CGHV96100F2

100 W, 8.4 - 9.6 GHz, 50-ohm, Input/Output Matched GaN HEMT

Description

Cree's CGHV96100F2 is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) on Silicon Carbide (SiC) substrates. This GaN Internally Matched (IM) FET offers excellent power added efficiency in comparison to other technologies. GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to GaAs transistors. This IM FET is available in a metal/ceramic flanged package for optimal electrical and thermal performance.

PN: CGHV96100F2 Package Type: 440217

Typical Performance Over 8.4 - 9.6 GHz ($T_c = 25$ °C)

Parameter	8.4 GHz	8.8 GHz	9.0 GHz	9.2 GHz	9.4 GHz	9.6 GHz	Units
Linear Gain	13.8	12.8	13.0	12.4	11.8	11.4	dB
Output Power	171	163	160	150	137	131	W
Power Gain	10.3	10.1	10.0	9.7	9.4	9.1	dB
Power Added Efficiency	45.5	42.8	41.5	39.2	35.5	35.4	%

Note: Measured in CGHV96100F2-TB (838179) under 100 μS pulse width, 10% duty, Pin 42.0 dBm (16 W)

Features

- 8.4 9.6 GHz Operation
- 145 W P_{OUT} typical
- 10 dB Power Gain
- 40% Typical PAE
- 50 Ohm Internally Matched
- <0.3 dB Power Droop

Applications

- Marine Radar
- Weather Monitoring
- Air Traffic Control
- Maritime Vessel Traffic Control
- Port Security

CGHV96100F2

Absolute Maximum Ratings (not simultaneous)

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	V _{DSS}	120	Volts	25°C
Gate-source Voltage	V _{GS}	-10, +2	Volts	25°C
Power Dissipation	P _{DISS}	222.0	Watts	Pulsed
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	T,	225	°C	
Maximum Drain Current ¹	I _{DMAX}	12	Amps	
Maximum Forward Gate Current	I _{GMAX}	28.8	mA	25°C
Soldering Temperature ²	T _s	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.73	°C/W	Pulse Width = 100 μs, Duty Cycle = 10%, 85°C, P _{DISS} = 173 W
Case Operating Temperature ³	T _c	-40, +125	°C	

Notes:

Electrical Characteristics (Frequency = 9.6 GHz unless otherwise stated; T_c = 25 $^{\circ}$ C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹						
Gate Threshold Voltage	V _{GS(TH)}	-3.8	-3.0	-2.3	V	$V_{DS} = 10 \text{ V}, I_{D} = 28.8 \text{ mA}$
Gate Quiscent Voltage	$V_{GS(Q)}$	-	-2.7	-	V	$V_{DS} = 40 \text{ V}, I_{D} = 1000 \text{ mA}$
Saturated Drain Current ²	I _{DS}	20.7	28.8	-	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	$V_{_{\mathrm{BD}}}$	100	-	-	V	$V_{GS} = -8 \text{ V}, I_{D} = 28.8 \text{ mA}$
RF Characteristics ³						
Small Signal Gain	S21	10.5	12.4	-	dB	$V_{DD} = 40 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = -20 \text{ dBm}$
Input Return Loss 1	S11	-	-5.2	-2.8	dB	$V_{DD} = 40 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = -20 \text{ dBm}, 8.4 - 9.4 \text{ GHz}$
Input Return Loss 2	S11	-	-	-3.3	dB	$V_{DD} = 40 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = -20 \text{ dBm}, 9.4 - 9.6 \text{ GHz}$
Output Return Loss	S22	_	-12.3	-6.0	dB	$V_{DD} = 40 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = -20 \text{ dBm}$
Power Output ^{3,4}	Роит	100	131.0	_	W	$V_{DD} = 40 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = 41.75 \text{ dBm}$
Power Added Efficiency ^{3,4}	PAE	30	45	_	%	$V_{DD} = 40 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = 41.75 \text{ dBm}$
Power Gain ^{3,4}	P_{G}	_	10.2	_	dB	$V_{DD} = 40 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = 41.75 \text{ dBm}$
Output Mismatch Stress	VSWR	_	_	5:1	Ψ	No damage at all phase angles, V _{DD} = 40 V, I _{DQ} = 1000 mA,

Notes

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering at wolfspeed.com/rf/document-library

³ See also, the Power Dissipation De-rating Curve on Page 9

 $^{^{\}mbox{\tiny 1}}$ Measured on wafer prior to packaging

² Scaled from PCM data

 $^{^3}$ Measured in CGHV96100F2-AMP (838179) under 100 μS pulse width, 10% duty

⁴Fixture loss de-embedded using the following offsets: Frequency = 9.6 GHz. Input = 0.5 dB and Output = 0.5 dB

Figure 1. Small Signal Gain and Return Loss vs Frequency of CGHV96100F2 measured in CGHV96100F2-AMP $V_{DS} = 40~V, I_{DO} = 1000~mA$

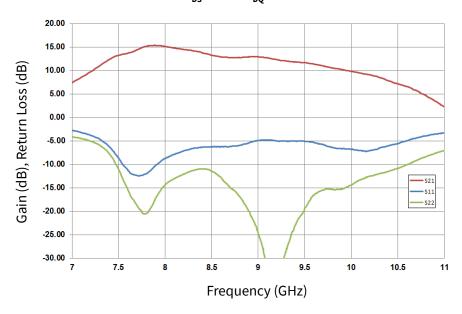


Figure 2. Power Gain vs. Frequency and Input Power $V_{DD} = 40 \text{ V}$, Pulse Width = 100 μ sec, Duty Cycle = 10%

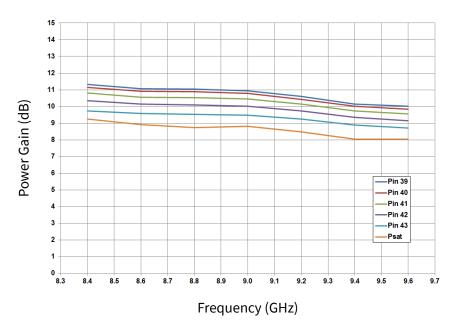


Figure 3. Output Power vs. Input Power $V_{_{DD}}$ = 40 V, Pulse Width = 100 μsec , Duty Cycle = 10%

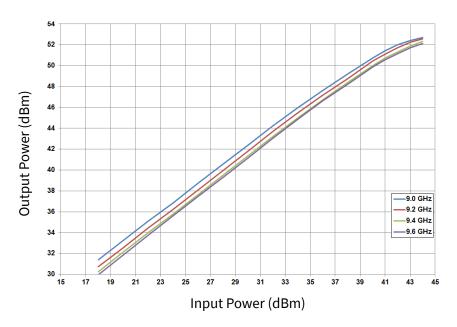


Figure 4. Power Gain vs. Frequency and Input Power $V_{DD} = 40 \text{ V}$, Pulse Width = 100 μ sec, Duty Cycle = 10%

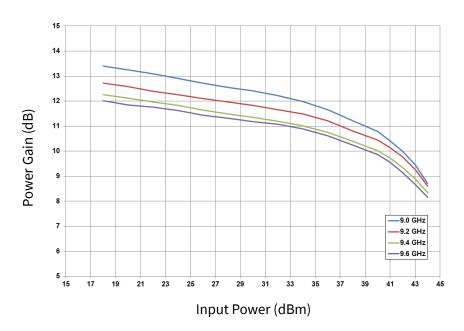


Figure 5. Power Added Efficiency vs. Input Power V_{DD} = 40 V, Pulse Width = 100 µsec, Duty Cycle = 10%

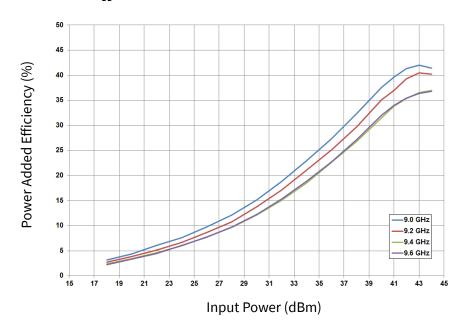


Figure 6. Output Power vs. Time $V_{DD} = 40 \text{ V}, P_{IN} = 41 \text{ dBm}, \text{ Duty Cycle} = 10\%$

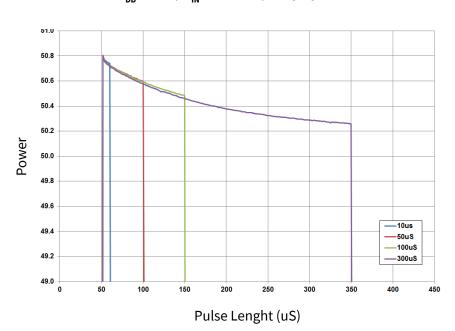


Figure 7. Output Power vs. Input Power & Frequency V_{DD} = 40 V, Pulse Width = 100 µsec, Duty Cycle = 10%

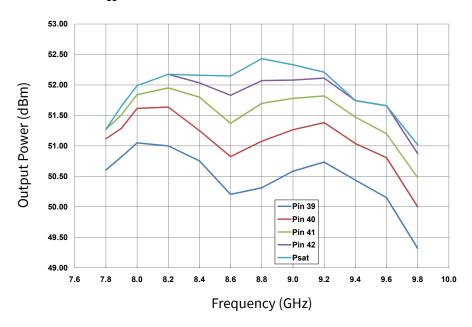
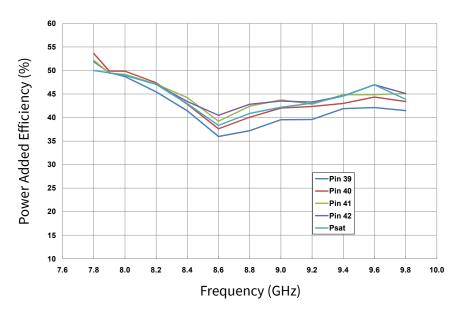
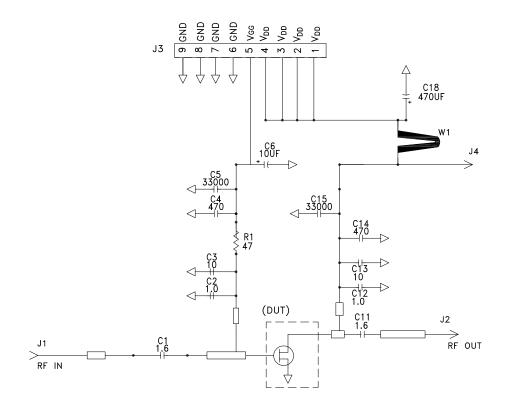
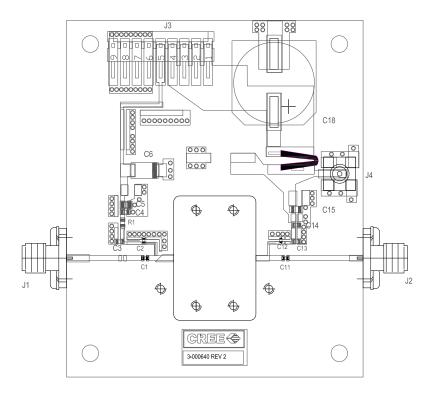
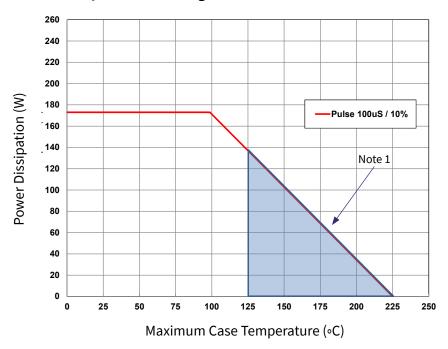



Figure 8. Power Added Efficiency vs. Input Power & Frequency $V_{DD} = 40 \text{ V}$, Pulse Width = 100 μ sec, Duty Cycle = 10%

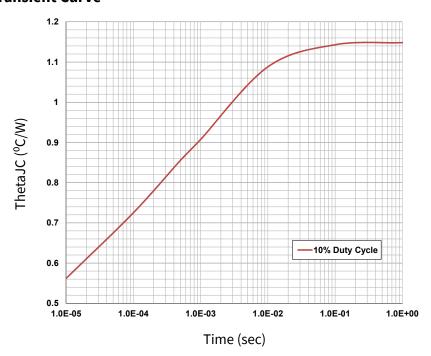

CGHV96100F2-AMP Demonstration Amplifier Circuit Bill of Materials

Designator	Description	Qty
R1	RES, 47 OHM +/-1%, 1/16 W, 0603, SMD	1
C1, C11	CAP, 1.6pF, +/- 0.1 pF, 200V, 0402, ATC 600L	2
C2, C12	CAP, 1.0pF, +/- 0.1 pF, 200V, 0402 ATC 600L	2
C3, C13	CAP, 10 pF +/-5%, 0603, ATC	2
C4, C14	CAP, 470 pF +/-5%, 100 V, 0603	2
C5, C15	CAP, 33,000 pF, 0805, 100 V, X7R	2
C6	CAP, 10 uF, 16 V, TANTALUM	1
C18	CAP, 470 uF +/-20%, ELECTROLYTIC	1
J1,J2	CONNECTOR, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	2
J3	CONNECTOR, HEADER, RT>PLZ .1CEN LK 9POS	1
J4	CONNECTOR, SMB, STRAIGHT JACK	1
-	PCB, TEST FIXTURE, TACONICS RF35P, 20 MIL THK, 440210 PKG	1
-	2-56 SOC HD SCREW 1/4 SS	4
-	#2 SPLIT LOCKWASHER SS	4
Q1	CGHV96100F2	1


CGHV96100F2-AMP Demonstration Amplifier Circuit


CGHV96100F2-AMP Demonstration Amplifier Circuit Schematic

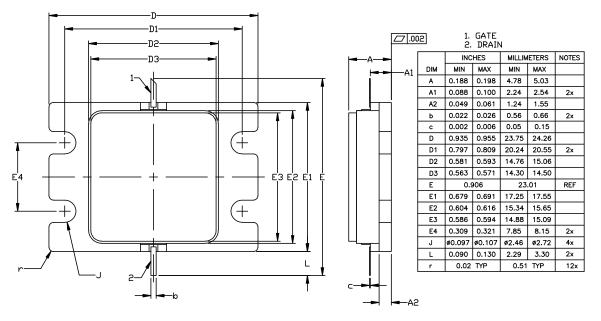
CGHV96100F2-AMP Demonstration Amplifier Circuit Outline



CGHV96100F2 Power Dissipation De-rating Curve

Note. Shaded area exceeds Maximum Case Operating Temperature (See Page 2)

CGHV96100F2 Transient Curve


Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1A > 250 V	JEDEC JESD22 A114-D
Charge Device Model	CDM	II (200 < 500 V)	JEDEC JESD22 C101-C

Product Dimensions CGHV96100F2 (Package Type — 440217)

- NOTES: (UNLESS OTHERWISE SPECIFIED)

 1. INTERPRET DRAWING IN ACCURDANCE WITH ANSI Y14.5M-2009
- 2. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF .020 BEYOND EDGE OF LID
- 3. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF .008 IN ANY DIRECTION

Part Number System

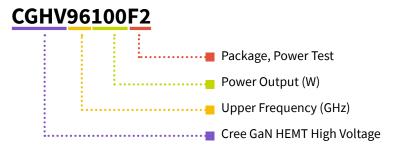


Table 1.

Parameter	Value	Units
Upper Frequency ¹	9.6	GHz
Power Output	100	W
Package	Flange	-

Note¹: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

CGHV96100F2 12

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGHV96100F2	GaN HEMT	Each	Control of the second of the s
CGHV96100F2-AMP	Test board with GaN HEMT	Each	

CGHV96100F2

For more information, please contact:

4600 Silicon Drive Durham, North Carolina, USA 27703 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

 $@\ 2013-2020\ Cree,\ Inc.\ All\ rights\ reserved.\ Wolfspeed\\ @\ and\ the\ Wolfspeed\ logo\ are\ registered\ trademarks\ of\ Cree,\ Inc.\ Property of\ Cree,\ Property\ Cree,\$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Wolfspeed manufacturer:

Other Similar products are found below:

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB
MAAM-009633-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4
EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT#
MAX2692EVKIT# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E
119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT
EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1
SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB