

Thermally-Enhanced High Power RF GaN on SiC HEMT 350 W, 50 V, DC - 1.4 GHz

Description

The GTVA123501FA is a 350-watt GaN on SiC high electron mobility transistor (HEMT) for use in the DC - 1.4 GHz frequency band. It features input matching, high efficiency, and a thermally-enhanced surface-mount package with earless flange.

Features

- GaN on SiC HEMT technology
- Input matched •
- Typical pulsed CW performance: pulse width = 300 µs, duty cycle = 10%, DC - 1.4 Hz, V_{DS} = 50 V, I_{DO} = 100 mA

H-37265J-2

- Output power = 350 W min @ P_{3dB}
- Drain Efficiency = 70 %
- Gain = 18 dB
- Human Body Model Class 1B (per ANSI/ESDA/JEDEC JS-001)
- Capable of handling 10:1 VSWR (all phase angles) at V_{DS} = 50 V, I_{DO} = 100 mA, *f* = 1300 MHz, P_{OUT} = 350 W peak
- Pb-free and RoHS compliant

RF Characteristics


Pulsed RF Performance (tested in Wolfspeed test fixture) V_{DD} = 50 V, I_{DO} = 100 mA, P_{OUT} = 350 W, f = 1300 MHz, pulse width = 300 µs, 10% duty cycle

Characteristic	Symbol	Min	Тур	Мах	Unit
Gain	G _{ps}	19.4	20	21.5	dB
Drain Efficiency	η_D	70	74	_	%

All published data at T_{CASE} = 25°C unless otherwise indicated

ESD: Electrostatic discharge sensitive device—observe handling precautions!

Typical Performance (data taken in a Wolfspeed production test fixture)

Load Pull Performance

Pulsed CW signal: 16 µsec pulse width, 10% duty cycle, V[$V_{\rm DS}$ = 50 V, $I_{\rm DO}$ = 300 mA, compression level = $P_{\rm 3dB}$
---	---

Class A	3		Max Ou	tput Powe	er	
Freq [MHz]	Ζs [Ω]	Ζl [Ω]	Gain [dB]	P _{OUT} [dBm]	Pout [W]	PAE [%]
1200	1.91 – j4.59	2.64 - j0.41	18.9	56.85	484	68.2
1300	4.57 – j4.77	2.60 – j1.02	18.4	56.59	456	65.8
1400	4.70 + j1.32	1.98 – j0.34	18.6	56.41	438	66.5

Pulsed CW signal: 16 μ sec pulse width, 10% duty cycle, V_{DS} = 50 V, I_{DQ} = 300 mA, compression level = P_{3dB}

Class Al	3		Max E	fficiency		
Freq [MHz]	Ζs [Ω]	Ζl [Ω]	Gain [dB]	P _{OUT} [dBm]	Pout [W]	PAE [%]
1200	1.91 – j4.59	3.55 – j0.13	19.2	56.42	439	72.3
1300	4.57 – j4.77	3.35 + j0.10	19.1	56.05	403	71.0
1400	4.70 + j1.32	1.83 – j0.04	19.0	56.20	417	68.0

Pulsed CW signal: 16 μ sec pulse width, 10% duty cycle, V_{DS} = 50 V, I_{DQ} = 300 mA, compression level = P_{3dB}

Class Al	3		ΖO	ptimal		
Freq [MHz]	Ζs [Ω]	Ζl [Ω]	Gain [dB]	P _{OUT} [dBm]	Pout [W]	PAE [%]
1200	1.91 – j4.59	4.54 + j0.53	19.3	55.63	366	72.2
1300	4.57 – j4.77	3.80 + j0.25	19.2	55.64	366	73.8
1400	4.70 + j1.32	2.69 + j0.19	18.8	55.75	376	72.2

DC Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Мах	Unit
Drain-source Breakdown Voltage	$V_{GS} = -8 \text{ V}, I_D = 10 \text{ mA}$	V _{(BR)DSS}	150	_	_	V
Drain-source Leakage Current	V_{GS} = -8 V, V_{DS} = 10 V	I _{DSS}	_	_	5.8	mA
Gate Threshold Voltage	$V_{DS} = 10 \text{ V}, I_{D} = 42 \text{ mA}$	V _{GS(th)}	-3.8	-3.0	-2.3	V

Recommended Operating Conditions

Parameter	Conditions	Symbol	Min	Тур	Мах	Unit
Drain Operating Voltage		V _{DD}	0	_	50	V
Gate Quiescent Voltage	V _{DS} = 50 V, I _D = 100 mA	V _{GS(Q)}	_	-2.8	_	V

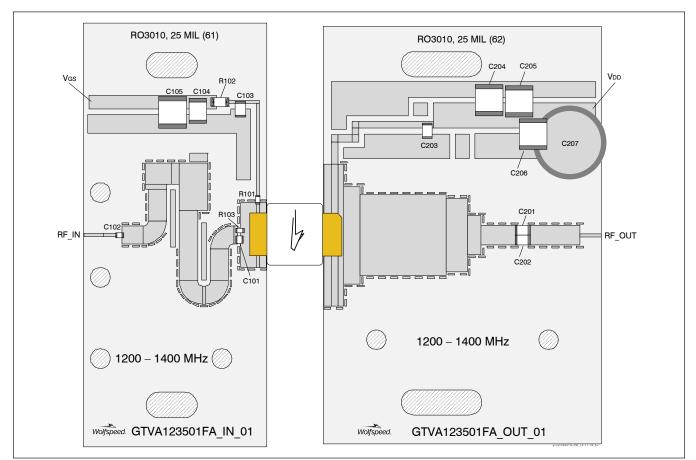
Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source Voltage	V _{DSS}	125	V
Gate-source Voltage	V _{GS}	-10 to +2	V
Gate Current	Ι _G	42	mA
Drain Current	۱ _D	15	А
Junction Temperature	Tj	225	°C
Storage Temperature Range	T _{STG}	-65 to +150	°C

Operation above the maximum values listed here may cause permanent damage. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the component. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For reliable continuous operation, the device should be operated within the operating voltage range (V_{DD}) specified above.

Thermal Characteristics

 T_{CASE} = 70 °C, P_{DISS} = 300 W peak, V_{DS} = 50 V, I_{DQ} = 100 mA, 1300 MHz, 300 µs pulse width, 10% duty cycle

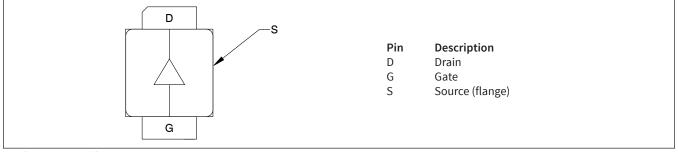

Parameter	Symbol	Value	Unit
Thermal Resistance, junction to case	$R_{ ext{ hetaJC}}$	0.17	°C/W

Ordering Information

Type and Version	Order Code	Package	Shipping
GTVA123501FA V1 R0	GTVA123501FA-V1-R0	H-37265J-2, single-ended, earless flange	Tape & Reel, 50 pcs
GTVA123501FA V1 R2	GTVA123501FA-V1-R2	H-37265J-2, single-ended, earless flange	Tape & Reel, 250 pcs
Evaluation Board			
Order Code	Frequency	Description	
LTN/GTVA123501FA-V1	DC - 1.4 GHz	Class AB, Rogers 3010, 0.64 mm [0.025"] thicl	x_{r} 2 oz. copper. ε_{r} = 10.2

Reference Circuit, DC - 1.4 GHz

Reference Circuit Asse	mbly
DUT	GTVA123501FA V1
Test Fixture Part No.	LTN/GTVA123501FA-V1
РСВ	Rogers 3010, 0.64 mm [0.025"] thick, 2 oz. copper, ε_r = 10.2
Find Gerber files for this te	est fixture on the Wolfspeed Web site at http://www.wolfspeed.com/RF

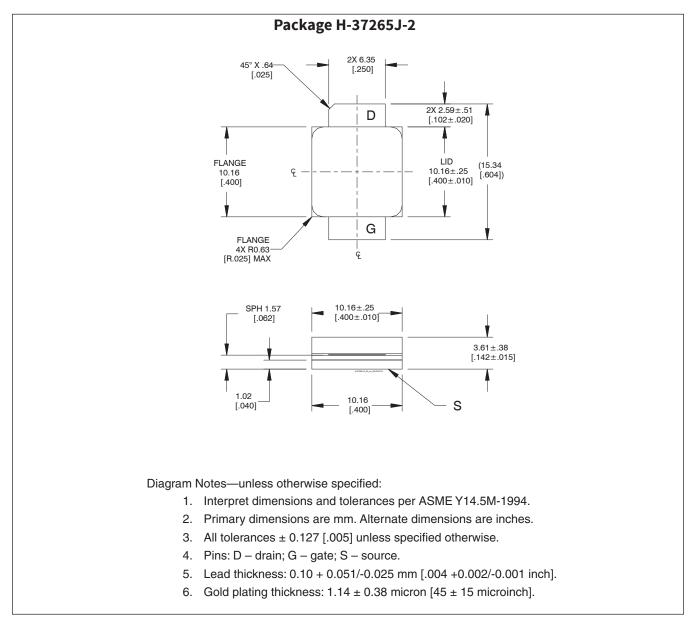

Assembly diagram (not to scale)

Reference Circuit (cont.)

Components Information

Component	Description	Manufacturer	P/N
Input			-
C101, C102	Capacitor, 56 pF	ATC	ATC100A560JW150XB
C103	Capacitor, 56 pF	ATC	ATC100B560JW500XB
C104	Capacitor, 1 µF	TDK Corporation	C4532X7R2A105M230KA
C105	Capacitor, 10 µF	TDK Corporation	C5750X5R1H106K230KA
R101, R103	Resistor, 10 ohms	Panasonic Electronic Components	ERJ-3GEYJ100V
R102	Resistor, 5.6 ohms	Panasonic Electronic Components	ERJ-8RQJ5R6V
Output			
C201, C202	Capacitor, 24 pF	ATC	ATC100B240JW500XB
C203	Capacitor, 56 pF	ATC	ATC100B560JW500XB
C204, C205, C206	Capacitor, 10 µF	TDK Corporation	C5750X5R1H106K230KA
C207	Capacitor, 100 µF	Cornell Dubilier Electronics (CDE)	SK101M100ST

Pinout Diagram (top view)



Lead connections for GTVA123501FA

See next page for package mechanical specifications

6

Package Outline Specifications

Revision History

Revision	Date	Data Sheet	Page	Subjects (major changes at each revision)
01	2016-05-23	Advance	All	Proposed specifications for new product development
02	2018 -05-08	Advance	All	Converted to Wolfspeed Data Sheet, updated DC and thermal characteristics
03	2019-01-07	Production	All	Information for production-released device, including firm specifications, operating conditions and performance, and reference circuit specifications.

For more information, please contact:

4600 Silicon Drive Durham, North Carolina, USA 27703 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com 919.407.7816

Notes

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

Copyright © 2018 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Wolfspeed™ and the Wolfspeed logo are trademarks of Cree, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF JFET Transistors category:

Click to view products by Wolfspeed manufacturer:

Other Similar products are found below :

CE3514M4 CE3514M4-C2 CE3520K3-C1 CE3521M4 CE3521M4-C2 CE3512K2-C1 CE3520K3 CG2H80030D-GP4 TGF2023-2-02 NPT1004D MAGX-011086 NPT25015D JANTXV2N4858 MMBFJ211 NPT2021 NPTB00025B 2SK3557-6-TB-E J211_D74Z NPTB00004A QPD0020 QPD1006 QPD1016 QPD1025L QPD1029L QPD1881L T2G6001528-Q3 SKY65050-372LF TGF2965-SM QPD1009 QPD1010 J304 CGH27015F CGH55015F1 CMPA801B030F GTVA262711FA-V2-R0 GTVA262701FA-V2-R0 CGH40006S CGH40010F CGH40025F CGH40035F CGH40045F CGH40120F CGH55015F2 CGH60008D CGH60030D CGHV14500F CGHV1F006S CGHV1J006D CGHV27030S CGHV27060MP