

CMPA5585025F

25 W, 5.5 - 8.5 GHz, GaN MMIC, Power Amplifier

Cree's CMPA5585025F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC is available in a 10 lead metal/ceramic flanged package for optimal electrical and thermal performance.

PN: CMPA5585025F Package Type: 440213

Typical Performance Over 5.8-8.4 GHz (T_c = 25°C)

Parameter	5.8 GHz	6.4 GHz	7.2 GHz	7.9 GHz	8.4 GHz	Units
Small Signal Gain	29.5	24.0	24.0	24.0	22.0	dB
Output Power ¹	15	23	20	19	19	W
Power Gain ¹	21.7	19.5	17.2	18.5	18.6	dB
Power Added Efficiency ¹	30	25	20.5	19	19.5	%

Note¹: Measured at -30 dBc, 1.6 MHz from carrier, in the CMPA5585025F-AMP under OQPSK modulation, 1.6 Msps, PN23, Alpha Filter = 0.2.

Features

- 25 dB Small Signal Gain
- 35 W Typical P_{SAT}
- Operation up to 28 V
- High Breakdown Voltage
- High Temperature Operation
- Size 1.00 x 0.385 inches

Applications

- · Point to Point Radio
- Communications
- Satellite Communication Uplink

Absolute Maximum Ratings (not simultaneous)

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	V _{DSS}	84	V _{DC}	25°C
Gate-source Voltage	V _{GS}	-10, +2	V _{DC}	25°C
Power Dissipation	P _{DISS}	55	W	
Storage Temperature	T _{stg}	-65, +150	°C	
Operating Junction Temperature	$T_{_{\rm J}}$	225	°C	
Maximum Forward Gate Current	I _{GMAX}	10	mA	25°C
Soldering Temperature ¹	T _s	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case	$R_{_{\Theta JC}}$	1.55	°C/W	OQPSK, 85° C, $P_{DISS} = 55 \text{ W}$
Thermal Resistance, Junction to Case	$R_{_{ heta JC}}$	1.80	°C/W	CW, 85°C, P _{DISS} = 77 W
Case Operating Temperature	T _c	-40, +140	°C	P _{DISS} = 55 W
Case Operating Temperature	T _c	-40, +85	°C	P _{DISS} = 77 W

Note:

Electrical Characteristics (Frequency = 5.5 GHz to 8.5 GHz unless otherwise stated; $T_{\rm c}$ = 25°C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions	
DC Characteristics¹							
Gate Threshold Voltage	V _{GS(TH)}	-3.8	-3.0	-2.3	V	$V_{DS} = 10 \text{ V, I}_{D} = 13.2 \text{ mA}$	
Gate Quiescent Voltage	$V_{\rm GS(Q)}$	-	-2.7	-	V _{DC}	$V_{DS} = 28 \text{ V, } I_{D} = 285 \text{ mA}$	
Saturated Drain Current ²	I _{DS}	10.6	12.8	-	А	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$	
Drain-Source Breakdown Voltage	V _{BD}	84	100	-	V	$V_{GS} = -8 \text{ V, I}_{D} = 13.2 \text{ mA}$	
RF Characteristics ³							
Small Signal Gain	S21	18.25	24	-	dB	$V_{DD} = 28 \text{ V, } I_{DQ} = 285 \text{ mA,}$ $P_{IN} = -20 \text{ dBm}$	
Input Return Loss	S11	-	10	-	dB	V _{DD} = 28 V, I _{DQ} = 285 mA	
Output Return Loss	S22	-	6	-	dB	$V_{DD} = 28 \text{ V, } I_{DQ} = 285 \text{ mA}$	
Output Mismatch Stress	VSWR	-	-	5:1	Ψ	No damage at all phase angles, V_{DD} = 28 V, I_{DQ} = 285 mA, P_{OUT} = 25W OQPSK	

Notes:

¹ Refer to the Application Note on soldering at www.cree.com/RF/Document-Library

¹ Measured on-wafer prior to packaging.

² Scaled from PCM data.

³ Measured in the CMPA5585025F-AMP

Electrical Characteristics Continued... (T_c = 25°C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
RF Characteristics ^{1,2,3,4}						
Power Added Efficiency	PAE1	24.5	30.0	-	%	$V_{DD} = 28 \text{ V, } I_{DQ} = 285 \text{ mA,}$ Frequency = 5.8 GHz
Power Added Efficiency	PAE2	16.5	20.5	-	%	$V_{DD} = 28 \text{ V, } I_{DQ} = 285 \text{ mA,}$ Frequency = 7.2 GHz
Power Added Efficiency	PAE3	15.5	19.0	-	%	$V_{DD} = 28 \text{ V, } I_{DQ} = 285 \text{ mA,}$ Frequency = 7.9 GHz
Power Added Efficiency	PAE4	15.0	19.5	-	%	$V_{DD} = 28 \text{ V, } I_{DQ} = 285 \text{ mA,}$ Frequency = 8.4 GHz
Power Gain	G _{P1}	19.5	21.7	-	dB	$V_{DD} = 28 \text{ V, } I_{DQ} = 285 \text{ mA,}$ Frequency = 5.8 GHz
Power Gain	G_{P2}	16.25	17.2	-	dB	$V_{DD} = 28 \text{ V, } I_{DQ} = 285 \text{ mA,}$ Frequency = 7.2 GHz
Power Gain	G _{P3}	16.55	18.5	-	dB	$V_{DD} = 28 \text{ V, } I_{DQ} = 285 \text{ mA,}$ Frequency = 7.9 GHz
Power Gain	G _{P4}	16.75	18.6	-	dB	$V_{DD} = 28 \text{ V, } I_{DQ} = 285 \text{ mA,}$ Frequency = 8.4 GHz
OQPSK Linearity	ACLR1	-	-36	-27.0	dB	$V_{DD} = 28 \text{ V, } I_{DQ} = 285 \text{ mA,}$ Frequency = 5.8 GHz
OQPSK Linearity	ACLR2	-	-36	-28.5	dB	$V_{DD} = 28 \text{ V, } I_{DQ} = 285 \text{ mA,}$ Frequency = 7.2 GHz
OQPSK Linearity	ACLR3	-	-36	-26.0	dB	$V_{DD} = 28 \text{ V, } I_{DQ} = 285 \text{ mA,}$ Frequency = 7.9 GHz
OQPSK Linearity	ACLR4	-	-42	-32.5	dB	$V_{DD} = 28 \text{ V, } I_{DQ} = 285 \text{ mA,}$ Frequency = 8.4 GHz

Notes:

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1A (> 250 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	II (200 < 500 V)	JEDEC JESD22 C101-C

¹ Measured in the CMPA5585025F-AMP

² Under OQPSK modulated signal, 1.6 Msps, PN23, Alpha Filter = 0.2.

 $^{^{3}}$ Measured at P_{AVE} = 40 dBm.

⁴ Fixture loss de-embedded.

Figure 1. CMPA5585025F Linear Output Power, Gain and PAE at -30 dBc, 1.6 MHz from carrier $V_{\rm DD}$ = 28 V, $I_{\rm DO}$ = 285 mA, 1.6 Msps OQPSK Modulation

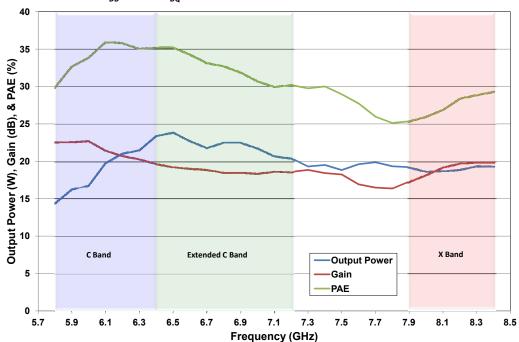
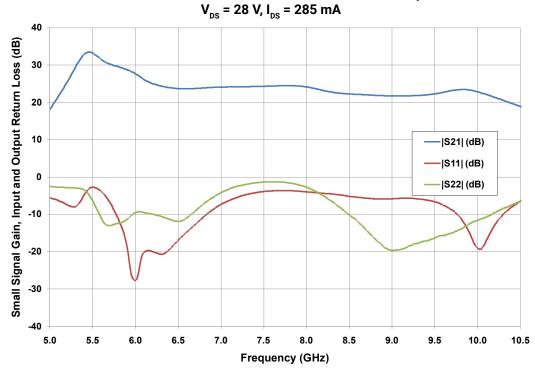



Figure 2. Typical Small Signal Gain and Return Loss vs Frequency of the CMPA5585025F measured in CMPA5585025F-AMP Amplifier Circuit.

www.cree.com/rf

-6

FAE - 29.1% at 3.8 GHz, 28.5% at 6.4 GHz & 25.6% at 7.2 GHz

50
40
30
20
20
-10
-20
-30
-40

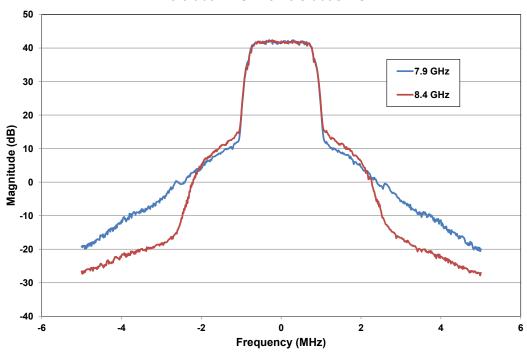
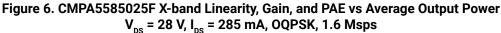

Figure 3. CMPA5585025F C-band Spectral Mask at 15 W PAE = 29.1% at 5.8 GHz, 28.5% at 6.4 GHz & 25.6% at 7.2 GHz

Figure 4. CMPA5585025F X-band Spectral Mask at 15 W PAE = 25.6% at 7.9 GHz & 25.3% at 8.4 GHz

Frequency (MHz)

2

-2


-50 + 29

31

33

-10 40 5.8 GHz Offset + 5.8 GHz Offset -6.4 GHz Offset -6.4 GHz Offset + 7.2 GHz Offset -7.2 GHz Offset + -15 35 5.8 GHz Gain -5.8 GHz PAE 1.6 MHz offset from center frequency (dBc) 6.4 GHz Gain -6.4 GHz PAE Efficiency (%) 7.2 GHz PAE 7.2 GHz Gain 30 -20 -25 25 **Power Added** 20 -30 -35 15 త Gain (dB) 10 -40 5

Figure 5. CMPA5585025F C-band Linearity, Gain, and PAE vs Average Output Power $V_{\rm DS}$ = 28 V, $I_{\rm DS}$ = 285 mA, OQPSK, 1.6 Msps

Average Output Power (dBm)

43

45

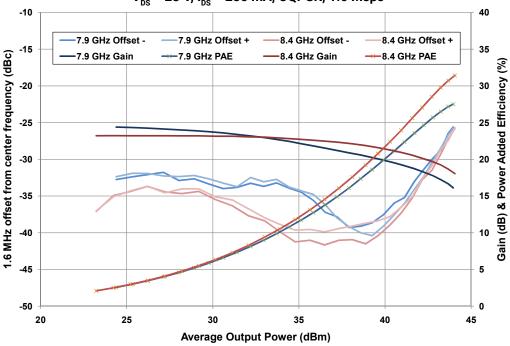


Figure 7. CMPA5585025F EVM vs Average Output Power V_{DS} = 28 V, I_{DS} = 285 mA, 1.6 Msps OQPSK Modulation

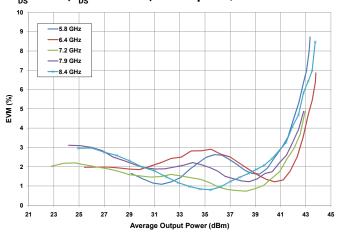


Figure 8. CMPA5585025F - Linearity vs Average Output Power OQPSK, 1.6 Msps, $I_{\rm DS}$ = 285 mA

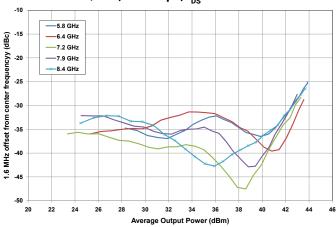
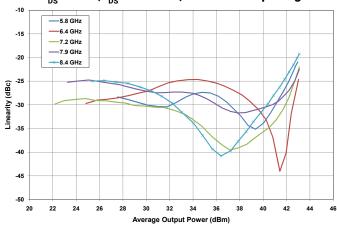



Figure 9. CMPA5585025F Linearity vs Average Output Power $V_{\rm DS}$ = 28 V, $I_{\rm DS}$ = 285 mA, IM3 5 MHz spacing

www.cree.com/rf

Figure 10. CMPA5585025F - C-band Output Power, Gain and PAE vs Input Power $V_{_{DS}}$ = 28 V, $I_{_{DS}}$ = 1.2 A, CW

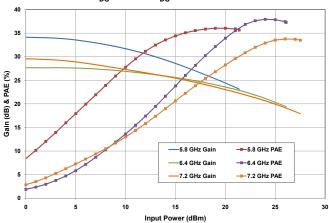


Figure 11. CMPA5585025F - X-band Output Power, Gain and PAE vs Input Power

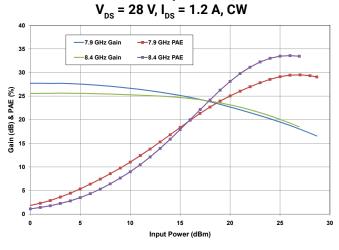
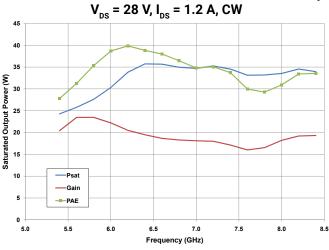



Figure 12. CMPA5585025F - Power, Gain and PAE vs Frequency

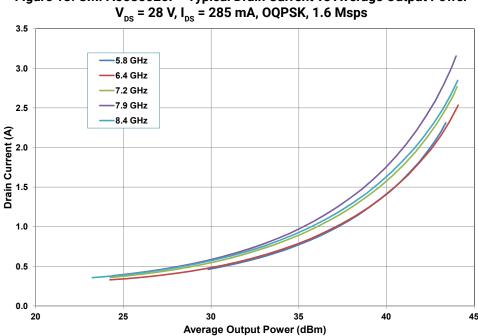
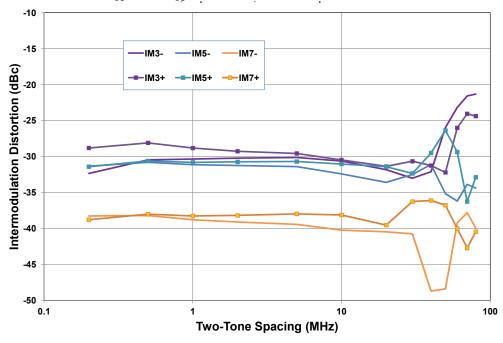
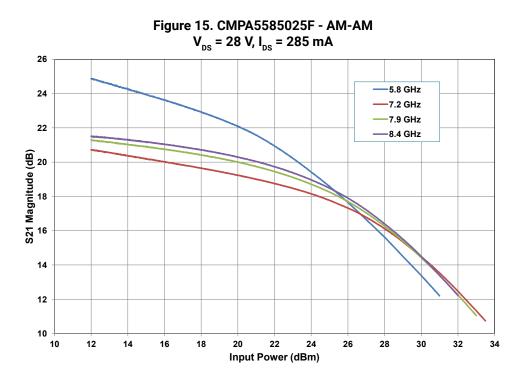
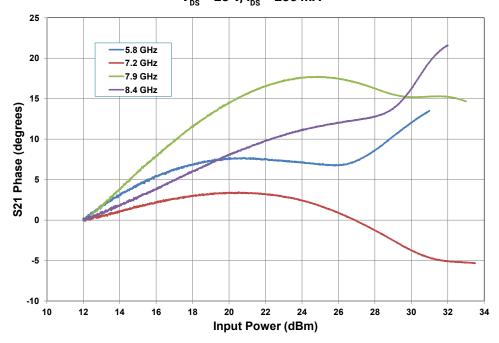
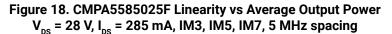



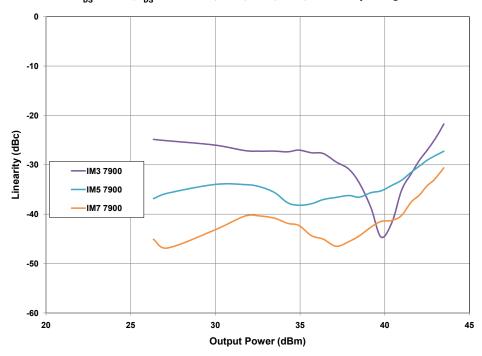
Figure 13. CMPA5585025F - Typical Drain Current vs Average Output Power

Figure 14. CMPA5585025F - Intermodulation Distortion Products vs Tone Spacing ${
m V}_{
m DS}$ = 28 V, ${
m I}_{
m DS}$ = 285 mA, Center Freq = 7.9 GHz

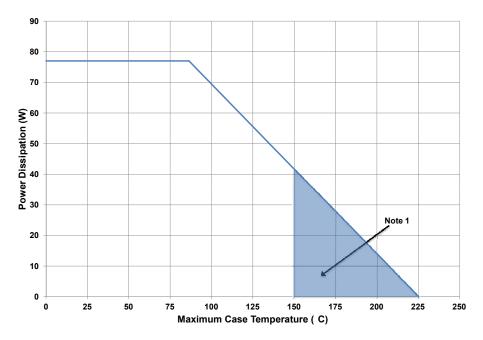
Note: Divergence in IM5 and IM7 at tone spacings greater than 20 MHz is due to the bias components on the test fixture.

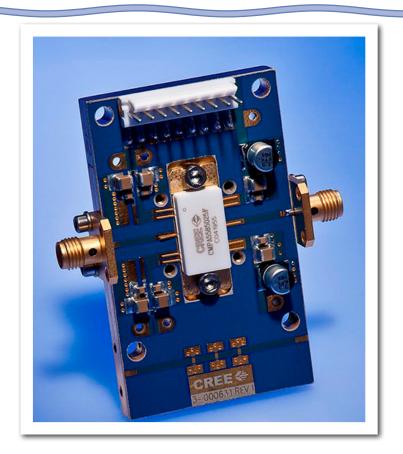

Figure 16. CMPA5585025F -Normalized AM-PM V_{DS} = 28 V, I_{DS} = 285 mA



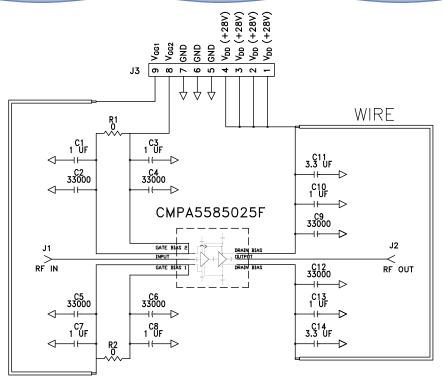
 V_{DS} = 28 V, I_{DS} = 285 mA, 256 QAM 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 -6.4 EVM (%) 1.0 7.9 EVM (%) 8.4 EVM (%) 0.5 7.2 EVM (%) 0.0 20 25 45 Output Power (dBm)


Figure 17. CMPA5585025F EVM vs Average Output Power

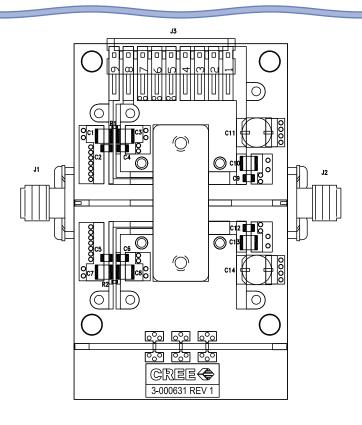
CMPA5585025F Power Dissipation De-rating Curve


Note 1. Area exceeds Maximum Case Operating Temperature (See Page 2).

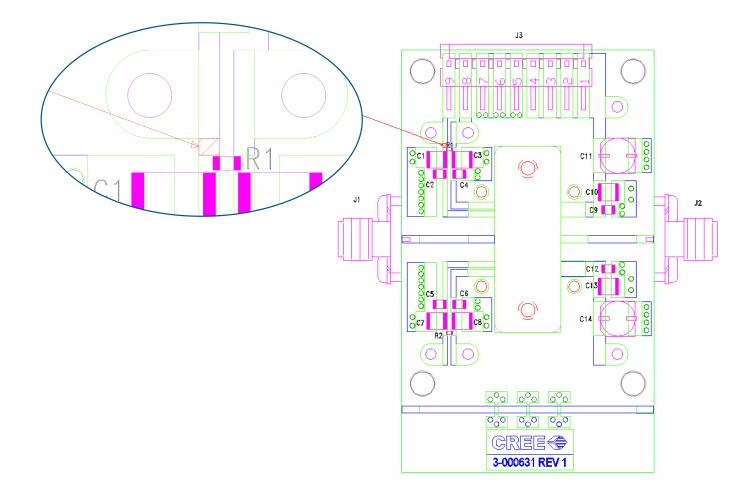
CMPA5585025F-AMP Demonstration Amplifier Circuit Bill of Materials

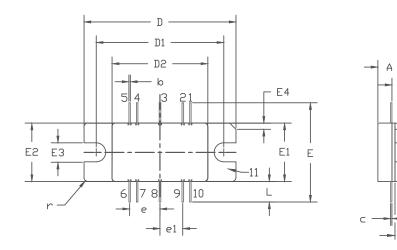

Designator	Description	Qty
C1, C3, C7, C8, C10, C13	CAP, 1.0 uF, +/-10%, 1210, 100V, X7R	6
C2, C4, C5, C6, C9, C12	CAP, 33000 pF, 0805, 100V, X7R	6
C11, C14	CAP ELECT 3.3UF 80V FK SMD	2
R1, R2	RES 0.0 OHM 1/16W 0402 SMD	2
J1,J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	2
J3	CONNECTOR, HEADER, RT>PLZ .1CEN LK 9POS	1
-	PCB, TACONIC, RF-35P-0200-CL1/CL1	1
Q1	CMPA5585025F	1

CMPA5585025F-AMP Demonstration Amplifier Circuit



CMPA5585025F-AMP Demonstration Amplifier Circuit


CMPA5585025F-AMP Demonstration Amplifier Circuit Outline

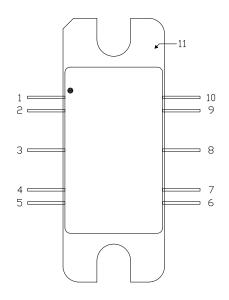

CMPA5585025F-AMP Demonstration Amplifier Circuit

To configure the CMPA5585025F test fixture to enable independent $V_{\rm G1}$ / $V_{\rm G2}$ control of the device, a cut must be made to the microstrip line just above the R1 resistor as shown. Pin 9 will then supply $V_{\rm G1}$ and Pin 8 will supply $V_{\rm G2}$.

Product Dimensions CMPA5585025F (Package Type - 440213)

PIN 1: GATE BIAS 6: DRAIN BIAS 2: GATE BIAS 7: DRAIN BIAS 3: RF IN 4: GATE BIAS 9: DRAIN BIAS 5: GATE BIAS 10: DRAIN BIAS 10: DRAIN BIAS 11: SDURCE

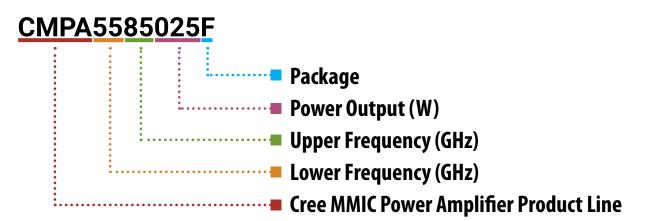
NOTES:


Z7 .002

⊢ Α1

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M $-\,$ 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.

INC	HES	MILLIM	MILLIMETERS		IOTES
MIN	MAX	MIN	MAX		
0.148	0.168	3.76	4.27		
0.055	0.065	1.40	1.65		
0.035	0.045	0.89	1.14		
0.01	TYP	0.254	TYP		10x
0.007	0.009	0.18	0.23		
0.995	1.005	25.27	25.53		
0.835	0.845	21.21	21.46		
0.623	0.637	15.82	16.18		
0.653	TYP	16.59 TYP			
0.380	0.390	9.65	9.91		
0.380	0.390	9.65	9.91		
0.120	0.130	3.05	3.30		
0.035	0.045	0.89	1.14	45°	CHAMFER
0.200 TYP		5.08	TYP		4x
0.150) TYP	3.81	TYP		4x
0.115	0.155	2.92	3.94		10x
0.025 TYP		.635 TYP			3x
	MIN 0.148 0.055 0.035 0.007 0.995 0.835 0.623 0.653 0.380 0.120 0.035 0.200 0.156	0.148 0.168 0.055 0.065 0.035 0.045 0.007 0.009 0.995 1.005 0.835 0.845 0.623 0.637 0.623 YPP 0.380 0.390 0.120 0.130 0.035 0.045 0.20∪ TYP 0.15∪ TYP 0.115 0.155	MIN MAX MIN 0.148 0.168 3.76 0.055 0.065 1.40 0.035 0.045 0.89 0.01 TYP 0.254 0.007 0.009 0.18 0.995 1.005 25.27 0.835 0.845 21.21 0.623 0.637 15.82 0.653 TYP 16.59 0.380 0.390 9.65 0.120 0.130 3.05 0.035 0.045 0.89 0.200 TYP 5.08 0.150 TYP 3.81 0.115 0.155 2.92	MIN MAX MIN MAX 0.148 0.168 3.76 4.27 0.055 0.065 1.40 1.65 0.035 0.045 0.89 1.14 0.01 TYP 0.254 TYP 0.007 0.009 0.18 0.23 0.995 1.005 25.27 25.53 0.835 0.845 21.21 21.46 0.623 0.637 15.82 16.18 0.653 TYP 16.59 TYP 0.380 0.390 9.65 9.91 0.380 0.390 9.65 9.91 0.120 0.130 3.05 3.30 0.035 0.045 0.89 1.14 0.200 TYP 5.08 TYP 0.150 TYP 3.81 TYP 0.115 0.155 2.92 3.94	MIN MAX MIN MAX 0.148 0.168 3.76 4.27 0.055 0.065 1.40 1.65 0.035 0.045 0.89 1.14 0.01 TYP 0.254 TYP 0.007 0.009 0.18 0.23 0.995 1.005 25.27 25.53 0.835 0.845 21.21 21.46 0.623 0.637 15.82 16.18 0.653 TYP 16.59 TYP 0.380 0.390 9.65 9.91 0.120 0.130 3.05 3.30 0.035 0.045 0.89 1.14 45° 0.200 TYP 5.08 TYP 0.150 TYP 3.81 TYP 0.115 0.155 2.92 3.94


Pin Number	Qty
1	Gate Bias for Stage 2
2	Gate Bias for Stage 2
3	RF In
4	Gate Bias for Stage 1
5	Gate Bias for Stage 1
6	Drain Bias
7	Drain Bias
8	RF Out
9	Drain Bias
10	Drain Bias
11	Source

www.cree.com/rf

Part Number System

Parameter	Value	Units
Lower Frequency	5.5	GHz
Upper Frequency ¹	8.5	GHz
Power Output	25	W
Package	Flange	-

Table 1.

Note¹: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Character Code	Code Value		
А	0		
В	1		
С	2		
D	3		
E	4		
F	5		
G	6		
Н	7		
J	8		
K	9		
Examples:	1A = 10.0 GHz 2H = 27.0 GHz		

Table 2.

Product Ordering Information

Order Number CMPA5585025F	Description GaN MMIC	Unit of Measure Each	Image CREE CAPASSACE CNP ASSASSACE CNP ASSASSACE
CMPA5585025F-TB	Test board without GaN MMIC	Each	
CMPA5585025F-AMP	Test board with GaN MMIC installed	Each	

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for its use or for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications, and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended, or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death, or in applications for the planning, construction, maintenance or direct operation of a nuclear facility. CREE and the CREE logo are registered trademarks of Cree, Inc.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/RF

Sarah Miller Marketing Cree, RF Components 1.919.407.5302

Ryan Baker Marketing & Sales Cree, RF Components 1.919.407.7816

Tom Dekker Sales Director Cree, RF Components 1.919.407.5639

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Wolfspeed manufacturer:

Other Similar products are found below:

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB
MAAM-009633-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4
EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT#
MAX2692EVKIT# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E
119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT
EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1
SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB