


# CMPA5259050F

### 50 W, 5200 - 5900 MHz, 28 V, GaN MMIC for Radar Power Amplifiers

Cree's CMPA5259050F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) designed specifically for high efficiency, high gain, and wide bandwidth capabilities, which makes CMPA5259050F ideal for 5.2 - 5.9 GHz Radar amplifier applications. The transistor is supplied in a 0.5 inch square ceramic/metal flange package.



PN: CMPA5259050F Package Type: 440219

## Typical Performance Over 5.2-5.9 GHz ( $T_c = 25$ °C) of Demonstration Amplifier

| Parameter         | 5.2 GHz | 5.5 GHz | 5.9 GHz | Units |
|-------------------|---------|---------|---------|-------|
| Small Signal Gain | 31.4    | 30.8    | 31.0    | dB    |
| Output Power      | 59.6    | 56.0    | 55.2    | W     |
| Efficiency        | 51.5    | 50.1    | 51.4    | %     |
| Input Return Loss | -12.5   | -12.0   | -7.0    | dB    |

Note:

100  $\mu$ sec Pulse Width, 10% Duty Cycle,  $P_{IN}$ = 26 dBm

#### **Features**

- 30 dB Small Signal Gain
- 50% Efficiency at P<sub>SAT</sub>
- Operation up to 28 V
- High Breakdown Voltage
- 0.5 inch-square package

#### **Applications**

- AESA Radar
- Defense Radar
- Fire Control Radar
- Naval, Marine, Ground Protection
   Radar
- Weather Radar





### Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

| Parameter                                         | Symbol                       | Rating    | Units           | Conditions                                                                          |
|---------------------------------------------------|------------------------------|-----------|-----------------|-------------------------------------------------------------------------------------|
| Drain-source Voltage                              | $V_{\scriptscriptstyle DSS}$ | 84        | V <sub>DC</sub> | $V_{DC}$                                                                            |
| Gate-source Voltage                               | $V_{\sf GS}$                 | -10, +2   | $V_{DC}$        | $V_{DC}$                                                                            |
| Storage Temperature                               | $T_{STG}$                    | -55, +150 | °C              | °C                                                                                  |
| Operating Junction Temperature                    | T <sub>j</sub>               | 225       | °C              | °C                                                                                  |
| Soldering Temperature                             | $T_s$                        | 245       | °C              | °C                                                                                  |
| Screw Torque                                      | τ                            | 60        | in-oz           | in-oz                                                                               |
| Thermal Resistance, Junction to Case <sup>1</sup> | $R_{_{\theta JC}}$           | 1.60      | °C/W            | $P_{DISS} = 61 \text{ W, } T_{CASE} = 85^{\circ}\text{C, } 500  \mu\text{s, } 20\%$ |
| Case Operating Temperature                        | T <sub>c</sub>               | -40, +105 | °C              |                                                                                     |

### **Electrostatic Discharge (ESD) Classifications**

| Parameter           | Symbol | Class              | Test Methodology    |
|---------------------|--------|--------------------|---------------------|
| Human Body Model    | НВМ    | 1A (> 250 V)       | JEDEC JESD22 A114-D |
| Charge Device Model | CDM    | 2 (125 V to 250 V) | JEDEC JESD22 C101-C |



## Electrical Characteristics ( $T_c = 25^{\circ}C$ )

|                                                  |                   |      | İ    |      | i -             |                                                                                                               |
|--------------------------------------------------|-------------------|------|------|------|-----------------|---------------------------------------------------------------------------------------------------------------|
| Characteristics  DC Characteristics <sup>1</sup> | Symbol            | Min. | Тур. | Max. | Units           | Conditions                                                                                                    |
| Gate Threshold Voltage                           | V                 | -3.0 | -2.5 |      | V <sub>DC</sub> | $V_{DS} = 10 \text{ V}, I_{DS} = 1.0 \text{ A}$                                                               |
|                                                  | $V_{GS(th)}$      | -3.0 |      | _    |                 |                                                                                                               |
| Gate Quiescent Voltage                           | $V_{GS(Q)}$       | -    | -2.7 | -    | V <sub>DC</sub> | $V_{DS} = 10 \text{ V, I}_{D} = 1.0 \text{ A}$                                                                |
| Saturated Drain Current                          | $\mathbf{I}_{DS}$ | 16.4 | 18.6 | -    | А               | $V_{DS} = 6 V$ , $V_{GS} = 2 V$                                                                               |
| Drain-Source Breakdown Voltage                   | $V_{BD}$          | 84   | 100  | -    | $V_{DC}$        | $V_{GS} = -8 \text{ V}, I_{DS} = 1.0 \text{ A}$                                                               |
| RF Characteristics <sup>2</sup>                  |                   |      |      |      |                 |                                                                                                               |
| Small Signal Gain <sub>1</sub>                   | $G_{ss}$          | -    | 31   | -    | dB              | $V_{DD} = 28$ V, $I_{DQ} = 1.0$ A, Freq = 5.2 GHz, $P_{IN} = -20$ dBm                                         |
| Small Signal Gain <sub>2</sub>                   | $G_{SS}$          | -    | 31   | -    | dB              | $V_{DD} = 28$ V, $I_{DQ} = 1.0$ A, Freq = 5.5 GHz, $P_{IN} = -20$ dBm                                         |
| Small Signal Gain <sub>3</sub>                   | $G_{SS}$          | -    | 31   | -    | dB              | $V_{DD} = 28$ V, $I_{DQ} = 1.0$ A, Freq = 5.9 GHz, $P_{IN} = -20$ dBm                                         |
| Power Output <sub>1</sub>                        | P <sub>out</sub>  | -    | 59.5 | -    | W               | $V_{DD} = 28$ V, $I_{DQ} = 1.0$ A, Freq = 5.2 GHz, $P_{IN} = 26$ dBm                                          |
| Power Output <sub>2</sub>                        | P <sub>out</sub>  | -    | 56   | -    | W               | $V_{DD} = 28$ V, $I_{DQ} = 1.0$ A, Freq = 5.5 GHz, $P_{IN} = 26$ dBm                                          |
| Power Output <sub>3</sub>                        | Роит              | -    | 55   | -    | W               | $V_{DD} = 28$ V, $I_{DQ} = 1.0$ A, Freq = 5.9 GHz, $P_{IN} = 26$ dBm                                          |
| Power Added Efficiency <sub>1</sub>              | PAE               | -    | 51   | -    | %               | $V_{DD} = 28$ V, $I_{DQ} = 1.0$ A, Freq = 5.2 GHz, $P_{IN} = 26$ dBm                                          |
| Power Added Efficiency <sub>2</sub>              | PAE               | -    | 50   | -    | %               | $V_{DD} = 28$ V, $I_{DQ} = 1.0$ A, Freq = 5.5 GHz, $P_{IN} = 26$ dBm                                          |
| Power Added Efficiency <sub>3</sub>              | PAE               | -    | 51   | -    | %               | $V_{DD} = 28$ V, $I_{DQ} = 1.0$ A, Freq = 5.9 GHz, $P_{IN} = 26$ dBm                                          |
| Power Gain <sub>1</sub>                          | $G_{p}$           | -    | 21.8 | -    | dB              | $V_{DD} = 28$ V, $I_{DQ} = 1.0$ A, Freq = 5.2 GHz, $P_{IN} = 26$ dBm                                          |
| Power Gain <sub>2</sub>                          | $G_{p}$           | -    | 21.5 | -    | dB              | $V_{DD} = 28$ V, $I_{DQ} = 1.0$ A, Freq = 5.5 GHz, $P_{IN} = 26$ dBm                                          |
| Power Gain <sub>3</sub>                          | $G_{p}$           | -    | 21.4 | -    | dB              | $V_{DD} = 28$ V, $I_{DQ} = 1.0$ A, Freq = 5.9 GHz, $P_{IN} = 26$ dBm                                          |
| Input Return Loss                                | S11               | -    | -12  | -    | dB              | $V_{DD} = 28$ V, $I_{DQ} = 1.0$ A, Freq = 5.2 - 5.9 GHz, $P_{IN} = -20$ dBm                                   |
| Output Return Loss                               | S22               | -    | -17  | -    | dB              | $V_{DD} = 28$ V, $I_{DQ} = 1.0$ A, Freq = 5.2 - 5.9 GHz, $P_{IN} = -20$ dBm                                   |
| Output Mismatch Stress                           | VSWR              | -    | 3:1  | -    | Ψ               | No damage at all phase angles, $V_{DD} = 28 \text{ V}$ , $I_{DQ} = 1.0 \text{ A}$ , $P_{IN} = 26 \text{ dBm}$ |

#### Notes:

 $<sup>^{\</sup>scriptscriptstyle 1}\mbox{ Measured}$  on wafer prior to packaging.

<sup>&</sup>lt;sup>2</sup> Measured in CMPA5259050F-TB test fixture.

<sup>&</sup>lt;sup>3</sup> Drain Efficiency =  $P_{OUT}/P_{DC}$ 



#### **Typical Pulsed Performance of the CMPA5259050F**

Figure 1. - Gain and Input Return Loss vs. Frequency of the CMPA5259050F Measured in CMPA5259050F-AMP Amplifier Circuit

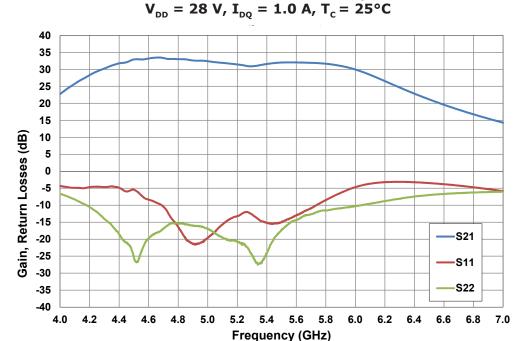
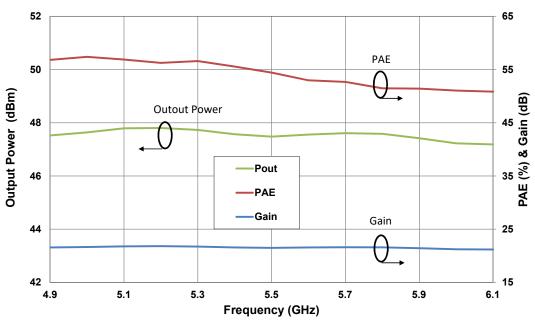
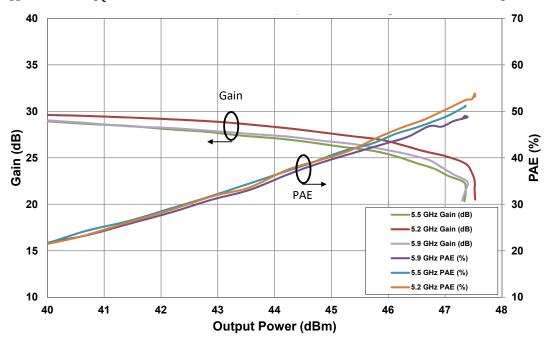




Figure 2. - Output Power, Gain, and Power Added Efficiency vs. Frequency of the CMPA5259050F Measured in CMPA525050F-AMP Amplifier Circuit

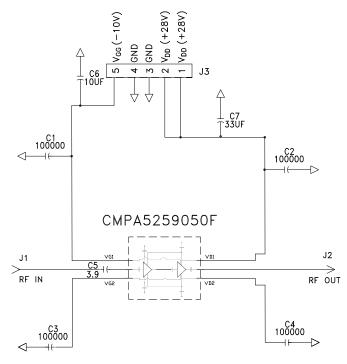
$$V_{DD}$$
 = 28 V,  $I_{DQ}$  = 1.0 A,  $P_{IN}$  = 26 dBm, Pulse Width = 100 µs, Duty Cycle = 10%,  $T_{C}$  = 25°C



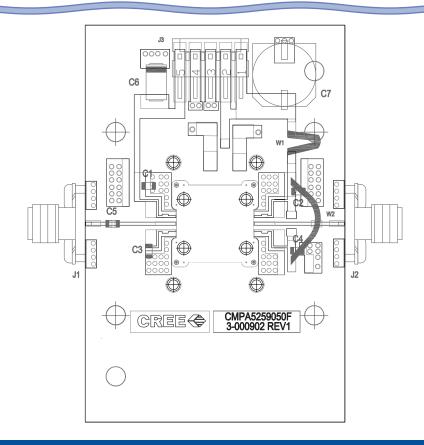

www.cree.com/rf



### **Typical Pulsed Performance of the CMPA5259050F**


Figure 3. - Gain and Power Added Efficiency vs. Output Power of the CMPA529050F Measured in CMPA525050F-AMP Amplifier Circuit

 $V_{DD} = 28 \text{ V}, I_{DO} = 1.0 \text{ A}, \text{ Pulse Width} = 100 \mu\text{s}, \text{ Duty Cycle} = 10\%, T_{C} = 25^{\circ}\text{C}$ 

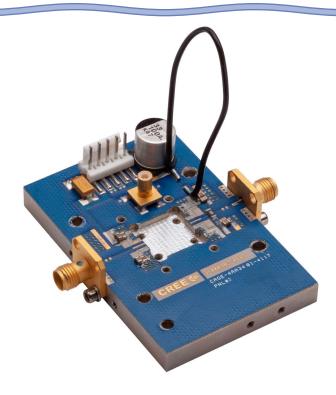





### **CMPA5259050F-TB Demonstration Amplifier Schematic**

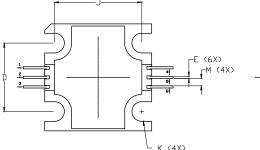


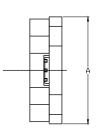
### **CMPA5259050F-TB Demonstration Amplifier Circuit Outline**

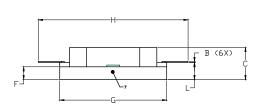


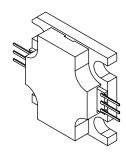



## **CMPA5259050F-TB Demonstration Amplifier Circuit Bill of Materials**


| Designator     | Description                                                 | Qty |
|----------------|-------------------------------------------------------------|-----|
| R1             | RES 0 OHM, SMT, 1206, 125 mW                                | 1   |
| C1, C3, C6, C8 | CAP, 100000 pF, (0.1 UF) +/- 10%, 100 V, 0805               | 4   |
| C2, C4, C5, C7 | CAP, 0805, 2200 pF, 100 V, 0805                             | 4   |
| C9             | CAP, 10 UF, 16 V, Tantalum                                  | 1   |
| C10            | CAP, 33 UF, 20%, G Case                                     | 1   |
| J3             | Header RT> PLZ .1 CEN LK 5POS                               | 1   |
| J1, J2         | CONN, SMA, Female, 2-Hole, Flange                           | 2   |
| J4             | CONN, SMB, Straight Jack Receptacle, SMT, 50 OHM, Au Plated | 1   |
|                | Baseplate, AL, 2.60 X 1.7 X 0.25                            |     |
|                | #4 Split Lockwasher SS                                      |     |
|                | 2-56 SoC HD Screw 3/16 SS                                   |     |
|                | #2 Split Lockwasher SS                                      |     |
|                | 4-40 SOC HD Screw 3/8" SS                                   |     |
|                | PCB, Taconics, RF 35, CMPA5259050F 0.010" THK               |     |
| W1             | Wire, Black, 22 AWG ~ 3"                                    |     |


### **CMPA5259050F-TB Demonstration Amplifier Circuit**




## **Product Dimensions CMPA5259050F (Package Type — 440219)**



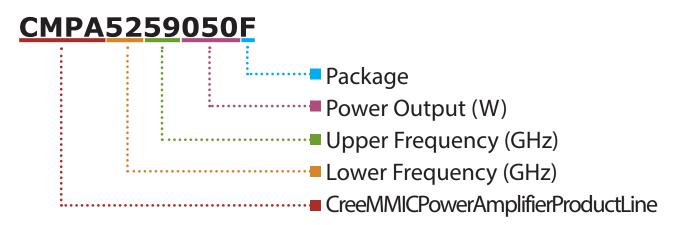






NOT TO SCALE

#### NOTES:


- 1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.
- 5. ALL PLATED SURFACES ARE NI/AU

|     | INCHES |       | MILLIM | ETERS |
|-----|--------|-------|--------|-------|
| DIM | MIN    | MAX   | MIN    | MAX   |
| Α   | 0.495  | 0.505 | 12.57  | 12.82 |
| В   | 0.003  | 0.005 | 0.076  | 0.127 |
| O   | 0.140  | 0.160 | 3.56   | 4.06  |
| D   | 0.315  | 0.325 | 8.00   | 8.25  |
| E   | 0.008  | 0.012 | 0.204  | 0.304 |
| F   | 0.055  | 0.065 | 1.40   | 1.65  |
| G   | 0.495  | 0.505 | 12.57  | 12.82 |
| Η   | 0.695  | 0.705 | 17.65  | 17.91 |
| J   | 0.403  | 0.413 | 10.24  | 10.49 |
| K   | ø .092 |       | 2.3    | 34    |
| L   | 0.075  | 0.085 | 1.905  | 2.159 |
| М   | 0.032  | 0.040 | 0.82   | 1.02  |

| PIN |                   |
|-----|-------------------|
| 1   | Gate bias         |
| 2   | $RF_{IN}$         |
| 3   | Gate bias         |
| 4   | Drain bias        |
| 5   | RF <sub>OUT</sub> |
| 6   | Drain bias        |
| 7   | Source            |



#### **Part Number System**



| Parameter                    | Value  | Units |
|------------------------------|--------|-------|
| Lower Frequency              | 5.2    | GHz   |
| Upper Frequency <sup>1</sup> | 5.9    | GHz   |
| Power Output                 | 50     | W     |
| Package                      | Flange | -     |

Table 1.

**Note**<sup>1</sup>: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

| Character Code | Code Value                     |
|----------------|--------------------------------|
| А              | 0                              |
| В              | 1                              |
| С              | 2                              |
| D              | 3                              |
| Е              | 4                              |
| F              | 5                              |
| G              | 6                              |
| Н              | 7                              |
| J              | 8                              |
| K              | 9                              |
| Examples:      | 1A = 10.0 GHz<br>2H = 27.0 GHz |

Table 2.



## **Product Ordering Information**

| Order Number     | Description                        | Unit of Measure | Image |
|------------------|------------------------------------|-----------------|-------|
| CMPA5259050F     | GaN MMIC                           | Each            |       |
| CMPA5259050F-AMP | Test board with GaN MMIC installed | Each            |       |



#### **Disclaimer**

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for its use or for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications, and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended, or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death, or in applications for the planning, construction, maintenance or direct operation of a nuclear facility. CREE and the CREE logo are registered trademarks of Cree, Inc.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/RF

Sarah Miller Marketing Cree, RF Components 1.919.407.5302

Ryan Baker Marketing & Sales Cree, RF Components 1.919.407.7816

Tom Dekker Sales Director Cree, RF Components 1.919.407.5639

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Wolfspeed manufacturer:

Other Similar products are found below:

MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC252AQS24 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL01-HMC1048LC3B

EVAL01-HMC661LC4B EVAL-ADF7020-1DBZ4 EVAL-ADF7020-1DBZ5 EVAL-ADF7020-1DBZ6 EVAL-ADF7021DB9Z EVAL
ADF7021DBJZ EVAL-ADF7021DBZ2 EVAL-ADF7021DBZ6 EVAL-ADF7021-NDBZ2 EVAL-ADF7021-VDB3Z EVAL-ADF7023DB3Z

EVAL-ADF7023-JDB3Z EVAL-ADF70XXEKZ1 EVAL-ADF7241DB1Z F0440EVBI F1423EVB-DI F1423EVB-SI F1701EVBI

F1751EVBI F2250EVBI MICRF219A-433 EV 122410-HMC686LP4E AD6679-500EBZ 126223-HMC789ST89E ADL5363-EVALZ

ADL5369-EVALZ 130437-HMC1010LP4E 131352-HMC1021LP4E 131372-HMC951LP4E 130436-HMC1010LP4E DEMOBOARD
U2790B ATR2406-PNQW EKIT01-HMC1197LP7F Si4705-D60-EVB Si4835-Demo LMV228SDEVAL SKYA21001-EVB SMP1331-08
EVB EV1HMC618ALP3 EV1HMC641ALC4 EV1HMC8410LP2F EVAL\_PAN4555ETU EVAL01-HMC1041LC4 EVAL-ADF7012DBZ2