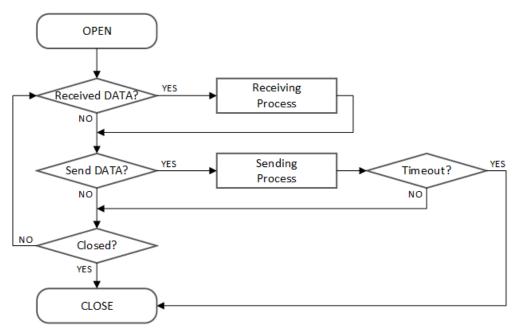


Figure 8 UDP Operation Flow

4.4.1 UDP Unicast

UDP Unicast is the first Communication Method in which sender is one and receiver is one. Before Data Transmit, SOCKET performs the ARP Process. In the ARP Process, if there is no response from Peer against of ARP Request within the Retransmission Time, Sn_IR [TIMEOUT] is set to '1'. (Ref 4.8.1 ARP & PING Retransmission)

If previous Destination and current Destination are the same, the ARP Process is skipped. Also, the ARP Process is skipped by Sn_CR [SEND_MAD] and Sn_DHAR.

OPEN

SOCKET n is configured as UDP Mode by OPEN Command.

{


```
START:

/* set UDP Mode */

Sn_MR[3:0] = '0010';

/* set Source PORT Number, 5000(0x1388) */

Sn_PORTR[0:1] = {0x13, 0x88};

/* set SOCKET Option such as Broadcast Block. */

// refer to 3.2.23 Sn_MR2 (SOCKET n Mode register 2)

// Sn_MR2[BRDB] = '1';

/* set OPEN Command */

Sn_CR = OPEN;

while(Sn_CR != 0x00); /* wait until OPEN Command is cleared*/

/* check SOCKET for UDP Mode */

if(Sn_SR != SOCK_UDP) goto START;
}
```

Received DATA?

Refer to 4.3.1 TCP Server: Received DATA?

• Receiving Process

UDP Mode SOCKET can receive Data Packets from more than one Peer. The received Data Packet is stored in SOCKET n RX Buffer Block with "PACKET INFO" as shown in Figure 9. If the received Data is bigger than SOCKET n RX Buffer Free Size, it is discarded.

(Ref 4.3.1 TCP Server : Receiving Process)

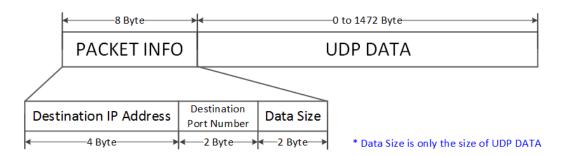


Figure 9 Received UDP DATA in SOCKETn RX Buffer Block

```
{
/* receive PACKINFO */
```



```
goto 4.3.1 TCP Server : Receiving Process with get_size = 8;

/* extract Destination IP, Port, Size in PACKET INFO*/
dest_ip[0:3] = destination_address[0:3];
dest_port = (destination_address[4] << 8) + destination_address[5];
data_size = (destination_address[6] << 8) + destination_address[7];

/* read UDP Data */
goto 4.3.1 TCP Server : Receiving Process with get_size = data_size;
}</pre>
```

Send DATA? / Sending Process

Refer to 4.3.1 TCP Server: Send DATA? / Sending Process.

```
{
    /* set Destination IP Address, 192.168.0.11 */
    Sn_DIPR[0:3] = {0xC0, 0xA8, 0x00, 0x0B};

    /* set Destination PORT Number, 5000(0x1388) */
    Sn_PORTR[0:1] = {0x13, 0x88};

    /* for using SEND_MAC Command : */
    // refer to 4.4.4.1 UDP MAC Send
    /* set Destination MAC Address, 11:22:33:AA:BB:CC
        Sn_DHAR[0:5] = {0x11, 0x22, 0x33, 0xAA, 0xBB, 0xCC};

    */
    goto 4.3.1 TCP Server : Sending Process;

    /* for using SEND_MAC Command : */
    // refer to 4.4.4.1 UDP MAC Send
    /*
        goto 4.3.1 TCP Server : Sending Process replaced Sn_CR[SEND] with
        Sn_CR[SEND_MAC];
    */
}
```

• Timeout?

If Data packet is transmitted to Peer at the first time or the Peer to be received Data Packet is different from the last Peer, the ARP process is performed before transmitting Data packet.

In the ARP Process, if there is no response from Peer against of ARP Request within the Retransmission Time, Sn_IR [TIMEOUT] is set to '1'.

UDP Mode SOCKET does not closed with Sn_IR [TIMEOUT] because it supports 1:N Communication. (Ref 4.8.1 ARP & PING Retransmission)

CLOSE

Closed by Sn_CR [CLOSED].

```
{
    /* set CLOSE Command */
    Sn_CR = CLOSE;
    while(Sn_CR != 0x00); /* wait until CLOSE Command is cleared*/

    /* wait until SOCKET n is closed */
    while(Sn_SR == SOCK_CLOSED);
}
```

4.4.2 UDP Broadcast

UDP Broadcast is the second Communication Method in which a sender transmits data to all of the same band. There are two types of Broadcasting. All Node Broadcasting for all Node in Network and Subnet Broadcasting for the Nodes having the same Subnet in Network.

• Send DATA? / Sending Process

In UDP Mode, when data is transmitted using Broadcast, Sn_DIPR must be set to Broadcast Address of the same band before Sn_CR [SEND] Command.

```
All Node Broadcasting:
{
```



```
/* set Broadcast Address, 255.255.255.255 */
Sn_DIPR[0:3] = {0xFF, 0xFF, 0xFF};

/* set Destination PORT Number, 5000(0x1388) */
Sn_PORTR[0:1] = {0x13,0x88};

goto 4.3.1 TCP Server : Sending Process;
}

Subnet Broadcasting : Assume SIPR = "192.168.0.10" & SUBR = "255.255.255.0"
{
    /* set Broadcast Address, 192.168.0.255 */
    Sn_DIPR[0:3] = {0xC0, 0xA8, 0x00, 0xFF};

    /* set Destination PORT Number, 5000(0x1388) */
    Sn_PORTR[0:1] = {0x13,0x88};

    goto 4.3.1TCP Server : Sending Process;
}
```

4.4.3 UDP Multicast

UDP Multicast is the last Communication Method in which sender is one and receiver is a group. The Multicast-Group Address Range is 224.0.0.0 ~ 239.255.255.255 (Ref IANA_Multicast Address) and the corresponding MAC Address is 01:00:5E:00:00:00 ~ 01:00:5E:FF:FF:FF . The Lower 23 bits of MAC Address has the same Address with the Multicast-Group Address. (Ref rfc1112)

• OPEN

Before Sn_CR [OPEN] Command, Multicast-Group Information and Sn_MR [MULTI] must be set. IGMP (Internet Group Management Protocol) JOIN message is transmitted by Sn_CR [OPEN] Command.

IGMP version is set as version 1 or version 2 by Sn_MR [MS].

```
{
START:
    /* set Multicast-Group MAC Address, 01:00:5E:00:00:64 */
    Sn_DHAR[0:5] = {0x01, 0x00, 0x5E, 0x00, 0x00, 0x64};

    /* set Multicast-Group IP Address, 224.0.0.100 */
```



```
Sn_DIPR[0:3] = \{0xE0, 0x00, 0x00, 0x64\};
    /* set Multicast-Group PORT Number, 3000(0x0BB8) */
    Sn_DPORTR[0:1] = \{0x0B, 0xB8\};
    /* set UDP Multicast */
    Sn_MR[MULTI] = '1';
    /* set IGMP Version */
    Sn_MR[MC] = '1'; /* Sn_MR[MC] = '1' : IGMPv1 , Sn_MR[MC] = '0' : IGMPv2 */
    /* set SOCKET Option such as Unicast Block and Broadcast Block.
     refer to 3.2.23 Sn_MR2 (SOCKET n Mode register 2) */
    // Sn_MR2[UNIB] = '1';
    // Sn_MR2[BRDB] = '1';
    /* set UDP Mode */
    Sn_MR[3:0] = 4'b0010;
    /* set Source PORT Number, 3000(0x0BB8) */
    Sn_PORTR[0:1] = \{0x0B, 0xB8\};
    /* set OPEN Command */
    Sn_CR = OPEN;
    /* check SOCKET for UDP Mode */
    if(Sn_SR != SOCK_UDP) goto START;
}
```

• Send DATA? / Sending Process

Refer to 4.3.1TCP Server: Sending Process

4.4.4 Other Functions

4.4.4.1 UDP MAC Send

When Peer MAC Address is known, UDP Mode SOCKET transmits Data Packet without the ARP Process by setting Sn_DHAR.

(Ref 4.4.1 UDP Unicast: Send DATA? / Sending Process)

4.4.4.2 UDP SOCKET Options

In UDP Mode, Unicast and Broadcast Packets are received. But if Sn_MR2 [BRDB] is set to '1', Broadcast Packet is blocked.

In UDP Multicast Mode, Unicast, Broadcast and Multicast Packets are received. But if Sn_MR2 [UNIB] or Sn_MR2 [BRDB] are set to '1', Unicast or Broadcast Packets are blocked.

These Block Bits must be set before Sn_CR [OPEN] Command.

Sn_MR[MULTI]	Sn_MR2[BRDB]	Sn_MR2[UNIB]	Unicast	Multicast	Broadcast
0	0	Don't Care	0	Х	0
0	1	Don't Care	0	Х	Х
1	0	0	0	0	0
1	0	1	Χ	0	0
1	1	0	0	0	Х
1	1	1	Х	0	Х

4.4.4.3 Port Unreachable Block

If Peer transmits UDP Packet to a Port that does not exist on W5100S. W5100S automatically transmits ICMP Packet (Destination Port Unreachable) to Peer. But it could be the target for Port Scan Attack. But if MR2 [UDPURB] is set to '1', W5100S does not transmit ICMP Packet (Destination Port Unreachable).

4.5 IPRAW

IPRAW Mode SOCKET supports Internet Protocol (IPv4) Layer Communication and Internet Protocol is set by Sn_PROTOR. (Ref <u>IANA_Protocol Number</u>)

IPRAW Mode SOCKET does not support IPv6, TCP and UDP.

• •				
Protocol	Number	Semantic	W5100S Support	
ICMP	1	Internet Control Message Protocol	0	
IGMP	2	Internet Group Management	0	
IPv4	4	IPv4 encapsulation	0	
TCP	6	Transmission Control	X	
UDP	17	User Datagram	Х	
IPv6	-	Protocols over IPv6	X	
others	-	Other Protocols	0	

Table 5 Internet Protocol Supported In IPRAW Mode

If IPRAW Mode SOCKET is opened and Sn_PROTOR is set to ICMP, W5100S does not send PING Reply against of Peer PING Request and IPRAW Mode SOCKET stores Peer PING Request Packet in SOCKET RX Buffer Block.

Figure 10 shows IPRAW Mode SOCKET Operation Flow.

Figure 10 IPRAW Operation Flow

• OPEN

IPRAW Mode SOCKET is opened.


```
{
START:
    /* set Protocol Number */
    Sn_PROTOR = protocol_num;

    /* set IPRAW Mode */
    Sn_MR[3:0] = "0011";

    /* set OPEN Command */
    Sn_CR[OPEN] = '1';
    while(Sn_CR != 0x00); /* wait until OPEN Command is cleared*/

    /* check SOCKET for IPRAW Mode */
    if(Sn_SR != SOCK_IPRAW) goto START;
}
```

Received DATA?

Refer to 4.3.1 TCP Server: Received DATA?

• Receiving Process

IPRAW Mode SOCKET receives Data Packet using the same Internet Protocol from any Peer. IPRAW Mode SOCKET stores Data including "PACKET INFO" in SOCKET RX Buffer Block as the below Figure 11. If the received Data is bigger than SOCKET n RX Buffer Free Size, it is discarded.

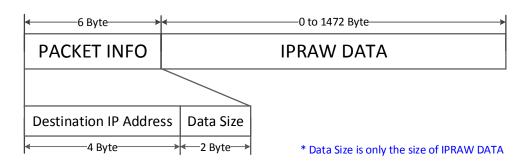


Figure 11 Received Data in IPRAW Mode SOCKET RX Buffer Block

```
{
    /* receive PACKINFO */
    goto 4.3.1TCP Server : Receiving Process with get_size = 6;
```



```
/* extract Destination IP, Size in PACKET INFO*/
dest_ip[0:3] = destination_address[0:3];
data_size = (destination_address[4] << 8) + destination_address[5];

/* read UDP Data */
goto 4.3.1 TCP Server : Receiving Process with get_size = data_size;
}</pre>
```

• Sending DATA? / Sending Process

Data to be transmitted must not exceeded SOCKET n TX Buffer Free Size. If the Data is bigger than IPRAW MSS, HOST must separate Data smaller than MSS.

```
{
    /* set Destination IP Address, 192.168.0.11 */
    Sn_DIPR[0:3] = {0xC0, 0xA8, 0x00, 0x0B};

    /* for using SEND_MAC Command :
    refer to 4.4.4.1 UDP MAC Send */
    /* set Destination MAC Address, 11:22:33:AA:BB:CC
        Sn_DHAR[0:5] = {0x11, 0x22, 0x33, 0xAA, 0xBB, 0xCC};

    */
    goto 4.3.1 TCP Server : Sending Process;

    /* for using SEND_MAC Command :
    refer to 4.4.4.1 UDP MAC Send */
    /*
        goto 4.3.1 TCP Server : Sending Process replaced Sn_CR[SEND] with
        Sn_CR[SEND_MAC];
    */
}
```

• Timeout?

Refer to 4.4.1 UDP Unicast: Timeout?

4.6 MACRAW

MACRAW Mode supports Data Communication in Ethernet MAC and it is only using SOCKET 0. MACRAW Mode SOCKET 0 receives all Ethernet Packet or receiving Ethernet Packet (as Broadcast, Multicast and a Data Packet having the same Destination MAC Address with SHAR) is restricted by Sn_MR [MR]. And also Sn_MR2 can block receiving Broadcast, Multicast and IPv6 Packet.

MACRAW Mode SOCKET 0 does not receive any Data Packet for other SOCKET but it receives ARP Request and PING Request (If IPRAW Mode SOCKET does not support ICMP). Even though MACRAW Mode SOCKET 0 receives ARP and PING Request, W5100S transmits automatically ARP and PING Reply.

Figure 12 shows MACRAW Mode SOCKET 0 Operation Flow.

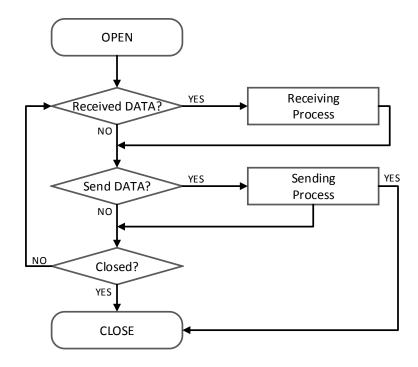


Figure 12 MACRAW Operation Flow

• OPEN

MACRAW Mode SOCKET 0 is opened.

```
{
START:
   /* set MACRAW Mode */
S0_MR = "0100";
   /* MACRAW SOCKET Options */
```



```
/*

S0_MR[MR] = '1';  // Enable MAC Filter

S0_MR2[MBBLK] = '1';  // Broadcast Packet Block

S0_MR2[MMBLK] = '1';  // Multicast Packet Block

S0_MR2[IPV6BLK] = '1';  // IPv6 Packet Block

*/

/* set OPEN Command */

S0_CR = OPEN;

while(Sn_CR != 0x00); /* wait until OPEN Command is cleared*/

/* check SOCKET0 is MACRAW Mode */

if(S0_SR != SOCK_MACRAW) S0_CR = CLOSE; goto START;

}
```

Received DATA?

Refer to 4.3.1 TCP Server: Received DATA?

• Receiving Process

MACRAW Mode SOCKET 0 receives Data Packet from more than one Peers. MACRAW Mode SOCKET 0 stores Data including "PACKET INFO" in the SOCKET 0 RX Buffer Block as shown in Figure 13.

PACKET INFO

MACRAW DATA

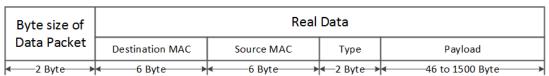


Figure 13 Received DATA Format in MACRAW

```
{
    /* receive PACKINFO */
    goto 4.3.1 TCP Server : Receiving Process with get_size = 2;

    /* extract Size in PACKET INFO*/
    data_size = (destination_address[0] << 8) + destination_address[1];

    /* read UDP Data */
    goto 4.3.1 TCP Server : Receiving Process with get_size = data_size;</pre>
```


}

• Sending DATA? / Sending Process

Data to be transmitted must not be exceeded SOCKET 0 TX Buffer size. If Data is bigger than MSS, it must be divided by MSS and transmitted. If transmitting Data is smaller than 60byte, the Data is Zero Padding to 60 Bytes. (Ref 4.3.1 TCP Server: Send DATA? / Sending Process)

• CLOSE

Refer to 4.4.1 UDP Unicast: CLOSE

4.7 SOCKET-less Command (SLCR)

SOCKET-less Command (SLCR) transmits ARP Request and PING Request by SLCR [ARP] = '1' and SLCR [PING] = '1' without SOCKET OPEN.

If ARP and PING Reply are received from Peer, SLIR [ARP] and SLIR [PING] are set to '1'. But if there is no response against of each Requests within SOCKET-less Retransmission Time, TIMEOUT is occurred (SLIR [TIMEOUT] = '1'). (Ref 4.8.1 ARP & PING Retransmission)

Figure 14 shows SOCKET-less Command Operation Flow.



Figure 14 SOCKET-less Command Operation Flow

4.7.1 ARP Request (SLCR [ARP] = '1')

ARP Request Packet is transmitted by SLCR [ARP] Command. Before SLCR [ARP] Command, Peer IP Address must be set in SLPIPR. If ARP Reply is received from Peer, SLIR [ARP] is set to '1' and Peer MAC Address is written in SLPHAR. If there is no response against of ARP Request within SOCKET-less Retransmission Time, SLIR [TIMEOUT] is set to '1'. (Ref 4.8.1 ARP & PING Retransmission)

• Configuration

Configure SOCKET-less Retransmission Time and ARP Interrupt Mask Bit and Destination Peer IP Address.

• SOCKET-less Command

ARP Request Packet is transmitted by ARP Command.

```
{
    /* set ARP Command */
    SLCR[ARP] = '1';
    while(SLCR != 0x00); /* wait until ARP Command is completed*/
}
```

• Response?

ARP Interrupt indicates whether ARP Reply has been received.

}

• Timeout?

If there is no response from Peer against of transmitted ARP Request Packet within the Retransmission Time, TIMEOUT Interrupt is occurred. (Ref 4.8.1 ARP & PING Retransmission)

```
{
    /* check TIMEOUT Interrupt */
    if(SLIR[TIMEOUT] == 1)
    {
        /* clear Interrupt */
        SLIR[TIMEOUT] = '1';
        goto END;
    }
    else goto Response;
}
```

SUCCESS

If ARP Reply is received, Peer MAC Address is stored in SLPHAR.

```
{
    /* get Destination MAC Address */
    destination_mac[0:5] = SLPHAR[0:5];
    goto END;
}
```

4.7.2 PING Command (SLCR [PING] = '1')

PING Request Packet is transmitted by SLCR [PING] Command. Before SLCR [PING] Command, SLPIPR, PINGSEQR and PINGIDR must be set. If PING Reply is received from Peer, SLIR [PING] is set to '1' and Peer MAC Address is written in SLPHAR. If there is no response against of PING Request within SOCKET-less Retransmission Time, SLIR [TIMEOUT] is set to '1'. (Ref 4.8.1 ARP & PING Retransmission)

• Configuration

Configure SOCKET-less Retransmission Time and PING Interrupt Mask Bit and Destination Peer IP Address.

```
{
```



```
START:

/* set SOCKET-less Retransmission Time, 100ms(0x03E8) (The unit is 100us) */

SLRTR[0:1] ={ 0x03, 0xE8};

/* set SOCKET-less Retransmission Counter, 5 */

SLRCR = 0x05;

/* set Interrupt Mask Bit */

SLIMR[PING] = '1'; // PING Interrupt Mask Bit

SLIMR[TIMEOUT] = '1'; // TIMEOUT Interrupt Mask Bit

/* set Destination IP Address, 192.168.0.100 */

SLPIPR[0:3] = {0xC0, 0xA8, 0x00, 0x64};

/* set PING Sequence Number, 1000(0x03E8) */

PINGSEQR[0:1] = {0x03, 0xE8};

/* set PING ID, 256(0x0100) */

PINGIDR[0:1] = {0x01,0x00};

}
```

• SOCKET-less Command

PING Request Packet is transmitted by PING Command.

```
{
    /* set PING Command */
    SLCR[PING] = '1';
    while(SLCR != 0x00); /* Wait until PING Command is completed*/
}
```

• Response?

PING Interrupt indicates whether PING Reply has been received.

```
{
  /* check PING Interrupt */
  if(SLIR[PING] == '1')    /* received PING Reply Packet */
  {
   /* clear Interrupt */
   SLIR[PING] = '1';
```



```
goto SUCCESS;
}
else goto Timeout;
}
```

• Timeout? / SUCCESS

Refer to 4.7.1 ARP Request (SLCR [ARP] = '1') Timeout? / SUCCESS.

4.8 Retransmission

4.8.1 ARP & PING Retransmission

When there is no Response from Peer against of ARP or PING Request Packet, ARP & PING Retransmission is performed.

In Retransmission Process, Request Packet is retransmitted every RTR until the Response Packet received. And if the number of Retransmission exceeds RCR, TIMEOUT occurs for the Request Packet.

The below table shows Retransmission TIMEOUT (ARP_{TO} , $PING_{TO}$).

$$ARP_{TO}$$
, $PING_{TO}$ = (TIMEOUT_{VAL} x 0.1ms) x (TIMEOUT_{CNT} + 1)

TIMEOUT_{VAL} = SLRTR or Sn_RTR

TIMEOUT_{CNT} = SLRCR or Sn_RCR

Ex) TIMEOUT_{VAL} = 2000(0x07D0), TIMEOUT_{CNT} =
$$8(0x0008)$$

 ARP_{TO} = 2000 X 0.1ms X 9 = 1.8s

 ARP_{TO} is caused by SLCR [ARP], Sn_CR [SEND] and Sn_CR [CONNECT]. And it is checked through SLIR [TIMEOUT] or Sn_IR [TIMEOUT].

 $PING_{TO}$ is caused by SLCR [PING] and is checked through SLCR [TIMEOUT].

4.8.2 TCP Retransmission

When TCP Mode SOCKET does not receive ACK Packet from Peer against of SYN, FIN or DATA Packet sent, TCP Retransmission is performed.

In TCP Retransmission process, Request Packet is retransmitted every Sn_RTR until Peer ACK Packet received. And if the number of Retransmission exceeds Sn_RCR, SOCKET n TIMEOUT occurs.

The below table shows TCP Retransmission TIMEOUT (TCP_{TO}).

$$\text{TCP}_{\text{TO}} = \left(\sum_{N=0}^{M} (\text{TIMEOUT}_{\text{VAL}} \times 2^{N}) + ((\text{TIMEOUT}_{\text{CNT}} - M) \times \text{TIMEOUT}_{\text{MAXVAL}})\right) \times 0.1 \text{ms}$$

N: Number of Retransmission, $0 \le N \le M$

M : Minimum value of TIMEOUT_{VAL} \times 2 $^{(M+1)}$ >65535 and 0 \leq M \leq TIMEOUT_{CNT}

 $TIMEOUT_{VAL} = SLRTR \text{ or } Sn_RTR$

 $TIMEOUT_{CNT} = SLRCR \text{ or } Sn_RCR$

TIMEOUT_{MAXVAL}: TIMEOUT_{VAL} \times 2^M


```
Ex) RTR = 2000(0x07D0), RCR = 8(0x0008)
TCP_{TO} = (0x07D0+0x0FA0+0x1F40+0x3E80+0x7D00+0xFA00+0xFA00+0xFA00+0xFA00) \times 0.1ms
= (2000 + 4000 + 8000 + 16000 + 32000 + ((8 - 4) \times 64000)) \times 0.1ms
= 318000 \times 0.1ms = 31.8s
```

 TCP_{TO} is occurred by CONNECT, SEND and DISCON Command in Sn_CR and it is checked through Sn_IR [TIMEOUT].

4.9 Others Function

4.9.1 System Clock(SYS_CLK) Switching

SYS_CLK is set 25MHz or 100MHz. It is switched by MR2 [CLKSEL], PHYCR0 [RST] or PHYCR1 [PWDN]. At switching Clock speed, Host must wait until stabilized SYS_CLK. (Ref 7.4.1 Reset Timing)

MR2[CLKSEL]	PHYCR0[RST]	PHYCR1[PWDN]	SYS_CLK(MHz)
0	0	X	25
0	1	0	100 (Default)
0	1	1	25
1	Х	Х	25

4.9.2 Ethernet PHY Operation Mode Configuration

PHY Operation Mode (Speed, Duplex) set by PHYCR0 is applied after Ethernet PHY H/W Reset. Set PHY Operation Mode is checked through PHYSR [5:3] and the state of Link is described on PHYSR [2:0] after Ethernet PHY Link Up.

Before PHYCR0 is set, PHYLCKR must be unlocked.

Ex) How to set PHY Operation Mode

```
PHY_10FDX:

{

/* PHYCR0 & PHYCR1 Unlock */
PHYLCKR = 0x53;

/* set PHYCR0 10Mbps/Full-Duplex */
PHYCR0[DPX] = '0'; // 0 - FDX, 1 - HDX;
PHYCR0[SPD] = '1'; // 0 - 100Mbps, 1 - 10Mbps;
PHYCR0[AUTO] = '1'; // 0 - Auto-negotiation, 1 - Manual;

/* PHY Reset Process */
PHYCR1[RST] = '0';
Wait T<sub>PRST</sub>; // refer to 7.4.1 Reset Timing

/*wait until PHY Link is up*/
while(PHYSR[LINK] != '0');

/* read PHYSR */
If( (PHYSR[DPX] == '0') & ( PHYSR[SPD] == '1') & ( PHYSR[AUTO] == '1') ) SUCCESS;
```



```
else FAIL;

/* PHYCR0 & PHYCR1 Lock */

PHYLCKR = 0x00; // for Lock, write any value
}
```

4.9.3 Ethernet PHY Parallel Detection

When Link Partner does not support Auto-negotiation, Internal Ethernet PHY forms Link through Parallel Detection.

If Duplex mode is different (such as 10F/10H), it occurs of Network performance degradation.

Link Partner PHY	Auto	10H	10F	100H	100F
Auto	100F	10H	10F	100H	100F
	100F	10H	10H	100H	100H
Manual	10H	10H	10F		
10H	10H	10H	10H		
Manual	10H	10H	10F		
10F	10F	10F	10F		
Manual	100H			100H	100F
100H	100H			100H	100F
Manual	100H			100H	100F
100F	100F			100F	100F

4.9.4 Ethernet PHY Auto MDIX

Ethernet PHY supports Auto-negotiation and it is set by PHYCR0 [AUTO]. If Auto-negotiation is set (PHYCR0 [AUTO] = '0'), Auto-MDIX is supported and Symmetric Transformer (Figure 30 Transformer Type) is operated.

If Auto-negotiation is not set (PHYCR0 [AUTO] = '1'), Cross UTP cable must be needed because Auto-MDIX is not supported.

Ref) if either of Linked Nodes supports Auto-MDIX, Both straight and Cross UTP Cable are usable.

4.9.5 Ethernet PHY Power Down Mode

When PHYCR1 [PWDN] is set '1', Ethernet PHY becomes Power Down Mode and SYS_CLK is set 25MHz.

On the other hand, if PHYCR1 [PWDN] is set '0', Ethernet PHY becomes Normal Mode and SYS_CLK is set by MR2 [CLKSEL]. (Ref 3.1.19 MR2 (Mode Register 2))

```
Enter Power Down Mode:
  /* PHYCR0 & PHYCR1 Unlock */
  PHYLCKR = 0x53;
  /* Enable Power Down Mode */
  PHYCR1[PWDN] = '1';
  /* PHYCR0 & PHYCR1 Lock */
  PHYLCKR = 0x00; // for Lock, write any value
  /* wait until clock is stable switched */
  Wait TPRST; // refer to 7.4.1 Reset Timing
}
Exit Power Down Mode:
  /* PHYCR0 & PHYCR1 Unlock */
  PHYLCKR = 0x53;
  /* enable Power Down Mode */
  PHYCR1[PWDN] = '0';
  /* PHYCR0 & PHYCR1 Lock */
  PHYLCKR = 0x00; // for Lock, write any value
  /* wait until clock is stable switched */
  Wait TPRST; // refer to 7.4.1 Reset Timing
  /* wait until clock is switched 25 to 100MHz*/
  Wait TLF; // refer to 7.4.1 Reset Timing
```


4.9.6 Ethernet PHY's Registers Control

The Registers in Ethernet PHY are accessed by MDC/MDIO (Management Data Clock / Input Output) Interface. W5100S has MDC/MDIO Controller and it is controlled by PHYDIVR, PHYRAR, PHYDOR, PHYDIR and PHYACR.

Ex) BMCR Write

```
{
    PHYRAR = 0x00;  // BMCR Address 0x00
    PHYDIR = 0x80;  // BMCR[15] = '1' , PHY SW Reset

    /* write */
    PHYACR = 0x01;
    while(PHYACR != 0); // wait until MDC/MDIO Control is completed
}
```

Ex) BMSR Read

```
{
    PHYRAR = 0x01; // BMSR Address 0x01

/* read */
PHYACR = 0x02;
while(PHYACR != 0); // wait until MDC/MDIO Control is completed

if( PHYDOR & 0x0004)
{
    // LINK UP - BMSR[2] = '1'
}
```


5 HOST Interface Mode

5.1 SPI Mode

When MOD [3:0] is "0000", W5100S connected to HOST via SPI Interface as shown in Figure 15.

W5100S supports SPI Mode 0 and Mode 3 as shown in 오류! 참조 원본을 찾을 수 없습니다.. MOSI is sampling at Rising-edge, MISO is toggling at Falling-edge. MOSI and MISO are transmitted and received sequentially from MSB to LSB for each SCLK.

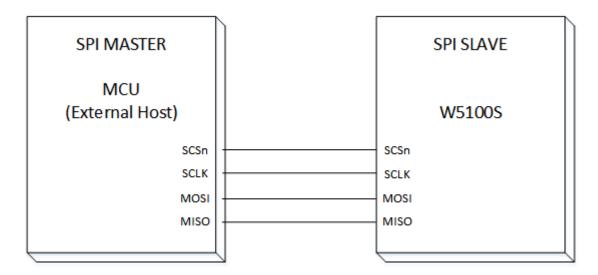


Figure 15 SCSn controlled by Host

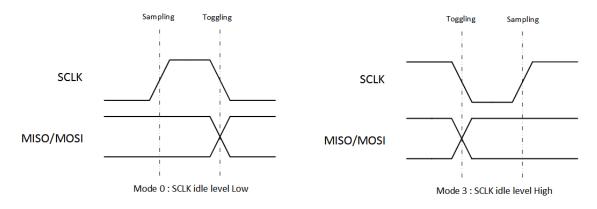


Figure 16 SPI Mode 0 & Mode 3

5.1.1 SPI Frame

W5100S is controlled by SPI Frame (Figure 17 SPI Frame) and is sent by HOST. SPI Frame consists of Control Phase, Address Phase and Data Phase. CSn must be controlled by SPI Frame Unit.

W5100 supports only 1-Byte Data read/write but W5100S supports sequential N-Bytes (N = 1, 2, 3, ...) Data Read/Write.

Figure 17 SPI Frame

• Control Phase

Control Phase consists of 8bits to set Read/Write Access Type.

HOST asserts CSn from High to Low and, must after 2 SYS CLK, transmits Control Phase.

Access Type	Value
Write	0xF0
Read	0×0F

Table 6 W5100 Mode SPI Command

• Address Phase

Address Phase consists of 16bits to set Register Block of the W5100S or 16bits start Offset Address of TX/RX Memory Block. Start Offset Address is automatically incremented by 1 for next Data Access.

• Data Phase

Data phase consists of N-bytes data. HOST completes Data Access, must after 2 SYS CLK, deasserts CSn from Low to High.

5.1.2 SPI Write

N-Bytes Date Write SPI Frame, as Shown in Figure 18

Figure 18 W5100 Mode Write SPI Frame

5.1.3 SPI Read

N-Bytes Date Read SPI Frame, as Shown in Figure 19

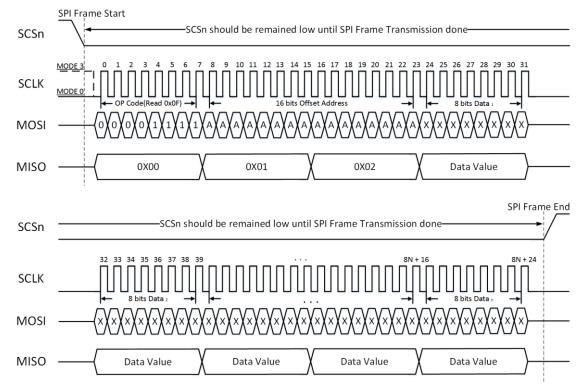


Figure 19 W5100 Mode Read SPI Frame

5.2 Parallel Bus Mode

When MOD [3:0] is "010X", W5100S connected to HOST via Parallel Bus Interface as shown in Figure 20.

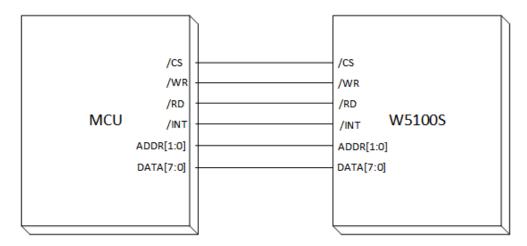


Figure 20 Direct & Indirect Mode Control by Host

Parallel Bus Interface accesses COMMON/SOCKET Register and TX/RX Memory Block of W5100S through Register in Table 7. And also Parallel Bus Interface supports N-byte sequential Data Read/Write.

ADDR[1:0]	Symbol	Description
00	MR	Common Register MR
01	IDM_ARH	Upper 8 bits Offset Address Register
10	IDM_ARL	Lower 8 bits Offset Address Register
11	IDM_DR	8 Bits Data Register

Table 7 Indirect Mode Address Value

5.2.1 Parallel Bus Data Write

N-byte Date write Frame, as Shown in Figure 21.

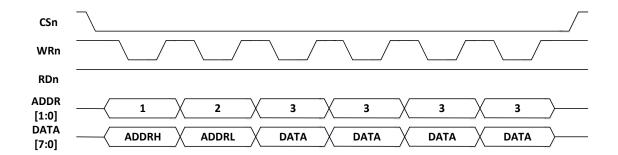


Figure 21 Parallel Bus N-Bytes Data Write

5.2.2 Parallel Bus Data Write

N-byte Date Read Frame, as Shown in Figure 22.

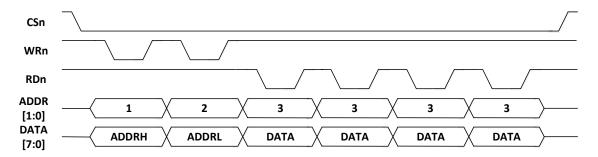


Figure 22 Indirect Mode Continuous Read Access

6 Clock & Transformer Requirements

6.1 Quartz Crystal requirements.

Table 8 Quartz Crystal

Parameter	Condition / Description	Min	Тур	Max	Unit
Frequency(F)			25	_	MHz
Frequency Tolerance	At 25°C	-50		+50	ppm
Frequency Stability	1 Year aging.	-50		+50	ppm
Load capacitance(C _L)	ESR = 30Ω		12		pF
Feedback Resistor(R _F)	External resistor		1M		Ω
Startup time	W5100S Reset			60	ms
Trans-conductance(g _m)			8.43		mA/V
gain margin (gain _{margin})	gain _{margin} = g _m / g _{mcrit}	6.99			dB

 $C_0^{(1)}$: The Packaging Parasitic Shunt Capacitance.

 C_s : Stray Capacitance of printed circuit board and connections.

 g_{mcrit} : Oscillator loop critical gain. eq) $g_{mcrit} = 4 \times (ESR + R_{Ext}) \times (2\pi F)^2 \times (C_0 + C_L)^2$

 $ESR^{(1)}$: Maximal equivalent series resistance. eq) $ESR = R_m X (1 + C_0/C_L)^2$

 R_{Ext} : Resistor for limiting the drive level(DL) of the crystal.

 $DL^{(1)}$: The power dissipated in the crystal. Excess power can destroy the crystal.

 $R_F^{(2)}$: Feedback resistor.

- CO, CL, ESR and DL are provided by the crystal manufacturer.
- The W5100S has no feedback resistor. Therefore, it must be inserted outside.

^{*} Crystal circuit is modeled as below Figure 23.

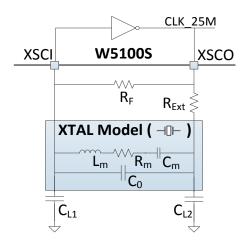


Figure 23 Quartz Crystal Model

Table 9 Crystal Recommendation Characteristics

Parameter	Range
Frequency	25 MHz

 $C_L^{(1)}$: Load Capacitance. eq) $C_L = (C_{L1} \times C_{L2}) / (C_{L1} \times C_{L2}) + C_s$

 C_{L1} , C_{L2} : External Capacitances of the circuit connected to the crystal (Typically, $C_{L1} = C_{L2}$)

Frequency Tolerance (at 25°C)	±30 ppm
Shunt Capacitance	7pF Max
Drive Level	500uW
Load Capacitance	12pF
Aging (at 25°C)	±3ppm / year Max

6.2 Oscillator requirements.

Table 10 Oscillator Characteristics

Parameter	Condition / Description	Min	Тур	Max	Unit
Frequency		25			MHz
Frequency Tolerance	At 25°C	-50		+50	ppm
Frequency Stability	1 Year aging. 25°C	-50		+50	ppm
Clock duty	50% of waveform	45	50	55	%
Input high voltage		-	0.97	-	٧
Input low voltage		-	0.13	-	٧
Rise/Fall Time	10% to 90% of waveform			8ns	
Start up Time		-	-	10ms	
Operating volatage		1.08V	1.2V	1.32V	
Aging (at 25°C)		±3 / ye	ar Max		ppm

6.3 Transformer Characteristics

Table 11 Transformer Characteristics

Parameter	Transmit End	Receive End
Turn Ratio	1:1	1:1
Inductance	350 uH	350 uH

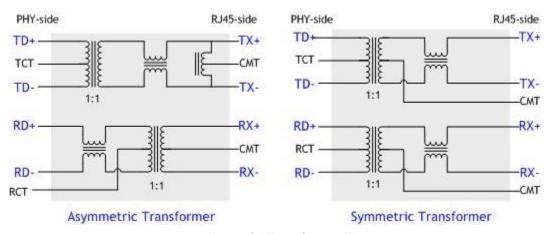


Figure 24 Transformer Type

7 Electrical Specification

7.1 Absolute Maximum ratings

Table 12 Absolute Maximum ratings

Symbol	Parameter	Rating	Unit
V_{DD}	DC Supply voltage	-0.5 to 4.6	٧
V _{IN}	DC input voltage	-0.5 to 4.6	٧
V _{OUT}	DC output voltage	-0.5 to 3.63	٧
I _{IN}	DC input current	20	mA
T _{OP}	Operating temperature	-40 to +85	°C
T _{STG}	Storage temperature	-65 to +150	°C

^{*}COMMENT: Stressing the device beyond the 'Absolute Maximum Ratings' may cause permanent damage.

7.2 Absolute Maximum ratings (Electrical Sensitivity)

Table 13 Electro Static Discharge (ESD)

Symbol	Parameter	Test Condition	Class	Maximum value(1)	Unit
V _{ESD} HBM	Electrostatic discharge voltage (human body model)	TA = +25 °C conforming to MIL-STD 883F Method 3015.7	2	2000	٧
V _{ESD} MM	Electrostatic discharge voltage (man machine model)	TA = +25 °C conforming to JEDEC EIA/JESD22 A115-A	В	200	٧
V _{ESD} CDM	Electrostatic discharge voltage (charge device model)	TA = +25 °C conforming to JEDEC JESD22 C101- C	Ш	500	٧

Table 14 Latch up Test

Test Condition	Class	Maximum value	Unit
TA = +25 °C conforming to JESD78	Current	≥ ±100	mA
TA = +25 C Comorning to JESD/6	Voltage	≥ 1.5*V _{DD}	V

7.3 DC Characteristics

Table 15 DC Characteristics

(Test Condition: $Ta = -40 \text{ to } 85^{\circ}\text{C}$)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
V_{DD}	Supply voltage	Apply VDD, AVDD	2.97	3.3	3.63	٧
V_{IH}	High level input voltage		2.0	-	-	٧
V _{IL}	Low level input voltage		-		0.8	٧
V_{T+}	Schmitt trig Low to High Threshold point	All inputs except Analog PINs	0.8	1.1	-	٧
V _{T-}	Schmitt trig High to Low Threshold point	All inputs except Analog PINs	-	1.6	2.0	٧
TJ	Junction temperature		-40	25	125	°C
I _L	Input Leakage Current			±1	±10	μΑ
R _{PU}	Pull-up Resistor		40	75	190	Kohm
R_{PD}	Pull-down Resistor	RSVD(Pin 23, Pin 38 ~ Pin 42)	40	75	190	Kohm
V _{OL}	Low level output voltage	IOL = 4.0mA~16mA, All outputs except XO			0.4	٧
V _{OH}	High level output voltage	IOH = 4.0mA~6mA, All outputs except XO	2.4			٧
I _{DD1}	Supply Current (Normal operation mode)	VDD=3.3V, AVDD=3.3V, Ta = 25°C		132		mA
I _{DD2}	Supply Current (Power Down mode)	PHY Power Down mode, VDD=3.3V, AVDD=3.3V, Ta = 25°C		13		mA

7.4 AC Characteristics

7.4.1 Reset Timing

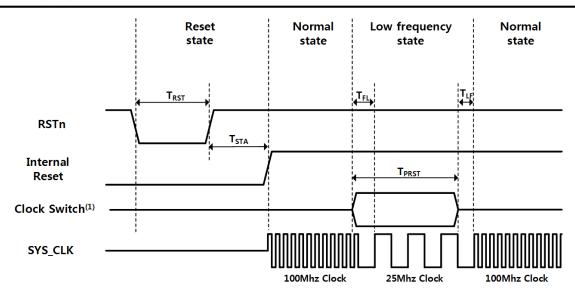


Figure 25 Reset Timing

Table 16 Reset Table

Symbol	Description	Min	Тур	Max
T _{RST}	Reset Time	210 ns	330 ns	560 ns-
T _{STA}	Stable Time	-		60.3 ms
T _{FI}	Fast to Low Time by MR2[CLKSEL]	100 ns		-
T _{FI}	Fast to Low Time by PHYCR1[Reset] or PHYCR1[PWDN]	300 ns		
T _{PRST}	PHY Auto Reset Time	0.6 ms		-
T _{PRST}	PHY Power Down Time	200 us		
T _{PRST}	Clock Switch Time	200 ns		
T _{LF}	Low to Fast Time by MR2[CLKSEL]	100 ns		-
T _{LF}	Low to Fast Time by PHYCR1[Reset] or PHYCR1[PWDN]	100 ns		

*COMMENT: PHY Power-down Mode has T_{FI} and T_{LF} (In PHY Power-down Mode, SYS_CLK switches to Low Clock. After T_{FI} , User can be disable PHY Power-down Mode.)

*CAUTION: User must not set PHY Auto Reset and PHY Power-down Mode at the same time

7.4.2 BUS ACCESS TIMING

7.4.2.1 READ TIMING

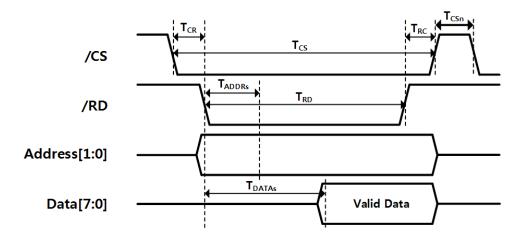


Figure 26 Bus Read Timing

Table 17 BUS Read Timing

Symbol	Description	Min	Max
T_{ADDRs}	Address Setup Time	SYS_CLK	
T _{CR}	/CS Low to /RD Low Time	0 ns	
T _{cs}	/CS Low Time	4 SYS_CLK	
T _{RC}	/RD High to /CS High Time	0 ns	
T_{csn}	/CS Next Assert Time	2 SYS_CLK	
T_{RD}	/RD Low Time	4 SYS_CLK	
T _{DATAs}	DATA Setup Time		3 SYS_CLK+5ns

7.4.2.2 WRITE TIMING

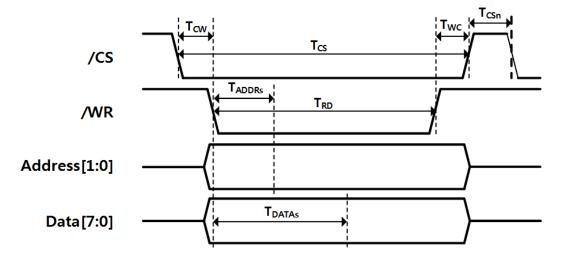


Figure 27 BUS Write Timing

Table 18 BUS Write timing

Symbol	Description	Min	Max
T _{ADDRs}	Address Setup Time	SYS_CLK	
T _{CW}	/CS Low to /WR Low Time	0 ns	
T _{cs}	/CS Low Time	4 SYS_CLK	
T _{WC}	/WR High to /CS High Time	0 ns	
T_{csn}	/CS Next Assert Time	2 SYS_CLK	
T _{WR}	/WR Low Time	4 SYS_CLK	
T _{DATAs}	DATA Setup Time	2 SYS_CLK	

7.4.3 SPI ACCESS TIMING

7.4.3.1 SPI READ TIMING

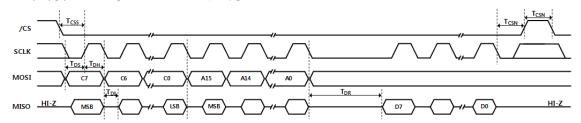


Figure 28 SPI Read Timing

Table 19 SPI Read Timing

Symbol	Description	Min	Max	Units
F _{SCK}	SCK Clock Frequency		70	MHz
T _{CSS}	SCSn Setup Time	3 SYS_CLK		ns
T _{CSN}	SCSn Next Time	2 SYS_CLK		ns
T _{DS}	Data In Setup Time	3		ns
T _{DH}	Data In Hold Time	3		ns
T _{DI}	Data Invalid Time	7		ns
T_{DR}	Data Ready Time	6 SYS_CLK + 30		ns

7.4.3.2 SPI WRITE TIMNIG

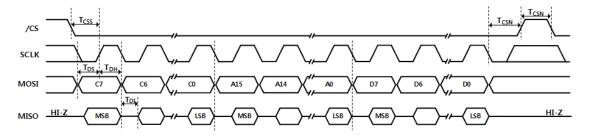


Figure 29 SPI Write Timing

Table 20 SPI Write Timing

Symbol	Description	Min	Max	Units
F _{SCK}	SCK Clock Frequency		70	MHz
T _{CSS}	SCSn Setup Time	3 SYS_CLK		ns
T _{CSN}	SCSn Next Time	2 SYS_CLK		ns
T_{DS}	Data In Setup Time	3		ns
T_DH	Data In Hold Time	3		ns
T_DI	Data Invalid Time	7		ns

7.4.4 Transformer Characteristics

Table 21 Transformer Characteristics

Parameter	Transmit End	Receive End	
Turn Ratio	1:1	1:1	
Inductance	350 uH	350 uH	

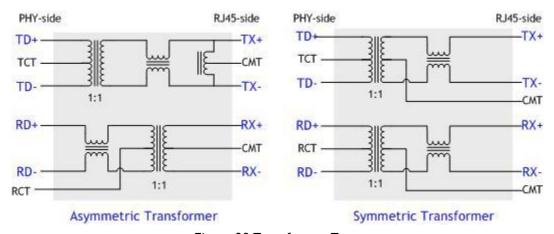


Figure 30 Transformer Type

7.4.5 MDIX

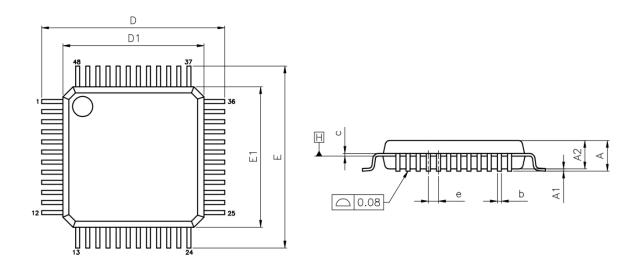
W5100S supports Auto-MDIX on Auto-Negotiation Mode.

7.5 POWER DISSPATION

Table 22 Power Dissipation

(Test Condition: VDD=3.3V, AVDD=3.3V, Ta = 25°C)

Condition	Min	Тур	Max	Unit
100M Link	-	93	110	mA
10M Link	-	150	170	mA



100M Unlink(Actual Measurement)	-	45		mA
10M Unlink(Actual Measurement)	-	17		mA
Un-Link (Auto-negotiation mode) (Actual Measurement)	-	43	-	mA
Power Down mode	-	17	-	mA

8 Package Information

8.1 LQFP48

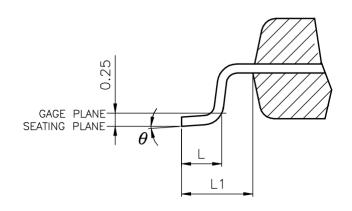
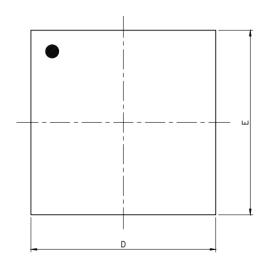
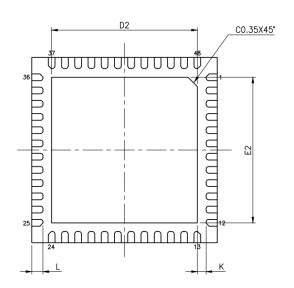


Table 23 LQFP48 VARIATIONS (ALL DEMINSIONS SHOWN IN MM)

SYMBOL	MIN	NOM	MAX
А			1.60
A1	0.05		0.15
A2	1.35	1.40	1.45
b	0.17	0.22	0.27
С	0.09		0.20
D		9.00 BSC	
D1		7.00 BSC	
E		9.00 BSC	
E1	7.00 BSC		
e	0.50 BSC		
L	0.45	0.60	0.75




L1	1.00 REF		
θ	0°	3.5°	7°

NOTES:

- 1. JEDEC OUTLINE:
 - MS-026 BBC
 - MS-026 BBC-HD (THERMALLY ENHANCED VARIATIONS ONLY)
- 2. DATUM PLANE \blacksquare IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY
- 3. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. DIMENSIONS D1 AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE \blacksquare .
- 4. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION.

8.2 QFN48

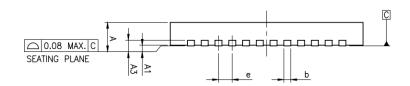


Table 24 QFN48 VARIATIONS (ALL DEMINSIONS SHOWN IN MM)

SYMBOL	MIN	NOM	MAX
Α	0.70	0.75	0.80
A1	0.00	0.02	0.05
A3	0.203 REF		
b	0.20 0.25 0.30		0.30
D	7.00 BSC		

Е	7.00 BSC				
е	0.50 BSC				
D2	5.25		5.30		5.35
E2	5.25		5.30		5.35
L	0.35		0.40		0.45
К	0.20		-	-	
LEAD FINISH	Pure Tin		٧	PPF	X
JEDEC CODE	N/A				

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS
- 2. DEMENSION B APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15mm AND 0.30mm FROM THE TERMINAL TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION b SHOULD NOT BE MEASURED IN THAT RADIUS AREA.
- 3. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.

9 Document Revision History

Version	Date	Descriptions
Ver. 1.0.0	1APR2018	Initial Release

Copyright Notice

Copyright 2018 WIZnet Co., Ltd. All Rights Reserved.

Technical Support: https://forum.wiznet.io/ Sales & Distribution: mailto:sales@wiznet.io

For more information, visit our website at http://www.wiznet.io/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Ethernet ICs category:

Click to view products by Wiznet manufacturer:

Other Similar products are found below:

EZFM6324A S LKA5 EZFM6364A S LKA7 12200BS23MM EZFM5224A S LKA3 VSC8522XJQ-02 WGI219LM SLKJ3 EZFM6348A S LKA6 WGI219V SLKJ5 BCM84793A1KFSBG BCM56680B1KFSBLG BCM53402A0KFSBG BCM56960B1KFSBG EZX557AT2 S LKVX BCM56842A1KFTBG BCM56450B1KFSBG EZX557AT S LKW4 RTL8211FS-CG RTL8153-VC-CG CH395L KTI225IT S LNNK KTI225IT S LNNL VSC8562XKS-14 BCM56864A1IFSBG KSZ8462FHLI LAN9303MI-AKZE KSZ8841-16MVLI KSZ8893MQL VSC8244XHG ADIN2111BCPZ ADIN2111CCPZ-R7 FIDO2100BGA128IR0 FIDO5210CBCZ FIDO5210BBCZ FIDO5110CBCZ FIDO5200CBCZ ADIN1110BCPZ ADIN1110CCPZ ADIN1110CCPZ ADIN1110CCPZ-R7 ADIN1110CCPZ-R7 ADIN1110BCPZ-R7 DM9000EP DM9161AEP HG82567LM S LAVY LAN9210-ABZJ LAN9221-ABZJ LAN9221I-ABZJ LAN9211-ABZJ EZFM4105F897C S LKAM EZFM4224F1433E S LKAD