

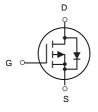
Product Specification

XBLW AO4485

P-Channel Enhancement Mode MOSFET

Description

The AO4485 uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a Battery protection or in other Switching application.


General Features

- ➤ VDS =-40 V ID = -13A
- \triangleright RDS(ON) < 19m Ω @ VGS= 10V

Application

- Battery protection
- Load switch
- Uninterruptible power supply

P-Channel MOSFET

Package Marking and Ordering Information

Product Model	Package Type	Marking	Packing	Packing Qty
XBLW AO4485	SOP-8	AO4485	Tape	3000Pcs/Reel

Absolute Maximum Ratings (Tc=25°C unless otherwise noted)

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	- 40	V
VGS	Gate-Source Voltage	±20	V
I _D @T _A =25°C	Drain Current ³ , V _{GS} @ 10V	-13	А
IDM	Pulsed Drain Current ¹	-52	Α
P _D @T _A =25°C	Total Power Dissipation	3	W
TSTG	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C
Rthj-a	Maximum Thermal Resistance, Junction-ambient ³	41	°C/W

Electrical Characteristics (TJ = 25°C, unless otherwise noted)

Parameter		Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Static Characteristics				<u> </u>			
Drain-Source Breakdown Volta	age	V _{(BR)DSS}	$V_{GS} = 0V, I_D = -250\mu A$	-40	-	-	V
Gate-body Leakage current		Igss	V _{DS} = 0V, V _{GS} = ±20V	-	-	±100	nA
Zero Gate Voltage Drain	TJ=25°C		101/1/	-	-	-1	
Current	T _J =100°C	IDSS	$V_{DS} = -40V, V_{GS} = 0V$	-	-	-100	μA
Gate-Threshold Voltage	1	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-1.0	-1.5	-2.2	V
- · · · · · · · · · · · · · · · · · · ·		_	V _{GS} = -10V, I _D = -10A	-	14.0	19	
Drain-Source On-Resistance ⁴		R _{DS(on)}	V _{GS} = -4.5V, I _D = -5 A	-	19.5	25	mΩ
Forward Transconductance ⁴		g fs	V _{DS} = -10V, I _D = -10A		44	-	S
Dynamic Characteristics5	i						
Input Capacitance	put Capacitance			-	2525	-	pF
Output Capacitance		Coss	V _{DS} = -20V, V _{GS} =0V, f =1MHz	-	190	-	
Reverse Transfer Capacitance	everse Transfer Capacitance			-	172	-	
Gate Resistance		Rg	f=1MHz	-	10	-	Ω
Switching Characteristics	5	•			•	•	
Total Gate Charge	otal Gate Charge			-	35	_	nC
Gate-Source Charge		Qgs	$V_{GS} = -10V, V_{DS} = -20V,$ $I_{D} = -10A$	-	5.5	-	
Gate-Drain Charge		Q _{gd}		-	8	-	
Turn-On Delay Time		t _{d(on)}		-	14.5	-	ns
Rise Time		tr	$V_{GS} = -10V, V_{DD} = -20V,$	-	20.2	_	
Turn-Off Delay Time		t _{d(off)}	$R_G = 3\Omega$, $I_D = -10A$	-	32	_	
Fall Time		tf		-	10	_	
Drain-Source Body Diode	Character	istics	1	I	1	1	
Diode Forward Voltage ⁴		V _{SD}	Is = -10A, V _{GS} = 0V	-	_	-1.2	V
Continuous Source Current	T _C =25°C	Is	-	-	-	-13	Α

Note:

- 1. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C.
- 2. The EAS data shows Max. rating . The test condition is V_{DD} = -25V, V_{GS} = -10V, L= 0.1mH, I_{AS} = -34A.
- 3. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper, The value in any given application depends on the user's specific board design.
- 4. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%.
- $5. \ This \ value \ is \ guaranteed \ by \ design \ hence \ it \ is \ not \ included \ in \ the \ production \ test.$

Typical Characteristics

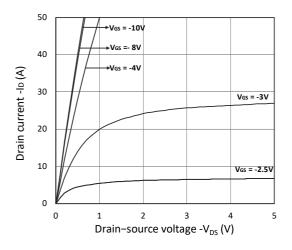


Figure 1. Output Characteristics

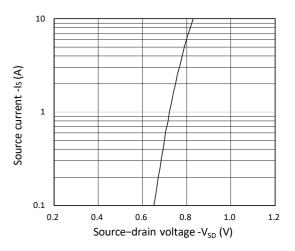


Figure 3. Forward Characteristics of Reverse

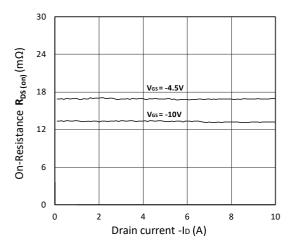


Figure 5. $R_{DS(ON)}$ vs. I_D

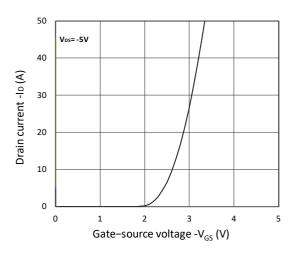


Figure 2. Transfer Characteristics

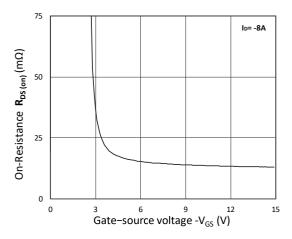


Figure 4. $R_{DS(ON)}$ vs. V_{GS}

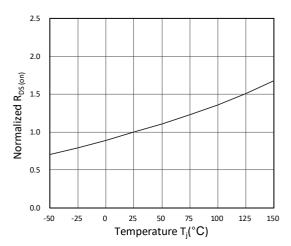


Figure 6. Normalized $R_{DS(on)}$ vs. Temperature

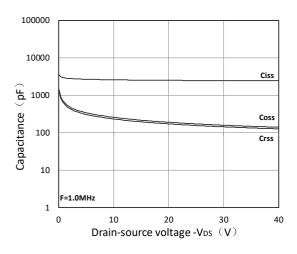


Figure 7. Capacitance Characteristics

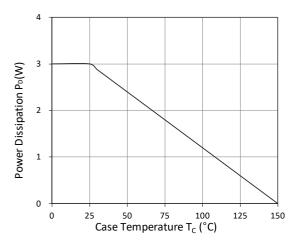


Figure 9. Power Dissipation

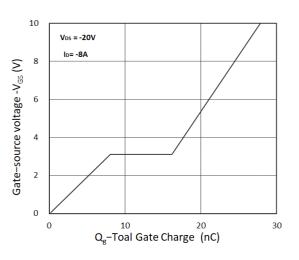


Figure 8. Gate Charge Characteristics

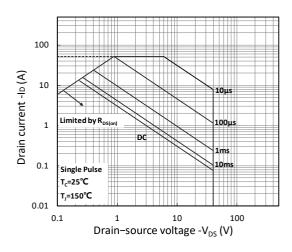


Figure 10. Safe Operating Area

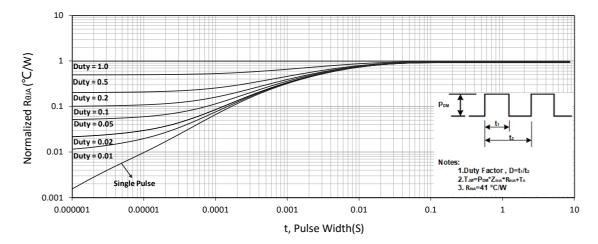


Figure 11. Normalized Maximum Transient Thermal Impedance

Test Circuit

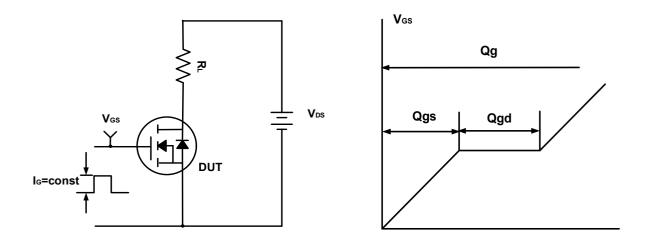


Figure A. Gate Charge Test Circuit & Waveforms

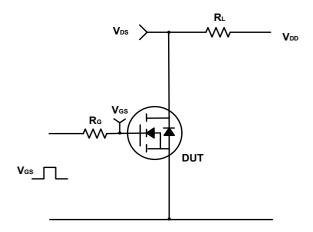
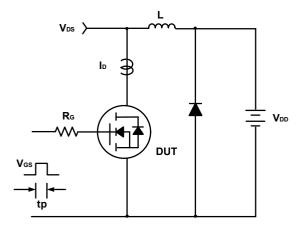
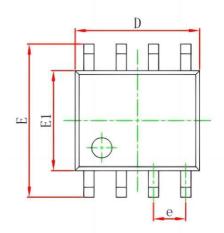
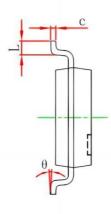
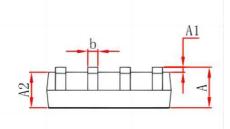


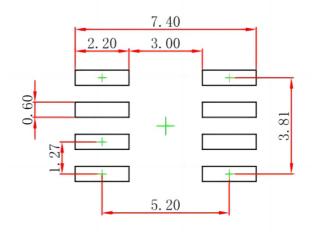
Figure B. Switching Test Circuit & Waveforms


Figure C. Unclamped Inductive Switching Circuit & Waveforms



Package Outline Dimensions


SOP-8

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0. 250	0.007	0.010	
D	4.800	5.000	0.189	0. 197	
e	1.270 (BSC)		0.050 (BSC)		
E	5.800	6. 200	0. 228	0. 244	
E1	3.800	4.000	0.150	0. 157	
L	0.400	1. 270	0. 016	0.050	
θ	0 °	8°	0 °	8°	

Note:

- 1.Controlling dimension:In millimeters.
- 2.General tolerance:± 0.05mm.
- 3. The pad layout is for reference purposes only.

Statement:

- XBLW reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using XBLW products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- XBLW products have not been licensed for life support, military, and aerospace applications, and therefore XBLW is not responsible for any consequences arising from the use of this product in these areas.
- If any or all XBLW products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all XBLW products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- XBLW documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. XBLW assumes no responsibility or liability for altered documents.
- XBLW is committed to becoming the preferred semiconductor brand for customers, and XBLW will strive to provide customers with better performance and better quality products.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by XBLW manufacturer:

Other Similar products are found below:

IRFD120 IRFY240C JANTX2N5237 2SK2267(Q) BUK455-60A/B MIC4420CM-TR VN1206L NDP4060 SI4482DY

IPS70R2K0CEAKMA1 SQD23N06-31L-GE3 TK16J60W,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG

DMN1053UCP4-7 SQJ469EP-T1-GE3 NTE2384 DMC2700UDMQ-7 DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR

DMN31D5UDJ-7 DMP22D4UFO-7B DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 IRF40H233XTMA1 STU5N65M6

DMN6022SSD-13 DMN13M9UCA6-7 DMTH10H4M6SPS-13 DMN2990UFB-7B IPB80P04P405ATMA2 2N7002W-G MCAC30N06Y-TP MCQ7328-TP NTMC083NP10M5L NVMFS2D3P04M8LT1G BXP7N65D BXP4N65F AOL1454G WMJ80N60C4 BXP2N20L

BXP2N65D BXT1150N10J BXT1700P06M TSM60NB380CP ROG RQ7L055BGTCR DMNH15H110SK3-13