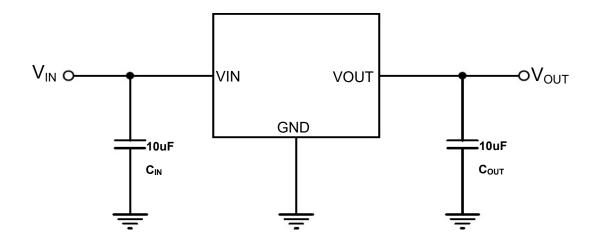


Features

- Low Power Consumption: 1.5μA (Typ)
- Maximum Output Current: 150mA
- Small Dropout Voltage 300mV@100mA (Vout=3.3V)
- High Input Voltage: Up to 36V
- High Accurate:
 WL9100 (B) ±2% Output Voltage
 WL9100(A) ±1% Output Voltage
- RoHS Compliant and Lead (Pb) Free

- Good Transient Response
- Integrated Short-Circuit Protection
- Over-Temperature Protection
- Output Current Limit
- Stable with Ceramic Capacitor
- Support Fixed Output Voltage
 1.8,2.5,2.8.3.0,3.3,3.6,4.0,4.2 and 5.0V
- Available Package SOT23-3 \ SOT89-3

Application


- Portable, Battery Powered Equipment
- Battery-powered equipment
- Weighting Scales

- Smoke detector and sensor
- Audio/Video Equipmen
- Home Automation

Description

The WL9100 series is a high voltage, ultralow-power, low dropout voltage regulator. The device can deliver 150mA output current with a dropout voltage of 300mV and allows an input voltage as high as 36V. The typical quiescent current is only 1.5µA. The device is available in fixed output voltages of 1.8,2.5,2.8,3.0,3.3,3.6,4.0,4.2,4.4 and 5.0V.The device features integrated short-circuit and thermal shutdown protection. Although designed primarily as fixed voltage regulators, the device can be used with external components to obtain variable voltages.

Application Circuits

Pin Configuration

Pin Description

	SOT23-3L	. Pin No.		D: N	D: E (:
WL9100S3-XX	WL9100SA-XX*	WL9100SB-XX*	WL9100SC-XX*	Pin Name	Pin Function
1	3	2	2	GND	Ground.
2	2	1	3	VIN	Supply voltage input
3	1	3	1	VOUT	Voltage Output
	SOT89-3L Pin No.			Dia Massa	Die Ferration
WL9100P3-XX	WL9100PA-XX*	WL9100PB-XX*	WL9100PC-XX*	Pin Name	Pin Function
1	3	2	2	GND	Ground.
2	2	1	3	VIN	Supply voltage input
3	1	3	1	VOUT	Voltage Output

NOTE: (*) It needs to be customized

Order Information

AS910012-345

Designator	Symbol	Description			
12	S3/P3	SOT23-3L / SOT89-3L			
34	Integer	Output Voltage 1.8,2.5,2.8.3.0,3.3,3.6,4.0,4.2 and 5.0V			
(F)	А	Accurate ±1%			
⑤ B		Accurate ±2%			

Model	Marking	Description	Package	T/R Qty
WL9100S3-XX*	AFXXA(B)	WL9100 36V,1.5µA IQ,	SOT23-3L	3,000 PCS
WL9100P3-XX*	AFXXA(B)	150mA Low-Dropout LDO	SOT89-3L	1,000 PCS

Note: (*) XX Represents the Output Voltage

Marking Information 12345

①②Represents the product name

Mark ①②	Product Series		
AF	WL9100 S3 / P3		

34Represents the Output Voltage

Mark	Output Voltage (V)			Mark	Ou	tput Voltage	: (V)
18		1.8		36		3.6	
25		2.5	——	40		4.0	
28		2.8		42		4.2	
30		3.0		50		5.0	
33		3.3					

⑤Represents the Output Voltage Accurate

Mai	·k⑤	Product Series	
±1% Output Voltage	±2% Output Voltage	WL9100 (A or B)	
A B		WE9100 (A 01 B)	

Absolute Maximum Ratings (1)(2)

Parameter		Symbol	Maximum Rating	Unit	
liament Malta ma		Vin	V _{SS} -0.3~V _{SS} +42.0	V	
Input Volta	ige	Vout	V _{SS} -0.3~V _{SS} +6.0	V	
Output Cur	rent	Іоит	150	mA	
Power Dissipation	SOT23-3	Pd	400	mW	
Fower Dissipation	SOT89-3	ru l	500	11100	
Thermal Resistance	SOT23-3	R _{0JA}	250	°C/W	
Thermal Nesistance	SOT89-3	К _Ө ЈА	200	°C/W	
Operating Temperature		Topr	-40~85	$^{\circ}\!\mathbb{C}$	
Storage Temperature		Tstg	-40~125	$^{\circ}\!\mathbb{C}$	
Soldering Tempera	ture & Time	Tsolder	260℃, 10s		

Note (1): Exceeding these ratings may damage the device.

ESD Ratings

Item	Description	Value	Unit
V(ESD-HBM) Human Body Model (HBM) ANSI/ESDA/JEDEC JS-001-2014 Classification, Class: 2		±4000	٧
	Charged Device Mode (CDM)		
V(ESD-CDM)	ANSI/ESDA/JEDEC JS-002-2014	±100	V
	Classification, Class: C0b		
LATOLLUB	JEDEC STANDARD NO.78E APRIL 2016	±150	mΛ
ILATCH-UP	Temperature Classification, Class: I	±150	mA

ESD testing is performed according to the respective JESD22 JEDEC standard. The human body model is a 100 pF capacitor discharged through a $1.5k\Omega$ resistor into each pin. The machine model is a 200pF capacitor discharged directly into each pin.

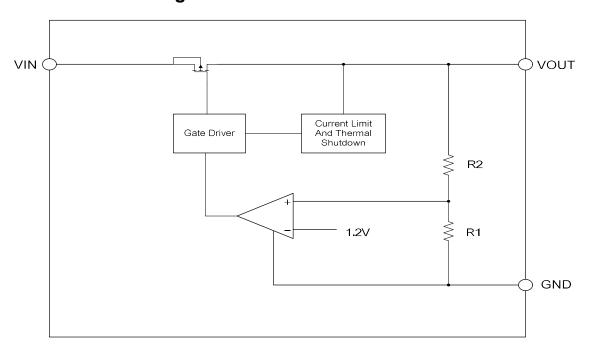
Recommended Operating Conditions

Parameter	MIN.	MAX.	Units
Supply voltage at V _{IN}	3.0	12	V
Operating junction temperature range, Tj	-40	125	°C
Operating free air temperature range, TA	-40	85	°C

Note: All limits specified at room temperature (TA = 25°C) unless otherwise specified. All room temperature limits are 100% production tested. All limits at temperature extremes are ensured through correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).

Note (2): The device is not guaranteed to function outside of its operating conditions

Note (3): The package thermal impedance is calculated in accordance to JESD 51-7.


Electrical Characteristics

(Test Conditions:VIN=12V, VOUT=Vset,CIN=10uF, COUT=10uF,TA=25°C, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Units	
Input Voltage	Vin		3.0		36	V	
Supply Current	ΙQ	Vin=12V Iload=0mA	_	1.5	3.0	uA	
Output Voltage WL9100 (A)	Vout1	VIN=12V IOUT=10mA	Vset*0.99	Vset	Vset*1.01	V	
Output Voltage WL9100 (B)	V оит2	Vin=12V Iout=10mA	Vset*0.98	Vset	Vset*1.02	V	
Maximum Output Current	Іоит(Мах)		_	150	_	mA	
	VDROP	Іоит =150mA	_	550			
	Vout=3.0V	Iоит=100mA	_	330	_	mV	
Dropout Voltage	VDROP	Іоит =150mA	_	500	_		
Dropout Voltage	Vоит=3.3V	Iоит =100mA	_	300	_	IIIV	
	VDROP	Iоит =150mA	_	520	_		
	Vоит=5.0V	Iоит=100mA	_	300	_		
Line Regulation	ΔVout/ ΔVin•Vout	Iουτ=10mA (Vset+2.0v)≦Vιν≦24V	_	0.15	_	%/V	
Load Regulation	ΔVоυт	V _{IN} =10V 1mA≦Iouт≦150mA	_	45	_	mV	
Short Current	Ishort	RL=1Ω		80		mA	
Output Noise Voltage	емо	Iо∪т=50mA BW = 300Hz~50kHz		50		uVrms	
Output Voltage Temperature Coefficient	ΔVουτ/ ΔΤ•Vουτ	Iоит=1 0mA		100		ppm/℃	

Function Block Diagram

Application Guideline

Input Capacitor

A $10\mu F$ ceramic capacitor is recommended to connect between V_{DD} and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both VIN and GND.

Output Capacitor

An output capacitor is required for the stability of the LDO. The recommended output capacitance is $10\mu F$, ceramic capacitor is recommended, and temperature characteristics are X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to VOUT and GND pins.

Dropout Voltage

The dropout voltage refers to the voltage difference between the VIN and VOUT pins while operating at specific output current. The dropout voltage VDROP also can be expressed as the voltage drop on the pass-FET at specific output current (IRATED) while the pass-FET is fully operating at ohmic region and the pass-FET can be characterized as an resistance RDS(ON). Thus the dropout voltage can be defined as (VDROP = VIN - VOUT = RDS(ON) x IRATED). Fornormal operation, the

suggested LDO operating range is (VIN > VOUT + VDROP) for good transient response and PSRR ability. Vice versa, while operating at the ohmic region will degrade the performance severely.

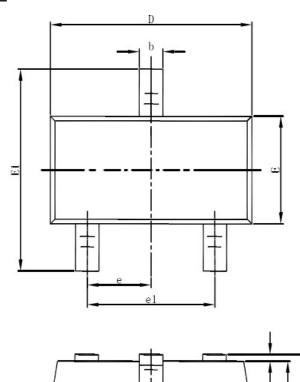
Thermal Application

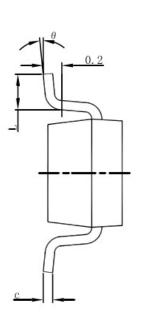
For continuous operation, do not exceed the absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated as below: TA=25°C, PCB,

The max PD= (125°C - 25°C) / (Thermal Resistance °C/W)

Power dissipation (PD) is equal to the product of the output current and the voltage drop across the output pass element, as shown in the equation below:

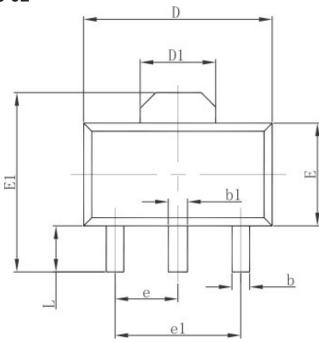
 $PD = (VIN - VOUT) \times IOUT$

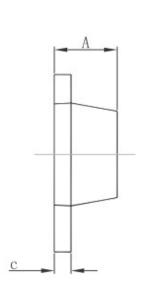

Layout Consideration


By placing input and output capacitors on the same side of the PCB as the LDO, and placing them as close as is practical to the package can achieve the best performance. The ground connections for input and output capacitors must be back to the WL9100 ground pin using as wide and as short of a copper trace as is practical. Connections using long trace lengths, narrow trace widths, and/ or connections through via must be avoided. These add parasitic inductances and resistance that results in worse performance especially during transient conditions.

Packaging Information

SOT23-3L




Cumbal	Dimensions In	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950	(BSC)	0.037(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

Packaging Information

SOT89-3L

Combal	Dimensions	In Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	1.400	1.600	0.055	0.063
b	0.320	0.520	0.013	0.020
b1	0.400	0.580	0.016	0.023
С	0.350	0.440	0.014	0.017
D	4.400	4.600	0.173	0.181
D1	1.550 REF.		0.061	REF.
E	2.300	2.600	0.091	0.102
E1	3.940	4.250	0.155	0.167
е	1.500 TYP.		0.060 TYP.	
e1	3.000	TYP.	0.118 TYP.	
L	0.900	1.200	0.035	0.047

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by WPMtek manufacturer:

Other Similar products are found below:

LV5684PVD-XH MCDTSA6-2R L7815ACV-DG LV56801P-E UA7805CKC 714954EB ZMR500QFTA BA033LBSG2-TR

NCV78M05ABDTRKG LV5680P-E L79M05T-E L78LR05D-MA-E NCV317MBTG NTE7227 MP2018GZD-33-P MP2018GZD-5-P

LV5680NPVC-XH ZTS6538SE UA78L09CLP UA78L09CLPR CAT6221-PPTD-GT3 MC78M09CDTRK NCV51190MNTAG

BL1118CS8TR1833 BL8077CKETR33 BL9153-33CC3TR BL9161G-28BADRN BRCO7530MMC CJ7815B-TFN-ARG LM317C

GM7333K GM7350K XC6206P332MR HT7533 LM7912S/TR LT1764S/TR LM7805T LM338T LM1117IMP-3.3/TR HT1117AM-3.3

HT7550S AMS1117-3.3 HT7150S 78L12 HT7550 HT7533-1 HXY6206I-2.5 HT7133 HT7533S 662K