
Kintex-7 FPGA
Connectivity Targeted
Reference Design

User Guide

Vivado Design Suite 2014.3

UG927 (v7.0) December 18, 2014

Kintex-7 FPGA Connectivity TRD www.xilinx.com UG927 (v7.0) December 18, 2014

DISCLAIMER

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum
extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL
WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising
under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or
consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action
brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same.
Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are
subject to the terms and conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which can be viewed at
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx
products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and
liability for use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of Sale which can be viewed at
www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING
FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A
VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE
XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES
THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF
XILINX PRODUCTS IN SUCH APPLICATIONS.

Fedora Information

Xilinx obtained the Fedora Linux software from Fedora (http://fedoraproject.org/), and you may too. Xilinx made no changes to the software
obtained from Fedora. If you desire to use Fedora Linux software in your product, Xilinx encourages you to obtain Fedora Linux software
directly from Fedora (http://fedoraproject.org/), even though we are providing to you a copy of the corresponding source code as provided
to us by Fedora. Portions of the Fedora software may be covered by the GNU General Public license as well as many other applicable open
source licenses. Please review the source code in detail for further information. To the maximum extent permitted by applicable law and if
not prohibited by any such third-party licenses, (1) XILINX DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE; AND (2) IN NO EVENT SHALL XILINX BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE,DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Fedora software and technical information is subject to the U.S. Export Administration Regulations and other U.S. and foreign law, and may
not be exported or re-exported to certain countries (currently Cuba, Iran, Iraq, North Korea, Sudan, and Syria) or to persons or entities
prohibited from receiving U.S. exports (including those (a) on the Bureau of Industry and Security Denied Parties List or Entity List, (b) on
the Office of Foreign Assets Control list of Specially Designated Nationals and Blocked Persons, and (c) involved with missile technology or
nuclear, chemical or biological weapons). You may not download Fedora software or technical information if you are located in one of these
countries, or otherwise affected by these restrictions. You may not provide Fedora software or technical information to individuals or entities
located in one of these countries or otherwise affected by these restrictions. You are also responsible for compliance with foreign law
requirements applicable to the import and use of Fedora software and technical information.

© Copyright 2012–2014 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Vivado, Virtex, Zynq, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. PCI, PCIe, and PCI Express are trademarks of PCI-SIG
and used under license. All other trademarks are the property of their respective owners.

UG927 (v7.0) December 18, 2014 www.xilinx.com Kintex-7 FPGA Connectivity TRD

Revision History
The following table shows the revision history for this document.

Date Version Revision

07/18/2012 1.0 Initial Xilinx release.

11/06/2012 1.1 Added second sentence to third paragraph under Connectivity Targeted Reference
Design. Updated Figure 1-1, Figure 1-2, and Figure 1-3. Changed “FIFO” to “Virtual
FIFO” in third paragraph under Raw Ethernet Performance Mode. Updated resource
utilization usage data in Table 1-1. Updated Figure 2-28. Deleted first two rows in
Table 2-2. Deleted “Multiport Virtual Packet FIFO” section from Chapter 2, Getting
Started. Updated Figure 3-10. Changed “Multiport Packet FIFO” to “AXI Virtual FIFO”
in Table 3-5. Changed “DDR3 Virtual FIFO” to “AXI Virtual FIFO”. Changed “virtual
FIFO controller” to “AXI Virtual FIFO controller” in last sentence under AXI Virtual
FIFO. Changed “Virtual FIFO” to “AXI Virtual FIFO” in section title Packet
Generator/Checker Behind AXI Virtual FIFO. Updated Figure 5-1. Updated Figure A-1.
Deleted “Packetized VFIFO registers” row from Table A-2. Deleted “Memory Controller
Registers” section from Appendix A, Register Description.

11/07/2012 1.2 Added Implementing the Design Using the Vivado Flow to Chapter 2, Getting Started.

01/09/2013 2.0 Replaced references to USB stick with link to design files under Test Setup Requirements
and Installing the Linux Device Drivers. Changed “ISE Design Suite Logic Edition
v14.1” to “Vivado® Design Suite” under Test Setup Requirements and Rebuilding the
Design. Added note preceding Hardware Demonstration Setup. Deleted Figure 2-18
“MIG Core Operation”, “Implementing the Design Using Command Line Options” and
“Implementing the Design Using the PlanAhead Design Tool” sections from Chapter 2,
Getting Started. Added MCS file generation to Implementing the Design Using the Vivado
Flow. Changed “8,192” to “a configurable number of” under Initialization Phase.
Changed “Completed Byte Count (0x001D)” to “Completed Byte Count (0x001C)”
above Table A-6. Replaced ISE Design Suite user guide reference with Vivado Design
Suite user guide references under Xilinx Resources. Added reference to Faster
Technology FM-S14 User Manual under Further Resources.

04/17/2013 3.0 Updated title page for Vivado Design Suite 2013.1. Changed “32-bit” to “32- and 64-bit”
in last paragraph under Connectivity Targeted Reference Design. Added Notes 2 and 3
following Figure 1-1. Changed “ModelSim simulator v10.1a” to “QuestaSim simulator
v10.1b” throughout document. Updated the cores and netlist directories and added the
DMA netlist and AXILite Interconnect IP directories under Rebuilding the Design.
Deleted last paragraph and “Generating the MIG IP Core through CORE generator”
subsection under Rebuilding the Design. Updated “UG477” to “PG054”, “UG773” to
“PG072”, and “UG692” to “PG068” user guide references throughout document.
Revised Simulating the Design subsection. Added last sentence under Overview.
Revised paragraph following Table 2-3. Added 64-Bit Driver Compilation subsection.
Updated references in Appendix G, Additional Resources.

07/10/2013 4.0 Updated title page for Vivado Design Suite 2013.2. Updated contents of Table A-20.
Replaced references to the UCF file with references to XDC file in Different Quad Selection
for 10GBASE-R IP. Added note in Resource Utilization. Updated references in
Appendix G, Additional Resources.

Kintex-7 FPGA Connectivity TRD www.xilinx.com UG927 (v7.0) December 18, 2014

11/20/2013 5.0 Updated title page for Vivado Design Suite 2013.3 and changed references to earlier
Vivado Design Suite versions to 2013.3. Added Installing the Windows Device Driver,
page 22 through page 29. Added note on page 37. Revised the file name paths and
instructions under Implementing the Design Using the Vivado Flow and Simulating the
Design, page 42. Strengthened the description in the power connection caution note on
page 16. Added Windows Device Driver and Application, page 74 through page 81.
Revised the file name paths and instructions under 64-Bit Driver Compilation, page 98,
Jumbo Frames, page 98, and Driver Queue Depth, page 99. Revised Directory Structure
shown in Figure B-1, page 113 and path names under File Descriptions, page 114.
Revised all links and references in Appendix G, Additional Resources and revised links
to web pages and documents throughout document to conform to latest linking style
convention.

12/18/2013 5.0.1 Tech Pubs edit.

05/14/2014 6.0 Updated for Vivado Design Suite 2014.1. Chapter 1: Usage numbers changed in
Resource Utilization, page 11. Chapter 2: Version 10.1b was dropped from Simulation
Requirements, page 13. Revised the path to the LogiCORE™ IP blocks in Rebuilding the
Design, page 39. Added section Implementing the Design Using Vivado IP Integrator
(IPI) Flow, page 39. Figure 2-10 InstallShield Wizard First Window was replaced.
Updated Reprogramming the KC705 Board. Commands and paths changed in
Simulating the Design, page 42. The USE_DIFF_QUAD macro was removed from
Table 2-2 Macro Description for Design Change. Chapter 5: The Design Top-Level Only
Modifications section was removed. Appendix B: In the sources folder, changed
ip_catalog/ip_cores to ip_catalog/ip_cores/ip_package in text and in Figure B-1. Updated the
contents of the doc folder. Appendix C: Corrected the path after the procedure in
Compiling Traffic Generator Applications, page 115. Removed redundant Figure C-2
Private LAN Setup graphic.

12/18/2014 7.0 Updated for Vivado Design Suite 2014.3. This document is for Vivado Design Suite IP
Integrator (IPI) designs only, so HDL flow information is removed or updated.
Implementing the Design Using the Vivado Flow is removed. Updated the Resource
Utilization table. Updated the Rebuilding the Design section. Commands in Simulating
the Design changed. Updated the Windows Device Driver and Application and Internal
Buffer Transfers sections. Revised Figure 2-17 and Figure 2-19. Updated the directory
structure in Figure B-1 with IPI information.

Date Version Revision

Kintex-7 FPGA Connectivity TRD www.xilinx.com 5
UG927 (v7.0) December 18, 2014

Revision History . 3

Chapter 1: Introduction
Connectivity Targeted Reference Design . 7
Features. 10
Resource Utilization. 11

Chapter 2: Getting Started
Requirements . 13
Hardware Demonstration Setup . 14
Ethernet Specific Features . 38
Rebuilding the Design . 39
Simulation . 41

Chapter 3: Functional Description
Hardware Architecture . 45
Linux Device Driver and Application . 63
Windows Device Driver and Application . 74

Chapter 4: Performance Estimation
Theoretical Estimate. 91
Measuring Performance . 94
Performance Observations . 95

Chapter 5: Designing with the TRD Platform
Software-Only Modifications . 97
Design Changes . 99

Appendix A: Register Description
DMA Registers. 103
User Space Registers . 105

Appendix B: Directory Structure and File Description
Directory Structure . 113
File Descriptions . 114

Appendix C: Software Application and Network Performance
Compiling Traffic Generator Applications . 115

Table of Contents

Send Feedback

6 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Private Network Setup and Test . 115

Appendix D: Troubleshooting

Appendix E: Building the Windows Software
Required Tools. 121
Batch File Modifications . 121

Appendix F: Enabling Debugging with the Windows Driver

Appendix G: Additional Resources
Xilinx Resources . 125
Solution Centers . 125
References . 125

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 7
UG927 (v7.0) December 18, 2014

Chapter 1

Introduction

This chapter introduces the Kintex®-7 Connectivity Targeted Reference Design (TRD).
summarizes its modes of operation, and identifies the features provided.

Connectivity Targeted Reference Design
Figure 1-1 depicts the block level overview of the Kintex-7 Connectivity TRD which
delivers up to 20 Gb/s of performance per direction.

The design is a dual Network Interface Card (NIC) with a GEN2 x8 PCIe endpoint, a
multi-channel packet DMA from Northwest Logic, DDR3 memory for buffering, 10G
Ethernet MAC, and 10GBASE-R standard compatible physical layer interface. The
PCIe-DMA together is responsible for movement of data between a PC system and FPGA
(S2C implies data movement from PC system to FPGA and C2S implies data movement
from FPGA to PC system).

DDR3 SDRAM (64-bit, 1,600 Mb/s or 800 MHz) is used for packet buffering – a virtual
FIFO layer facilitates the use of DDR3 as multiple FIFOs. The virtual FIFO layer is built
using the AXI Stream interconnect and AXI Virtual FIFO controller CoreGEN IPs

Dual NIC application is built over this by use of Ten Gigabit Ethernet MAC and Ten
Gigabit PCS/PMA (10GBASE-R PHY) IPs. The 10G MAC connects to the 10G BASE-R
PHY over 64-bit, SDR XGMII parallel interface. Additionally, the design provides power
monitoring capability based on a PicoBlaze™ controller engine.

For software, the design provides 32- and 64-bit Linux drivers for all modes of operation
listed below and a graphical user interface (GUI) which controls the tests and monitors the
status.

Send Feedback

8 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 1: Introduction

Notes:

1. The arrows in Figure 1-1 indicate AXI interface directions from master to slave. They
do not indicate data flow directions.

2. The DMA netlist shipped along with this core is an evaluation netlist. For full version
netlist, contact Northwest Logic.

3. The DMA used in the TRD is configured for x8Gen2 PCIe interface. For other supported
configurations, contact Northwest Logic.

Operation Modes
The design offers the following modes of operation – all available within a single design
bitstream.

PCIe-DMA Performance Mode

This mode demonstrates performance of the GEN2 x8 PCIe-DMA followed by a packet
generator and a checker in hardware (see Figure 1-2).

X-Ref Target - Figure 1-1

Figure 1-1: Kintex-7 FPGA Connectivity TRD Block Diagram

UG927_c1_01_102512

G
T

Multi-channel
DMA for PCIe

XGEMAC

10
G

B
A

SE
-R

PC
Ie

 In
te

gr
at

ed
 E

nd
po

in
t B

lo
ck

 x
8

G
en

2

A
XI

-S
T

B
as

ic
 W

ra
pp

er

AXI
MIG DDR3

S2C0

XG
M

II

64 x
1600Mbps

PC
Ie

 x
8

G
EN

2
Li

nk

Software
Driver

G
U
I

Integrated Blocks in FPGA Third Party IPXilinx IP On BoardCustom Logic

AXI-Lite AXI-ST AXI-MM

TCP/IP
Stack

Network
Application
(ping, http)

HardwareSoftware

AXI4 Master AXI4-Lite

Network
Application
(ping, http)

G
T

XGEMAC

10
G

B
A

SE
-R

XG
M

II

AXI4-Lite

G
T

D
D
R
3

I
O

AXI VFIFO

51
2-

bi
t @

20

0M
H

z

A
XI

-S
T

12
8-

bi
t @

 2
50

M
H

z

A
XI

-S
T

12
8-

bi
t @

 2
50

M
H

z

AXI Lite Interconnect

Power
Monitor

XADC
User

Registers
AXI4 Lite

Slave
IPIF

64-bit @
156.25MHz

64-bit @
156.25MHz

Software DriverStandard OS Components

C2S0

C2S1

S2C1

CHK

G
E
N

G
E
N

CHK

AXIS IC
M1 M3M2M0

AXI VFIFOAXI VFIFO

WR

RD

AXI VFIFO

Address
Filtering

Address
Filtering

AXIS IC
S1 S3S2S0

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 9
UG927 (v7.0) December 18, 2014

Connectivity Targeted Reference Design

Capability of the PCIe-DMA system standalone is performed without involvement of any
further design blocks.

PCIe-DMA Performance mode supports:

1. Loopback Mode: Software generates packets in user space. These packets are sent to
hardware over PCIe-DMA, returned back to the software driver, and are tested for
integrity.

2. Generator Mode: Hardware generates packets and the software driver checks them
for integrity.

3. Checker Mode: The software driver generates packets in user space. These packets are
sent to hardware and then checked for integrity.

All the above modes of operation are user configurable through register programming.

Raw Ethernet Performance Mode

This mode demonstrates performance of the 10G Ethernet path showcasing hardware
design capability for high performance (see Figure 1-3).

The software driver generates raw broadcast Ethernet frames with no connection to the
networking stack.

The packet originates at the user space and moves to the FPGA through PCIe-DMA,
traverses through DDR3 based Virtual FIFO, XGEMAC and 10GBASE-R PHY, where it is
looped back through the other network channel and sent back to the software driver.

This only supports the Loopback mode of operation.

X-Ref Target - Figure 1-2

Figure 1-2: PCIe-DMA Performance Mode

G
T

Multi-channel
DMA for PCIe

XGEMAC

10
G

B
A

SE
-R

PC
Ie

 In
te

gr
at

ed
 E

nd
po

in
t B

lo
ck

 x
8

G
en

2

A
XI

-S
T

B
as

ic
 W

ra
pp

er
AXI
MIG DDR3

S2C0

XG
M

II

64 x
1600Mbps

PC
Ie

 x
8

G
EN

2
Li

nk

Software
Driver

G
U
I

Integrated Blocks in FPGA Third Party IPXilinx IP Custom Logic

AXI-Lite AXI-ST AXI-MM

TCP/IP
Stack

Network
Application
(ping, http)

HardwareSoftware

AXI4 Master AXI4-Lite

Address
Filtering

Network
Application
(ping, http)

G
T

XGEMAC

10
G

B
A

SE
-R

XG
M

II

AXI4-Lite

Address
Filtering

G
T

D
D
R
3

I
O

AXI
Interconnect

51
2-

bi
t @

20

0M
H

z

A
XI

-S
T

12
8-

bi
t @

 2
50

M
H

z

A
XI

-S
T

12
8-

bi
t @

 2
50

M
H

z

AXI Lite Interconnect

Power
Monitor

XADC
User

Registers
AXI4 Lite

Slave
IPIF

64-bit @
156.25MHz

64-bit @
156.25MHz

Software Driver

C2S0

C2S1

S2C1

CHK

G
E
N

G
E
N

CHK

GEN

GEN

CHK

CHK

WR

RD
AXI VFIFO

AXIS IC
S1 S3S2S0

AXIS IC
M1 M3M2M0

UG927_c1_02_102512

Send Feedback

10 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 1: Introduction

Application Mode

This mode demonstrates end-to-end application like a dual 10G NIC. The software driver
hooks up to the networking stack and standard networking applications can be used.
However, due to lack of offload engine in hardware, the performance remains low.

The packets traverse through TCP/IP stack due to invocation of various standard
networking applications.

Features
The Kintex-7 Connectivity TRD features are divided into base features and application
features.

Base Features
This section lists the features of the PCIe and DMA, which form the backbone of the
design:

• PCI Express® v2.1 compliant x8 Endpoint operating at 5 Gb/s/lane/direction

• PCIe transaction interface utilization engine

• MSI and legacy interrupt support

• Bus mastering scatter-gather DMA

• Multi-channel DMA

• AXI4 streaming interface for data

• AXI4 interface for register space access

X-Ref Target - Figure 1-3

Figure 1-3: Raw Ethernet Performance Demo

UG927_c1_03_102512

GEN

GEN

CHK

CHK

G
T

Multi-channel
DMA for PCIe

XGEMAC

10
G

B
A

SE
-R

PC
Ie

 In
te

gr
at

ed
 E

nd
po

in
t B

lo
ck

 x
8

G
en

2

A
XI

-S
T

B
as

ic
 W

ra
pp

er
AXI
MIG DDR3

S2C0

XG
M

II

64 x
1600Mbps

PC
Ie

 x
8

G
EN

2
Li

nk

Software
Driver

G
U
I

Integrated Blocks in FPGA Third Party IPXilinx IP On BoardCustom Logic

AXI-Lite AXI-ST AXI-MM

TCP/IP
Stack

Network
Application
(ping, http)

HardwareSoftware

AXI4 Master AXI4-Lite

Network
Application
(ping, http)

G
T

XGEMAC

10
G

B
A

SE
-R

XG
M

II

AXI4-Lite

Address
Filtering G

T

D
D
R
3

I
O

51
2-

bi
t @

20

0M
H

z

A
XI

-S
T

12
8-

bi
t @

 2
50

M
H

z

A
XI

-S
T

12
8-

bi
t @

 2
50

M
H

z

AXI Lite Interconnect

Power
Monitor

XADC
User

Registers
AXI4 Lite

Slave
IPIF

64-bit @
156.25MHz

64-bit @ 156.25MHz

Software DriverStandard OS Components

C2S0

C2S1

S2C1

CHK

G
E
N

G
E
N

CHK

AXIS IC
M1 M3M2M0

AXI VFIFO
WR

RD
AXI VFIFO

AXIS IC
S1 S3S2S0

Address
Filtering

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 11
UG927 (v7.0) December 18, 2014

Resource Utilization

• DMA performance engine

• Full duplex operation

• Independent transmit and receive channels

Application Features
This section lists the features of the developed application:

• 10 Gigabit Ethernet MAC with 10G BASE-R PHY

• Address filtering

• Inter-frame gap control

• Jumbo frame support up to 16,383 bytes in size

• Ethernet statistics engine

• Management interface for configuration (MDIO)

• Picoblaze based PVT monitoring

• Engine in hardware to monitor power by reading TI's UCD9248 power controller
chip on-board KC705

• Engine in hardware to monitor die temperature and voltage rails via Xilinx
Analog-to-Digital Converter

• Application demand driven power management

• Option to change PCIe link width and link speed for reduced power consumption
in lean traffic scenarios

Resource Utilization
Resource utilization is shown in Table 1-1.

Note: The resource utilization number refers to the build corresponding to Vivado® Design Suite
2014.3 release. The utilization number might vary for a newer Vivado design suite build.

Table 1-1: Resource Utilization

Resource Total Available Usage

Slice Registers 407,600 96,794 (23.74%)

Slice LUT 203,800 75,173 (36.88%)

RAMB36E1 445 132 (29.66)

MMCME2_ADV 10 4 (40%)

PLLE2_ADV 10 1 (10%)

BUFG/BUFGCTRL 32 10 (31.25%)

XADC 1 1 (100%)

IOB 500 134 (26%)

GTXE2_CHANNEL 16 10 (62%)

GTXE2_COMMON 4 3 (75%)

Send Feedback

12 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 1: Introduction

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 13
UG927 (v7.0) December 18, 2014

Chapter 2

Getting Started

This chapter is a quick-start guide enabling the user to test the Targeted Reference Design
(TRD) in hardware with the software driver provided, and also simulate it. Step-by-step
instructions are provided for testing the design in hardware.

Requirements

Simulation Requirements
TRD simulation requires:

1. QuestaSim Simulator

2. Xilinx simulation libraries compiled for QuestaSim

Test Setup Requirements
Testing the design in hardware requires:

1. KC705 Evaluation board with XC7K325T-2FFG900 FPGA

2. Design files

a. Design source files

b. Device driver files

c. FPGA programming files

Design files are available at the Kintex-7 FPGA Connectivity Kit Documentation
website.

3. Vivado® Design Suite

4. Micro USB cable

5. FM-S14 quad SFP+ FMC

6. Two SFP+ connectors with Fiber Optic cable

7. Fedora 16 LiveDVD

8. PC with PCIe v2.0 slot. Recommended PCI Express® Gen2 PC system motherboards
are ASUS P5E (Intel X38), ASUS Rampage II Gene (Intel X58) and Intel DX58SO (Intel
X58). Note the Intel X58 chipsets tend to show higher performance. This PC could also
have Fedora Core 16 Linux OS installed on it.

Note: This document refers to the initially released TRD version (v1_0). For subsequent releases,
the design version will be upgraded but the change will not be reflected in this document.

Send Feedback

14 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 2: Getting Started

Hardware Demonstration Setup
This section details the hardware setup and use of provided application and control GUI to
help the user get started quickly with the hardware. It provides a step-by-step explanation
on hardware bring-up, software bring-up, and use of the application GUI.

All procedures listed in the following sections require super user access on a Linux
machine. When using Fedora 16 LiveDVD provided with the kit, super user access is
granted by default due to the way the kernel image is built; if LiveDVD is not used contact
the system administrator for super user access.

1. With the power supply turned off, ensure that switches P1 and P2 on the FM-S14 FMC
card are in the ON position, as shown in Figure 2-1.

X-Ref Target - Figure 2-1

Figure 2-1: DIP Switch Position on FMC Card

UG927_c2_01_050114

P1 and P2 must
be in ON position

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 15
UG927 (v7.0) December 18, 2014

Hardware Demonstration Setup

2. Insert SFP+ connectors to channel 2 and channel 3 positions as shown in Figure 2-2.
X-Ref Target - Figure 2-2

Figure 2-2: SFP+ Connector Position on FMC Card

UG927_c2_02_050114

Send Feedback

16 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 2: Getting Started

3. Insert the FM-S14 FMC card to the HPC slot of KC705 as shown in Figure 2-3. Remove
the cap from the fiber optic cables and connect the fiber optic cables in a loopback
fashion as shown in the figure.

4. Connect the 12V ATX power supply 4-pin disk drive type connector to the board. Note
that the 6-pin ATX supply cannot be connected directly to the KC705 board and the
6-pin adapter is required.

Caution! Do NOT plug a PC ATX power supply 6-pin connector into J49 on the KC705 board
The ATX 6-pin connector has a different pinout than J49. Connecting an ATX 6-pin connector into
J49 will damage the KC705 board and void the board warranty.

5. With the host system powered off, insert the KC705 board in the PCI Express slot
through the PCI Express x8 edge connector.

6. Ensure that the connections are secure so as to avoid loose contact problems. Power on
the KC705 board and then the system.

X-Ref Target - Figure 2-3

Figure 2-3: Setup with Fiber Optic Cable

UG927_c2_03_050114

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 17
UG927 (v7.0) December 18, 2014

Hardware Demonstration Setup

7. The GPIO LEDs are located in the top right corner of the KC705 board. These LED
indicators illuminate to provide the following status (LED positions are marked from
left to right):

LED position 1 – DDR3 link up

LED position 2 – 10GBASE-R link 1 ready

LED position 3 – 10GBASE-R link 2 ready

LED position 4 – 156.25 MHz clock heart beat LED

LED position 5 – PCIe x8 link stable

LED position 6 – PCIe 250 MHz clock

LED position 7 – PCIe link up

LED positions on the KC705 board are shown in Figure 2-4.

8. The LEDs on the FMC card (note that these are on the bottom side) indicate the
following status:

LED position top – FM-S14 is connected on the correct FMC connector on KC705
board

LED position bottom – indicates clock generator on FMC is programmed to
generate 312.5 MHz as required by the TRD

X-Ref Target - Figure 2-4

Figure 2-4: LED Position on the FMC Card

UG929_c2_04_050114

 LED-1: DDR3 Calibration

Send Feedback

18 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 2: Getting Started

Installing the Linux Device Drivers

This sections describes the steps to install the device drivers for the Kintex-7 Connectivity
TRD after completion of the above hardware setup steps.

1. If Fedora 16 is installed on the PC system's hard disk, boot as a root-privileged user,
proceed to step 3. Otherwise continue with step 2.

2. To boot from the Fedora 16 LiveDVD provided in the kit, place the DVD in the PC's
CD-ROM drive. The Fedora 16 Live Media is for Intel-compatible PCs. The DVD
contains a complete, bootable 32-bit Fedora 16 environment with the proper packages
installed for the TRD demonstration environment. The PC boots from the CD-ROM
drive and logs into a liveuser account. This account has kernel development root
privileges required to install and remove device driver modules.

Note: Users might have to adjust BIOS boot order settings to enure that the CD-ROM drive is
the first drive in the boot order. To enter the BIOS menu to set the boot order, press the DEL or
F2 key when the system is powered on. Set the boot order and save the changes. (The DEL or
F2 key is used by most PC systems to enter the BIOS setup. Some PCs might have a different
way to enter the BIOS setup.)

The PC should boot from the CD-ROM drive. The images in Figure 2-5 are seen on the
monitor during boot up. (Booting from Fedora 16 LiveDVD takes few minutes – wait
for until Fedora 16 menu pops up on the screen as shown in Figure 2-5.)

X-Ref Target - Figure 2-5

Figure 2-5: Fedora 16 LiveDVD Boot Sequence

UG927_c2_05_050114
First Screen Last Boot Screen Booted

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 19
UG927 (v7.0) December 18, 2014

Hardware Demonstration Setup

3. Copy the k7_connectvity_trd_v1_0 folder to the home directory (or a folder of
choice). Note that the user must be a root-privileged user. (Connectivity kit design files
are available at the Kintex-7 FPGA Connectivity Kit Documentation webpage.

Double-click the copied k7_connectvity_trd_v1_0 folder. The screen capture in
Figure 2-6 shows the content of the k7_connectvity_trd_v1_0 folder. The user
needs to browse through the “Activities” tab after Fedora 16 boots up to access the
“Home” directory.

X-Ref Target - Figure 2-6

Figure 2-6: Directory Structure of k7_connectivity_trd

UG927_c2_06_121014

Send Feedback

20 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 2: Getting Started

4. Ensure that the TRD package has the proper “execute” permission. Double-click
quickstart.sh script (see Figure 2-7). This script invokes the driver installation
GUI. Click Run in Terminal.

X-Ref Target - Figure 2-7

Figure 2-7: Running the Quickstart Script

UG927_c2_07_121514

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 21
UG927 (v7.0) December 18, 2014

Hardware Demonstration Setup

5. The GUI with driver installation option pops up as shown in Figure 2-8. The next steps
demonstrate all modes of design operation by installing and un-installing various
drivers.

Select GEN/CHK Performance mode driver mode as shown in Figure 2-8 and click
Install.

X-Ref Target - Figure 2-8

Figure 2-8: Landing Page of Kintex-7 TRD

UG927_c2_08_050114

Send Feedback

22 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 2: Getting Started

Installing the Windows Device Driver
PC requirements for installing the Windows device drivers:

• Operating System: Windows 7 (32 bit or 64 bit)

• Java installation: Java SE Development Kit 7u5 and Java SE Runtime Environment 7u5

• Hardware Demonstration Setup, page 14 has been completed

To install the drivers:

1. Restart the computer. During bootup, select Windows 7 from the boot menu, and
press the F8 key to go to the Advanced Boot Options (Figure 2-9).

2. Select Disable Driver Signature Enforcement (Figure 2-9) and press the Enter key
to boot Windows.

3. Download rdf0282-k7-connectivity-trd-2014-1.zip from the Kintex-7
FPGA Connectivity Kit Documentation webpage to the desktop (or a folder of choice).

4. Double-click on the rdf0282-k7-connectivity-trd-2014-1.zip file and
navigate to the k7_connectivity_trd folder.

5. Execute the quickstart.bat file using administrative privileges by selecting Run
as Administrator in the right-click menu.

6. When the User Account Control window opens, select YES to invoke the InstallShield
wizard shown in Figure 2-10).

X-Ref Target - Figure 2-9

Figure 2-9: Windows 7 Advanced Boot Menu

UG927_c2_09_050114

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 23
UG927 (v7.0) December 18, 2014

Hardware Demonstration Setup

7. Click Next (Figure 2-10) to open the Customer Information window (Figure 2-11).

8. Enter your user name and organization. Click Next (Figure 2-11) to open the
Destination Folder window (Figure 2-12).

9. Do one of the following:

a. Click Next (Figure 2-12) to copy the driver files, Java GUI, user guides and source
files to their default installation locations:

- C:\ProgramFiles(x86)\Xilinx\K7_PCIE_CONNECTIVITY_TRD (for
64-bit machines)

X-Ref Target - Figure 2-10

Figure 2-10: InstallShield Wizard First Window

X-Ref Target - Figure 2-11

Figure 2-11: Customer Information Window

UG927_c2_10_050114

UG927_c2_11_050114

Send Feedback

24 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 2: Getting Started

- C:\ProgramFiles\Xilinx\K7_PCIE_CONNECTIVITY_TRD (for x86
machines)

b. Click Change... (Figure 2-12) to copy the driver files, Java GUI, user guides and
source files to a custom installation directory.

10. Click Install (Figure 2-13) to begin installation.

X-Ref Target - Figure 2-12

Figure 2-12: Destination Folder Window

X-Ref Target - Figure 2-13

Figure 2-13: Install Button

UG927_c2_12_050114

UG927_c2_13_050114

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 25
UG927 (v7.0) December 18, 2014

Hardware Demonstration Setup

11. When the Windows Security Window opens, Select Install this driver software
anyway (Figure 2-14). This warning is seen because the drivers are unsigned.

Note: This step is repeated two more times because this driver package contains three drivers.

12. When the installation is complete, Figure 2-15 is displayed. Click Finish to close the
wizard.

X-Ref Target - Figure 2-14

Figure 2-14: Windows Security Window

X-Ref Target - Figure 2-15

Figure 2-15: Finish Button

UG927_c2_14_050114

UG927_c2_15_050114

Send Feedback

26 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 2: Getting Started

Verify Installation
After the installation is successful, verify the installed drivers are properly mapped as
described here:

1. Open Device Manager (Figure 2-16). Click Start, click Control Panel, and then click
Device Manager.

2. Right click on the computer name and select Scan for hardware changes
(Figure 2-16).

X-Ref Target - Figure 2-16

Figure 2-16: Initiating Scan for Hardware Changes in Device Manager

UG927_c2_16_050114

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 27
UG927 (v7.0) December 18, 2014

Hardware Demonstration Setup

3. Figure 2-17 shows the Xilinx devices associated with the design have been detected
after the scan.

X-Ref Target - Figure 2-17

Figure 2-17: Xilinx XDMA Adapter and Two Block Driver Devices are Detected

UG927_c2_17_120914

Send Feedback

28 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 2: Getting Started

4. Open a command terminal with administrative privileges. Click Start, enter cmd, and
press the Enter key.

5. Navigate to the installation directory, and then to the gui directory. Execute
rungui.bat to invoke the GUI (Figure 2-18).

6. If application mode is selected in the GUI, two new local area networks will be
displayed in device manager, and the NDIS drivers in place of the Xilinx block drivers
(Figure 2-19).

X-Ref Target - Figure 2-18

Figure 2-18: Invoking the GUI

UG927_c2_18_050114

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 29
UG927 (v7.0) December 18, 2014

Hardware Demonstration Setup

X-Ref Target - Figure 2-19

Figure 2-19: NDIS 6.20 Ethernet Drivers for the KC705 Design

UG927_c2_19_120914

Send Feedback

30 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 2: Getting Started

GEN/CHK Performance Mode
1. After installing the GEN/CHK Performance Mode driver, the control and monitor

user interface pops up as shown in Figure 2-20. The control pane shows control
parameters such as test mode (loopback, generator, or checker) and packet length. The
user can select PCIe link width and speed while running a test if the host machine
supports link width and speed configuration capability. The System Monitor tab in the
GUI also shows system power and temperature. DDR3 ready status and 10GBASE-R
link status are displayed on the top left corner of the GUI.

X-Ref Target - Figure 2-20

Figure 2-20: GEN/CHK Performance Mode

UG929_c2_20_050114

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 31
UG927 (v7.0) December 18, 2014

Hardware Demonstration Setup

2. Click Start on both Data Path-0 and Data Path-1. Go to the Performance Plots tab. The
Performance Plots tab shows the system-to-card and card-to-system performance
numbers for a specific packet size. The user can vary packet size and see performance
variation accordingly (see Figure 2-21).

X-Ref Target - Figure 2-21

Figure 2-21: GEN/CHK Performance Mode Plots

UG97_c2_21_050114

Send Feedback

32 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 2: Getting Started

3. Close the GUI – a pop up message asks whether you want to un-install the drivers.
Click on Yes. This process opens the landing page of the Kintex-7 Connectivity TRD.
(Driver un-installation requires the GUI to be closed first.)

4. Select Raw Ethernet performance as shown in Figure 2-22. Click Install.
X-Ref Target - Figure 2-22

Figure 2-22: Raw Ethernet Driver Installation

UG927_c2_22_050114

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 33
UG927 (v7.0) December 18, 2014

Hardware Demonstration Setup

5. The GUI for raw Ethernet mode driver is invoked. The user can configure packet size
in raw Ethernet mode and can control PCIe link width and speed change if the host
machine supports this. The System Monitor tab monitors system power and
temperature (see Figure 2-23).

X-Ref Target - Figure 2-23

Figure 2-23: Raw Ethernet Driver GUI

UG927_c2_23_050114

Send Feedback

34 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 2: Getting Started

6. Click Start on both Data Path-0 and Data Path-1. Navigate to the Performance Plots
tab to see performance on system-to-card and card-to-system (see Figure 2-24).

X-Ref Target - Figure 2-24

Figure 2-24: Raw Ethernet Driver Performance Plots

UG927_c2_24_050114

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 35
UG927 (v7.0) December 18, 2014

Hardware Demonstration Setup

7. Close the GUI – this un-installs driver and opens the Kintex-7 Connectivity TRD
landing page. Note that driver un-installation requires the GUI to be closed first.

8. Select the Application mode driver as shown in Figure 2-25. For using peer-peer
option refer to Appendix C, Software Application and Network Performance. Click
Install.

X-Ref Target - Figure 2-25

Figure 2-25: Application Mode Driver Installation

UG927_c2_25_050114

Send Feedback

36 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 2: Getting Started

9. The GUI is invoked after the driver is installed. However, in Application mode, the
user cannot start or stop a test – the traffic is generated by the networking stack. The
system monitor shows the system power and temperature (see Figure 2-26).

X-Ref Target - Figure 2-26

Figure 2-26: Application Mode Driver GUI

UG927_c2_26_050114

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 37
UG927 (v7.0) December 18, 2014

Hardware Demonstration Setup

10. Open another terminal on the host machine and run ping (see Figure 2-27) using the
following command:

$ ping 10.60.0.1

$ ping 10.60.1.1

Note: In the Windows operating system only peer to peer mode can be enabled. For enabling peer
to peer mode, two PCIe compatible host PCs are required.

X-Ref Target - Figure 2-27

Figure 2-27: Ping Application on Application Mode Driver

UG927_c2_27_050114

Send Feedback

38 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 2: Getting Started

11. The user can click on the Block Diagram option to view the design block diagram as
shown in Figure 2-28.

12. Close the GUI – this un-installs driver and opens the Kintex-7 Connectivity TRD
landing page. Note that driver un-installation requires the GUI to be closed first.

Ethernet Specific Features
The Ethernet specific features can be exercised by using command line utilities such as
ifconfig and ethtool present in Linux.

The Ethernet driver provides functions which are used by ifconfig and ethtool to
report information about the NIC. The ifconfig utility is defined as the interface
configurator and is used to configure the kernel-resident network interface and the TCP/
IP stack. It is commonly used for setting an interface's IP address and netmask and
disabling or enabling a given interface apart from assigning MAC address, and changing
maximum transfer unit (MTU) size. The ethtool utility is used to change or display
Ethernet card settings. ethtool with a single argument specifying the device name prints
the current setting of the specific device. More information about ifconfig and ethtool
can be obtained from the manual (man) pages on Linux machines.

X-Ref Target - Figure 2-28

Figure 2-28: Design Block Diagram

UG927_c2_28_050114

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 39
UG927 (v7.0) December 18, 2014

Rebuilding the Design

NIC Statistics
The NIC statistics can be obtained using the ethtool command:

$ ethtool -S ethX

The error statistics are obtained by reading the registers provided by the Ethernet Statistics
IP. PHY registers can be read using the following command:

$ ethtool -d ethX

Certain statistics can also be obtained from the ifconfig command:

$ ifconfig ethX

Rebuilding the Design
The design can also be re-implemented using Vivado software. Before running any
command line scripts, refer to the Vivado Design Suite Migration Methodology Guide
(UG911)[Ref 1] and the Vivado Design Suite Implementation User Guide (UG904) [Ref 2] to
learn how to set the appropriate environment variables for the operating system. All
scripts mentioned in this user guide assume that the XILINX environment variables have
been set.

Note: The development machine does not have to be the hardware test machine with the PCIe slots
used to run the TRD.

Copy the k7_connectivity_trd files to the PC with the Vivado software installed.

The DMA netlist and AXILite Interconnect IP is located in the k7_connectivity_trd/
hardware/sources/ip_cores directory.

Detail of various IP cores under the ip_cores directory can be obtained from readme.txt.

Design Implementation

Implementing the Design Using Vivado IP Integrator (IPI) Flow

1. Navigate to the k7_connectivity_trd/hardware/vivado/scripts directory.

2. To invoke the Vivado tool GUI with the design loaded, open the Vivado Design Suite
command prompt and enter:

$ vivado -source k7_conn_gui_ipi.tcl

3. Click Run Synthesis in the Project Manager window. A window with the message
Synthesis Completed Successfully appears after the Vivado synthesis tool
generates a design netlist.

4. Close the message window.

5. Click Run Implementation in the Project Manager window. A window with the
message Implementation Completed Successfully appears after
implementation is complete.

6. Close the message window.

7. Click Generate Bitstream in the Project Manager window. A window with the
message Bitstream Generation Successfully Completed appears at the end
of this process.

8. Navigate to the k7_connectivity_trd/hardware/vivado/scripts directory,
and generate the MCS file:

Send Feedback

40 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 2: Getting Started

vivado -source k7_conn_ipi_flash.tcl

This command generates the MCS file in the k7_connectivity_trd/hardware/
vivado/scripts directory.

9. Close the Vivado GUI.

10. The generated bitfile can be found under runs_ipi/
k7_connectivity_trd.runs/impl_1/k7_connectivity_trd_top.bit.

11. By default, the scripts generate the bitstream with the evaluation version of the
Northwest Logic DMA IP.

Reprogramming the KC705 Board
The KC705 board is shipped preprogrammed with the TRD, where the PCIe link is
configured as x8 at a 5 Gb/s link rate. This procedure shows how to bring back the KC705
board to its original condition after another user has programmed it for a different
operation or as a training aid for users to program their boards. The PCIe operation
requires the use of the BPI flash mode of the KC705 board. This is the only configuration
option that meets the strict programming time of PCI Express. Refer to, 7 Series FPGA
Integrated Block for PCI Express User Guide (PG054) [Ref 3] for more information on PCIe
configuration time requirements.

Ensure that the KC705 board switches and jumper settings are as shown in Figure 2-29.
Connect the micro USB cable and use the power adapter to provide 12V power to the 6-pin
connector as shown in the figure.

To download the MCS file:

1. Open a hardware session in the Vivado GUI.

2. Connect to the hardware device (KC705 board).

X-Ref Target - Figure 2-29

Figure 2-29: Cable Installation for KC705 Board Programming

UG927_c2_29_050114

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 41
UG927 (v7.0) December 18, 2014

Simulation

3. Navigate to the k7_connectivity_trd/hardware/vivado/scripts directory
and source the program_flash.tcl script.

The Kintex-7 Connectivity TRD is now programmed into the BPI flash and automatically
configures at power up.

Simulation
This section details the out-of-box simulation environment provided with the design. This
simulation environment provides the user with a feel for the general functionality of the
design. The simulation environment shows basic traffic movement end-to-end.

Overview
The out-of-box simulation environment consists of the design under test (DUT) connected
to the Kintex-7 FPGA Root Port Model for PCI Express (see Figure 2-30). This simulation
environment demonstrates the basic functionality of the TRD through various test cases.
The out-of-box simulation environment demonstrates the end-to-end (in Loopback mode)
data flow for Ethernet packet.

The Root Port Model for PCI Express is a limited test bench environment that provides a
test program interface. The purpose of the Root Port Model is to provide a source
mechanism for generating downstream PCI Express traffic to simulate the DUT and a
destination mechanism for receiving upstream PCI Express traffic from the DUT in a
simulation environment.

The out-of-box simulation environment consists of:

• Root Port Model for PCI Express connected to the DUT

• Transaction Layer Packet (TLP) generation tasks for various programming operations

• Test cases to generate different traffic scenarios

To speed up the simulation, Physical Interface for PCI Express (PIPE) mode simulation is
used in the TRD. For more details on PIPE mode simulation, refer to 7 Series FPGAs
Integrated Block for PCI Express v2.2 Product Guide (PG054) [Ref 3].

X-Ref Target - Figure 2-30

Figure 2-30: Out-of-Box Simulation Overview

Kintex-7
Connectivity

Design
(DUT)

Kintex-7
PCI Express

Root Port
Model

DDR3
Memory
Model

Serial
Loopback

Serial
Loopback

Generated
using MIG IP

Loopback at
10GBASE-R
serial lane
outputs

PIPE
Interface

Tasks for
TLP Generation

TEST

Command line or
user-defined

PARAMETERS

UG927_c2_30_120914

Send Feedback

42 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 2: Getting Started

Simulating the Design
Questa Simulation

To run the simulation, follow the steps outlined below.

1. When using QuestaSim, be sure to compile the required libraries and set the
environment variables as required before running the script. Refer to Synthesis and
Simulation Design Guide (UG626) [Ref 4], and Vivado Design Suite Logic Simulation User
Guide (UG900) [Ref 5], which provide information on how to run simulations with
different simulators.

2. Execute the k7_conn_trd_ipi_mti.tcl command under the
k7_connectivity_trd/hardware/vivado/scripts directory.

3. After the QuestaSim GUI opens, run this command:

run -all

Vivado Simulation (XSIM)

To run the XSIM simulation, follow the steps outlined below.

1. Set the environment variables required to setup the Vivado simulator simulation.
Refer to UG900, Vivado Design Suite User Guide which provides information on how
to run simulation with different simulators.

2. Execute the vivado -source k7_conn_trd_ipi_xsim.tcl command under the
k7_connectivity_trd/hardware/vivado/scripts directory.

3. After the Vivado GUI is open, Click Run Simulation → Run Behavioral Simulation
option.

User-Controlled Macros

The simulation environment allows the user to define macros that control DUT
configuration. These values can be changed in the user_defines.v file.

Table 2-1: User-Controlled Macro Descriptions

Macro Name Default Value Description

CH0 Defined Enables Channel 0 initialization and traffic flow.

CH1 Defined Enables Channel 1 initialization and traffic flow.

DETAILED_LOG Not Defined Enables a detailed log of each transaction.

Table 2-2: Macro Description for Design Change

Macro Name Description

DMA_LOOPBACK Connects the design in Loopback mode at DMA user ports – no other
macro should be defined.

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 43
UG927 (v7.0) December 18, 2014

Simulation

Test Selection

Table 2-3 describes the various tests provided by the out-of-box simulation environment.

The name of the test to be run can be specified in the k7_conn_trd_mti.tcl and
k7_conn_trd_xsim.tcl scripts. By default, the simulation script file specifies the basic
test with the string: TESTNAME=basic_test.

The test selection can be changed by specifying a different test case, as specified above.

Table 2-3: Test Description

Test Name Description

basic_test Basic Test
This test runs two packets for each DMA channel. One buffer descriptor
defines one full packet in this test.

packet_spanning Packet Spanning Multiple Descriptors
This test spans a packet across two buffer descriptors. It runs two
packets for each DMA channel.

test_interrupts Interrupt Test
This test sets the interrupt bit in the descriptor and enables the interrupt
registers. This test also shows interrupt handling by acknowledging
relevant registers. In order to run this test, only one channel (either CH0
or CH1) should be enabled in include/user_defines.v

dma_disable DMA Disable Test
This test shows the DMA disable operation sequence on a DMA
channel.

pcie_link_change PCIe Link Width & Speed Change Test
This test changes the PCIe link from x8 GEN2 to x4 GEN1 and runs the
test. This demonstrates how the demand driver power management
concept can be exercised by changing the PCIe link configuration on the
fly.

Send Feedback

44 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 2: Getting Started

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 45
UG927 (v7.0) December 18, 2014

Chapter 3

Functional Description

This chapter describes the hardware and software architecture in detail.

Hardware Architecture
The hardware design architecture is described under the following sections:

• Base System Components: Describes PCIe-DMA and the DDR3 virtual FIFO
components

• Application Components: Describes the user application design

• Utility Components: Describes the power monitor block, the PCIe link width and
speed change module etc.

• Register Interface: Describes the control path of the design

• Clocking and Reset

Base System Components
PCI Express® is a high-speed serial protocol that allows transfer of data between host
system memory and Endpoint cards. To efficiently use the processor bandwidth, a bus
mastering scatter-gather DMA controller is used to push and pull data from the system
memory.

All data to and from the system is stored in the DDR3 memory through a multiport virtual
FIFO abstraction layer before interacting with the user application.

PCI Express

The Kintex-7 FPGA integrated block for PCI Express provides a wrapper around the
integrated block in the FPGA. The integrated block is compliant with the PCI Express v2.1
specification. It supports x1, x2, x4, x8 lane widths operating at 2.5 Gb/s (Gen1) or 5 Gb/s
(Gen2) line rate per direction. The wrapper combines the Kintex-7 FPGA integrated block
for PCI Express with transceivers, clocking, and reset logic to provide an industry standard
AXI4-Stream interface as the user interface.

This TRD uses PCIe in x8 GEN2 configuration with credits/buffering enabled for high
performance bus mastering applications.

For details on the Kintex-7 FPGA Integrated Block for PCI Express, refer to 7 Series FPGAs
Integrated Block for PCI Express User Guide (PG054) [Ref 3].

Send Feedback

46 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 3: Functional Description

Performance Monitor for PCI Express

This monitor snoops on the AXI4-Stream PCIe 128-bit interface operating at 250 MHz and
provides the following measurements which are updated once every second:

• Count of active beats upstream which include the TLP headers for various
transactions

• Count of active beats downstream which include the TLP headers for various
transactions

• Count of payload bytes for upstream memory write transactions – this includes buffer
write (in C2S) and buffer descriptor updates (for both S2C and C2S)

• Count of payload bytes for downstream completion with data transactions – this
includes buffer fetch (in S2C) and buffer descriptor fetch (for both S2C and C2S)

These performance numbers measured are reflected in user space registers which software
can read periodically and display.

Table 3-1: Monitor Ports for PCI Express

Port Name Type Description

reset Input Synchronous reset.

clk Input 250 MHz clock.

Transmit Ports on the AXI4-Stream Interface

s_axis_tx_tdata[127:0] Input Data to be transmitted via PCIe link.

s_axis_tx_tlast Input End of frame indicator on transmit packets. Valid only along with assertion of
s_axis_tx_tvalid.

s_axis_tx_tvalid Input Source ready to provide transmit data. Indicates that the DMA is presenting
valid data on s_axis_tx_tdata.

s_axis_tx_tuser[3] Input Source discontinue on a transmit packet. Can be asserted any time starting on
the first cycle after SOF. s_axis_tx_tlast should be asserted along with
s_axis_tx_tuser[3] assertion.

s_axis_tx_tready Input Destination ready for transmit. Indicates that the core is ready to accept data on
s_axis_tx_tdata. The simultaneous assertion of s_axis_tx_tvalid and
s_axis_tx_tready marks the successful transfer of one data beat on
s_axis_tx_tdata.

Receive Ports on the AXI4-Stream Interface

m_axis_rx_tdata[127:0] Input Data received on the PCIe link. Valid only if m_axis_rx_tvalid is also asserted.

m_axis_rx_tlast Input End of frame indicator for received packet. Valid only if m_axis_rx_tvalid is
also asserted.

m_axis_rx_tvalid Input Source ready to provide receive data.Indicates that the core is presenting valid
data on m_axis_rx_tdata.

m_axis_rx_tready Input Destination ready for receive. Indicates that the DMA is ready to accept data
on m_axis_rx_tdata. The simultaneous assertion of m_axis_rx_tvalid and
m_axis_rx_tready marks the successful transfer of one data beat on
m_axis_rx_tdata.

Byte Count Ports

tx_byte_count[31:0] Output Raw transmit byte count.

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 47
UG927 (v7.0) December 18, 2014

Hardware Architecture

Note: Start of packet is derived based on the signal values of source valid, destination ready, and
end of packet indicator. The clock cycle after end of packet is deasserted and source valid is asserted
indicates start of a new packet.

Four counters collect information about the transactions on the AXI4-Stream interface:

• TX Byte Count. This counter counts bytes transferred when the s_axis_tx_tvalid and
s_axis_tx_tready signals are asserted between the packet DMA and the Kintex-7
FPGA integrated block for PCI Express. This value indicates the raw utilization of the
PCIe transaction layer in the transmit direction, including overhead such as headers
and non-payload data such as register access.

• RX Byte Count. This counter counts bytes transferred when the m_axis_rx_tvalid and
m_axis_rx_tready signals are asserted between the packet DMA and the Kintex-7
FPGA integrated block for PCI Express. This value indicates the raw utilization of the
PCIe transaction layer in the receive direction, including overhead such as headers
and non-payload data such as register access.

• TX Payload Count. This counter counts all memory writes and completions in the
transmit direction from the packet DMA to the host. This value indicates how much
traffic on the PCIe transaction layer is from data, which includes the DMA buffer
descriptor updates, completions for register reads, and the packet data moving from
the user application to the host.

• RX Payload Count. This counter counts all memory writes and completions in the
receive direction from the host to the DMA. This value indicates how much traffic on
the PCIe transaction layer is from data, which includes the host writing to internal
registers in the hardware design, completions for buffer description fetches, and the
packet data moving from the host to user application.

The actual packet payload by itself is not reported by the performance monitor. This value
can be read from the DMA register space. The method of taking performance snapshots is
similar to the Northwest Logic DMA performance monitor (refer to the DMA
documentation, available in k7_connectivity_trd/hardware/sources/
ip_cores/dma/doc directory). The byte counts are truncated to a four-byte resolution,
and the last two bits of the register indicate the sampling period. The last two bits
transition every second from 00 to 01 to 10 to 11. The software polls the performance
register every second. If the sampling bits are the same as the previous read, then the
software needs to discard the second read and try again. When the one-second timer
expires, the new byte counts are loaded into the registers, overwriting the previous values.

Scatter Gather Packet DMA

The scatter-gather packet DMA IP is provided by Northwest Logic. The packet DMA is
configured to support simultaneous operation of two user applications utilizing four
channels in all. This involves four DMA channels – two system-to-card (S2C) or transmit
channels and two card-to-system (C2S) or receive channels. The DMA controller requires a
64 KB register space mapped to BAR0. All DMA registers are mapped to BAR0 from
0x0000 to 0x7FFF. The address range from 0x8000 to 0xFFFF is available to the user via

rx_byte_count[31:0] Output Raw receive byte count.

tx_payload_count[31:0] Output Transmit payload byte count.

rx_payload_count[31:0] Output Receive payload byte count.

Table 3-1: Monitor Ports for PCI Express (Cont’d)

Port Name Type Description

Send Feedback

48 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 3: Functional Description

this interface. Each DMA channel has its own set of independent registers. Registers
specific to this TRD are described in Appendix A, Register Description.

The front end of DMA interfaces to the AXI4-Stream interface on PCIe Endpoint IP core.
The back end of the DMA provides an AXI4-Stream interface as well which connects to the
user.

Scatter Gather Operation

The term scatter gather refers to the ability to write packet data segments into different
memory locations and gather data segments from different memory locations to build a
packet. This allows for efficient memory utilization because a packet does not need to be
stored in physically contiguous locations. Scatter gather requires a common memory
resident data structure that holds the list of DMA operations to be performed. DMA
operations are organized as a linked list of buffer descriptors. A buffer descriptor describes
a data buffer. Each buffer descriptor is 8 doublewords in size (a doubleword is 4 bytes),
which is a total of 32 bytes. The DMA operation implements buffer descriptor chaining,
which allows a packet to be described by more than one buffer descriptor.

Figure 3-1 shows the buffer descriptor layout for S2C and C2S directions.
X-Ref Target - Figure 3-1

Figure 3-1: Buffer Descriptor Layout

ByteCount[19:0]

S2C Buffer Descriptor C2S Buffer Descriptor

0 0 0
E
R
R

0
S
H
T

C
M
P

0 Rsvd

User Control [31:0]

User Control [63:32]

Card Address – (Reserved)

ByteCount[19:0]
S
O
P

E
O
P

0 0 0
Ir
q
Er

Ir
q
C

0 Rsvd

System Address [31:0]

System Address [63:32]

NextDescPtr[31:5],5'b00000

ByteCount[19:0]
S
O
P

E
O
P

0
E
R
R

Hi
0

S
H
T

C
M
P

L
0

Rsvd

User Status [31:0]

User Status [63:32]

Card Address – (Reserved)

RsvdByteCount[19:0]0 0 0 0 0
Ir
q
Er

Ir
q
C

0 Rsvd

System Address [31:0]

System Address [63:32]

NextDescPtr[31:5],5'b00000

UG927_c3_01_061612

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 49
UG927 (v7.0) December 18, 2014

Hardware Architecture

The descriptor fields are described in Table 3-2.

Table 3-2: Buffer Descriptor Fields

Descriptor Fields Functional Description

SOP Start of packet.
In S2C direction, indicates to the DMA the start of a new packet. In
C2S, DMA updates this field to indicate to software start of a new
packet.

EOP End of packet
In S2C direction, indicates to the DMA the end of current packet. In
C2S, DMA updates this field to indicate to software end of the
current packet.

ERR Error
This is set by DMA on descriptor update to indicate error while
executing that descriptor.

SHT Short
Set when the descriptor completed with a byte count less than the
requested byte count. This is common for C2S descriptors having
EOP status set but should be analyzed when set for S2C descriptors.

CMP Complete
This field is updated by the DMA to indicate to the software
completion of operation associated with that descriptor.

Hi 0 User Status High is zero
Applicable only to C2S descriptors – this is set to indicate Users
Status [63:32] = 0.

L 0 User Status Low is zero
Applicable only to C2S descriptors – this is set to indicate User
Status [31:0] = 0.

Irq Er Interrupt On Error
This bit instructs DMA to issue an interrupt when the descriptor
results in error.

Irq C Interrupt on Completion
This bit instructs DMA to issue an interrupt when operation
associated with the descriptor is completed.

ByteCount[19:0] Byte Count
In S2C direction, indicates the byte count queued up for
transmission.

In C2S direction, DMA updates this field to indicate the byte count
updated in system memory.

RsvdByteCount[19:0] Reserved Byte Count
In S2C direction, this is equivalent to the byte count queued up for
transmission.

In C2S direction, this indicates the data buffer size allocated – the
DMA might or might not utilize the entire buffer, depending on the
packet size.

Send Feedback

50 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 3: Functional Description

Packet Transmission

The software driver prepares a ring of descriptors in system memory and writes the start
and end addresses of the ring to the relevant S2C channel registers of the DMA. When
enabled, DMA fetches the descriptor followed by the data buffer to which it points. Data is
fetched from the host memory and made available to the user application through the
DMA S2C streaming interface.

The packet interface signals (for example, user control and the end of packet) are built from
the control fields in the descriptor. The information present in the user control field is made
available during the start of packet. The reference design does not use the user control
field.

To indicate data fetch completion corresponding to a particular descriptor, the DMA
engine updates the first doubleword of the descriptor by setting the complete bit of the
Status and Byte Count field to 1. The software driver analyzes the complete bit field to free
up the buffer memory and reuse it for later transmit operations.

User Control/User
Status

User Control or Status Field (The use of this field is optional.)
In S2C direction, this is used to transport application specific data to
DMA. Setting of this field is not required by this reference design.

In C2S direction, DMA can update application specific data in this
field.

Card Address Card Address Field
This is reserved for Packet DMA.

System Address System Address
This defines the system memory address from which the buffer is to
be fetched from or written to.

NextDescPtr Next Descriptor Pointer
This field points to the next descriptor in the linked list. All
descriptors are 32-byte aligned.

Table 3-2: Buffer Descriptor Fields (Cont’d)

Descriptor Fields Functional Description

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 51
UG927 (v7.0) December 18, 2014

Hardware Architecture

Figure 3-2 shows the system-to-card data transfer.

Note: Start of Packet is derived based on the signal values of source valid (s2c_tvalid), destination
ready (s2c_tready), and end of packet (s2c_tlast) indicator. The next source valid after end of packet
or tlast indicates start of packet.

Packet Reception

The software driver prepares a ring of descriptors with each descriptor pointing to an
empty buffer. It then programs the start and end addresses of the ring in the relevant C2S
DMA channel registers. The DMA reads the descriptors and waits for the user application
to provide data on the C2S streaming interface. When the user application provides data,
DMA writes the data into one or more empty data buffers pointed to by the prefetched
descriptors. When a packet fragment is written to host memory, the DMA updates the
status fields of the descriptor. The c2s_tuser signal on the C2S interface is valid only during
c2s_tlast. Hence, when updating the EOP field, the DMA engine also needs to update the
User Status fields of the descriptor. In all other cases, DMA updates only the Status and
Byte Count field. The completed bit in the updated status field indicates to the software
driver that data was received from the user application. When the software driver
processes the data, it frees the buffer and reuses it for later receive operations.

X-Ref Target - Figure 3-2

Figure 3-2: Data Transfer from System to Card

User Control [63:32]

User Control [31:0]

Complete=1

Pacet DMA AXI4 Stream Signals

4’b1111

clk

axi_str_s2c_tuser

axi_str_s2c_tdata

axi_str_s2c_tvalid

axi_str_s2c_tready

axi_str_s2c_tlast

axi_str_s2c_tkeep

Data
Buffer

SOP=1

Next Descriptor

System Address [63:32]

System Address [31:0]

Control Flags & Count

Card Address

Status & ByteCount

Next Descriptor

System Address [63:32]

System Address [31:0]

Control Flags & Count

Card Address

User Control [63:32]

User Control [31:0]

Status & ByteCount

Complete=1

UG927_c3_02_061612

EOP=1

Data
Buffer

Send Feedback

52 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 3: Functional Description

Figure 3-3 shows the card-to-system- data transfer.

Note: Start of Packet is derived based on the signal values of source valid (s2c_tvalid), destination
ready (s2c_tready), and end of packet (s2c_tlast) indicator. The clock cycle after end of packet is
deasserted and source valid being asserted indicates start of a new frame.

The software periodically updates the end address register on the Transmit and Receive
DMA channels to ensure uninterrupted data flow to and from the DMA.

Multiport Virtual Packet FIFO

The TRD uses DDR3 space as multiple FIFO for storage. It achieves this by use of following
IP cores:

1. AXI Stream Interconnect, in 4x1 and 1x4 fashion and also used for width conversion
and clock domain crossing

2. AXI VFIFO Controller, 4 channels used for interfacing stream interface to AXI-MM
provided by MIG and also handles the addressing needs for DDR3 FIFO

3. MIG, which provides the DDR3 memory controller for interfacing to external
SODIMM

X-Ref Target - Figure 3-3

Figure 3-3: Data Transfer from Card to System

Complete=1

clk

axi_str_c2s_tuser

axi_str_c2s_tdata

axi_str_c2s_tvalid

axi_str_c2s_tready

axi_str_c2s_tlast

axi_str_c2s_tkeep

Data
Buffer

SOP=1

Next Descriptor

System Address [63:32]

System Address [31:0]

Control Flags & Count

Card Address

User Control [63:32]

User Control [31:0]

Status & ByteCount

Next Descriptor

System Address [63:32]

System Address [31:0]

Control Flags & Count

Card Address

User Control [63:32]

User Control [31:0]

Status & ByteCount

Complete=1

UG927_c3_03_061612

EOP=1

Data
Buffer

Pacet DMA AXI4 Stream Signals

4’b1111

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 53
UG927 (v7.0) December 18, 2014

Hardware Architecture

Figure 3-3 shows the connection of these IPs to form a multiport virtual packet FIFO.

AXI Stream Interconnect

The AXI4 stream interconnect provides the following:

1. Multiplexes four write channels to one AXI4 stream for AXI-VFIFO and demultiplexes
one read channel from AXI-VFIFO to four read channels based on the tdest field.

2. Provides packet mode FIFO support on read interface connecting to XGEMAC to
enable a frame transmission without any pause in between

3. Width and clock conversion

a. 128-bit @ 250 MHz from DMA S2C interface and 64-bit @ 156.25 MHz from
XGEMAC-RX interface to 512-bit @ 200 MHz to AXI-VFIFO interface on writes

b. 512-bit @ 200 MHz from AXI-VFIFO interface to 128-bit @ 250 MHz to DMA
interface and 64-bit @ 156.25 MHz to XGEMAC-TX interface on reads

4. Buffer for storage in order to avoid frequent back-pressure to PCIe-DMA

Further information on this IP can be obtained from LogiCORE IP AXI4-Stream Interconnect
Product Guide (PG035) [Ref 13].

AXI VFIFO Controller

This Virtual FIFO controller manages the DDR3 address space for FIFO mode of operation
for four channels. This block operates 512-bits at a 200 MHz clock across the AXI4-MM
interface for the MIG controller.

Further information on this IP can be obtained from LogiCORE IP AXI Virtual FIFO
Controller Product Guide (PG038) [Ref 14].

X-Ref Target - Figure 3-4

Figure 3-4: Virtual FIFO Based on AXIS-IC and AXI-VFIFO IP

UG927_c3_04_050114

AXI
MIG

DDR3

64 x
1600 Mbps

51
2-

bi
t @

 2
00

M
H

z

DDR3 IO

AXIS Interconnect + VFIFO IP
Design

AXI
VFIFO

Controller

WR

S00

RD

M00

4x1 AXIS
Interconnect

1x4 AXIS
Interconnect

S01

S02

S03

M03

M02

M01

51
2-

bi
t @

 2
00

 M
H

z

128-bit @ 250 MHz

128-bit @ 250 MHz

64-bit @ 156.25 MHz

64-bit @ 156.25 MHz

Send Feedback

54 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 3: Functional Description

Application Components
The application components are described under the following sections:

• AXI4 Stream Packet Generator and Checker Interface

• Network Path Components (describes XGEMAC, 10GBASE-R PHY, and associated
logic)

AXI4 Stream Packet Generator and Checker Interface

The traffic generator and checker interface follows AXI4 stream protocol. The packet
length is configurable through control interface. Refer to Performance Mode: Generator/
Checker/Loopback Registers for User APP 0, page 110 for details on registers.

The traffic generator and checker module can be used in three different modes: a Loopback
mode, a Data Checker mode, and a Data Generator mode. The module enables specific
functions depending on the configuration options selected by the user (which are
programmed through control interface to user space registers). On the transmit path, the
data checker verifies the data transmitted from the host system via the packet DMA. On
the receive path, data can be sourced either by the data generator or transmit data from the
host system can be looped back to itself. Based on user inputs, the software driver
programs user space registers to enable checker, generator, or loopback mode of operation.

If the Enable Loopback bit is set, the transmit data from DMA in the S2C direction is looped
back to receive data in the C2S direction. In the Loopback mode, data is not verified by the
checker. Hardware generator and checker modules are enabled if the Enable Generator
and Enable Checker bits are set via software.

The data received and transmitted by the module is divided into packets. The first two
bytes of each packet define the length of the packet. All other bytes carry the tag, which is
the sequence number of the packet. The tag increases by one per packet. Table 3-3 shows
the pre-decided packet format used.

The tag or sequence number is 2-bytes long. The least significant 2 bytes of every start of a
new packet is formatted with packet length information. Remaining bytes are formatted
with a sequence number which is unique per packet. The subsequent packets have an
incremental sequence number.

The software driver can also define the wrap around value for the sequence number
through a user space register.

Table 3-3: Packet Format

[127:120]
[119:112]

[111:104]
[103:96]

[95:88]
[87:80]

[79:72]
[71:64]

[63:56]
[55:48]

[47:40]
[39:32]

[31:24]
[23:16]

[15:8]
[7:0]

TAG TAG TAG TAG TAG TAG TAG PKT_LEN

TAG TAG TAG TAG TAG TAG TAG TAG

TAG TAG TAG TAG TAG TAG TAG TAG

-- -- -- -- -- -- -- --

-- -- -- -- -- -- -- --

TAG TAG TAG TAG TAG TAG TAG TAG

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 55
UG927 (v7.0) December 18, 2014

Hardware Architecture

Packet Checker

If the Enable Checker bit is set (Registers as defined in Appendix-X), as soon as data is
valid on the DMA transmit channels (namely S2C0 and S2C1) each data byte received is
checked against a pre-decided data pattern. If there is a mismatch during a comparison,
the data_mismatch signal is asserted. This status is reflected back in register which can be
read through control plane.

Packet Generator

If the Enable Generator bit is set (Register as defined in Appendix-X) and the data
produced by the generator is passed to the receive channel of the DMA (namely C2S0 and
C2S1). The data from the generator also follows the same pre-decided data pattern as the
packet checker.

Network Path Components

A network interface card (NIC) is a device used to connect computers to a local area
network (LAN). The software driver interfaces to the networking stack (or the TCP-IP
stack) and the Ethernet frames are transferred between system memory and Ethernet MAC
in hardware using the PCIe interface.

The XGEMAC block connects to 10GBASE-R IP through the ten gigabit media
independent interface (XGMII) operating at 156.25 MHz clock. The XGMII is a 64-bit wide
single data rate (SDR).

The XGEMAC IP requires interface logic to support AXI-ST compliant flow control. The
following sections describe the custom IP blocks that implement the flow control logic for
the XGEMAC block.

For details on ten gigabit Ethernet MAC and 10 gigabit PCS-PMA IP cores, refer to PG072.
LogiCORE IP 10-Gigabit Ethernet MAC Product Guide (PG072) [Ref 6] and LogiCORE IP
10-Gigabit Ethernet PCS/PMA Product Guide (PG068) [Ref 7], respectively.

Note on Dual 10GBASE-R Implementation

The design optimizes the clocking resource used in two GT instances corresponding to the
10GBASE-R core by sharing the following:

1. Transmit user clock sharing for GTs belonging to same quad

2. Transmit user clock and GT reference clock sharing for GTs belonging to different quad

The 10GBASE-R IP uses two GTs from quad 118; reference clock 0 for quad 118 is sourced
from the FMC card and all clock nets required for the IP are derived from this reference
clock.

The receive clock output from the GT cannot be shared across multiple GTs as these clocks
are out of phase. In the transmit direction, the phase mismatch between clocks in the PCS
and PMA domain is taken care of by the use of the transmit FIFO in the GT.

The reference clock frequency for GTs used in the 10GBASE-R IP is 312.5 MHz sourced
from the FMC card connected to the KC705 board. The output clock from the GT is divided
by 2 using an MMCM to generate the 156.25 MHz clock which is supplied to the
10GBASE-R core.

Send Feedback

56 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 3: Functional Description

Transmit Path

The transmit interface logic does the following:

• Reads packets from the virtual packet FIFO and provides them to the XGEMAC
transmit interface after relevant width conversion

• Ensures that there is no pause for the packet under transmission

Figure 3-5 represents the block diagram of the transmit interface logic. The datapath from
the virtual packet FIFO is 128 bits wide. The data width down converter converts the
128-bit wide data to 64-bit wide data, required for the XGEMAC transmit interface. The Tx
interface logic block controls the valid signal to the XGEMAC based on the data available
in the virtual packet FIFO, ensuring continuous flow of data (for that packet) once a packet
transmission has started.

Data Width Down Converter

The data width down converter module converts 128-bit data from packet buffer to 64-bit
data. The converter works in the 156.25 MHz clock domain. It reads one cycle of 128-bit
data from the FIFO and sends two cycles each of 64-bit data to the XGEMAC. This is
achieved by handling the read from the FIFO appropriately i.e., reading every alternate
cycle instead of reading continuously.

Transmit Interface Logic

The transmit interface logic monitors the data count in the packet FIFO from its read data
count field and once the count indicates that the entire packet is available in packet FIFO,
asserts ready to packet buffer in order to read the packet stored in the packet buffer and also
valid to the XGEMAC-TX to begin data transmission. This logic assures that once a packet
transmission has begun, it ends without any pause in between to comply with
XGEMAC-TX interface requirements.

Receive Path

The receive interface logic does the following:

• Receives incoming frames from the XGEMAC and performs address filtering (if
enabled to do so)

• Based on packet status provided by the XGEMAC-RX interface, decides whether to
drop a packet or pass it ahead to the system for further processing

X-Ref Target - Figure 3-5

Figure 3-5: Transmit Interface Block Diagram

UG927_c3_05_050114

Tx Interface
Logic

Virtual Packet
FIFO

Data Width Down
Converter

(128-bit to 64-bit)

XGEMAC
Transmit
AXI-ST

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 57
UG927 (v7.0) December 18, 2014

Hardware Architecture

Figure 3-6 represents the block diagram of the receive interface logic.

Receive Interface Logic

The XGEMAC-RX interface does not allow back-pressure i.e., once a packet reception has
started it completes the entire packet. The receive interface logic stores the incoming frame
in a local receive FIFO. This FIFO stores the data until it receives the entire frame. If the
frame is received without any error (indicated by tlast and tuser from the XGEMAC-RX
interface), it is passed ahead, otherwise it is dropped. The Ethernet packet length is read
from the receive statistics vector instead of implementing a separate counter in logic. This
limits the upper bound on packet length to be 16,383B as supported by the receive statistics
packet count vector in the XGEMAC IP.

The depth of the FIFO in the receive interface logic is decided based on the maximum
length of the frame to be buffered and the potential back pressure imposed by the packet
buffer. The possible scenario of FIFO overflow occurs when the received frames are not
drained out at the required rate in which case receive interface logic drops Ethernet frames.
The logic also takes care of clean drop of entire packets due to this local FIFO overflowing.

Address Filtering

Address filtering logic filters out a specific packet which is output from the XGEMAC
receive interface if the destination address of the packet does not match with the
programmed MAC address. MAC address can be programmed by software using the
register interface.

Address filtering logic:

• Performs address filtering on-the-fly based on the MAC address programmed by
software

• Allows broadcast frames to pass through

• Allows all frames to pass through when promiscuous mode is enabled

The receive interface state machine compares this address with the first 48 bits it receives
from XGEMAC-RX interface during start of a new frame. If it finds a match it writes the
packet to the receive FIFO in the receive interface, otherwise, the packet is dropped as it is
comes out of the XGEMAC receive interface.

X-Ref Target - Figure 3-6

Figure 3-6: Receive Interface Block Diagram

UG927_c3_06_050114

Receive
Interface Logic

Receive
FIFO

Address
Filtering

Virtual Packet
FIFO

Data Width Up
Converter

(64-bit to 128-bit)

XGEMAC
Receive
AXI-ST

Send Feedback

58 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 3: Functional Description

Data Width Up Converter

This module converts the 64-bit wide data received from the XGEMAC-RX interface to
128-bit wide data and sends the data for storage in the virtual FIFO. For every two cycles
of data read from the receive FIFO, one cycle of data is written to the virtual FIFO.

Utility Components
The utility components are described under the following sections.

• PicoBlaze Based Power Monitor

• Application Demand Driven Power Management

PicoBlaze Based Power Monitor

The TRD uses PicoBlaze based power monitoring logic to monitor power consumed by the
FPGA on various voltage rails and the die temperature. The logic interfaces with the built
in Xilinx analog to digital converter (XADC) to read the die temperature. In order to read
voltage and current values of different voltage rails in the FPGA, the power monitoring
logic interfaces with TI's power regulators (UCD9248) present on KC705 board.
Communication with the power regulator (UCD9248) occurs using the standard PMBus
(power management bus) interface.

Figure 3-7 represents the block diagram of the power monitoring logic. PicoBlaze is a light
weight soft core processor targeting Xilinx FPGAs. The PicoBlaze processor manages the
communication with UCD9248 using PMBus protocol. The XADC acts as a second
peripheral to PicoBlaze. Once voltage and current values are read from on board
regulators, PicoBlaze calculates the power values and updates the specified block RAM
locations (block RAM is used as a register array). Block RAM locations are read
periodically by a custom user logic block and are accessible to user through the control
plane interface.

The register interface interacts with the read logic block. Power and temperature numbers
are read periodically from block RAM locations by the software using the DMA backend
interface. The GUI displays VCCINT, VCCAUX and VCCBRAM power. User can read VCC
3.3V, VCC 2.5V, VCC 1.5V, VADJ, MGT_AVCC, MGT_AVTT, MGT_VCCAUX,
VCCAUX_IO power values by enabling DEBUG_VERBOSE flag in the makefile provided
in the xdma driver subdirectory.

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 59
UG927 (v7.0) December 18, 2014

Hardware Architecture

Application Demand Driven Power Management

Based on application traffic demand, PCIe link width and speed can be down configured
to the smallest values to save power. On full traffic resumption, this can be reversed by up
configuring the link speed and width.

This directed change is implemented in hardware and control is provided to software
through registers.

Hardware advertises its capability through registers. Software, on reading the capability
registers, drives the control register appropriately. Based on further control validation
checks in hardware, relevant ports on PCIe block are asserted and the result of operation is
indicated back in the status register.

Note: Link width/speed change operations can be initiated only when the link is up and in the L0
state, and the device is in the D0 state.

The next two sections provide a brief summary of directed link width and link speed
change algorithms independently. However, these operations can also be done together.

Software can check the capability register and issue a target_link_width or target_link_speed
based on validity checks. As a double check, the hardware also implements the validity
checks to make sure the ports on the PCIe core are not put into any controversial state.

Link Width Change Scheme

The following summarizes the steps for directed link width change. target_link_width is the
width driven by the application. pl_sel_link_width is the current width indicated as output
port by the PCIe core.

1. Check that the link is up and pl_ltssm_state = L0.

2. If (target_link_width ! = pl_sel_link_width), proceed with width change. This makes sure
that the target width and current width are not equal.

X-Ref Target - Figure 3-7

Figure 3-7: Power Monitor Logic Block Overview

UG927_c3_07_050114

Block RAM PicoBlaze Processor

Read Logic

UCD9248

Register Interface

XADC

Send Feedback

60 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 3: Functional Description

3. Check the validity of the request:

a. If (pl_link_upcfg_capable = 1), and (target_link_width <= pl_initial_link_width), then
proceed, otherwise abort.

b. If (pl_link_upcfg_capable = 0), and (target_link_width < pl_sel_link_width), then
proceed, otherwise abort.

4. Assign pl_directed_link_width = target_link_width and pl_directed_link_change[0] = 1.

5. Wait until (pl_ltssm_state == Configuration.Idle) or (link_up = 0).

6. Assign pl_directed_link_change[0] = 0.

7. Update the status register.

Link Speed Change Scheme

The following summarizes the steps for directed link speed change operation.
target_link_speed is the speed driven by the application. pl_sel_link_speed is the current
speed indicated as output port by the PCIe core.

1. Check that link is up and pl_ltssm_state = L0.

2. If (target_link_speed ! = pl_sel_link_speed), proceed with speed change. This makes sure
that the target speed and current speed are not equal.

3. Check the validity of the request:

a. If current link speed is 2.5 Gb/s ensure that pl_linkgen2_capable and
pl_linkpartner_gen2_capable are asserted.

4. Assign pl_directed_link_speed = target_link_speed and pl_directed_link_change[1] = 1.

5. Wait until (pl_ltssm_state == Recovery.Idle) or (link_up = 0).

6. Assign pl_directed_link_change[1] = 0.

7. Update the status register.

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 61
UG927 (v7.0) December 18, 2014

Hardware Architecture

Register Interface
DMA provides the AXI4 target interface for user space registers. Register address offsets
from 0x0000 to 0x7FFF on BAR0 are consumed internally by the DMA engine. Address
offset space on BAR0 from 0x8000 to 0xFFFF is provided to user. Transactions targeting
this address range are made available on the AXI4 target interface.

The design has the following control interfaces:

a. XGEMAC registers – one set for each instance

b. User space registers defining design mode configuration, control and status

AXI4LITE Interconnect is used to fan out the AXI4 target interface to the appropriate slave
address region as defined in Figure 3-8.

Details of user registers are provided in User Space Registers, page 105. XGEMAC registers
are defined in the LogiCORE IP 10-Gigabit Ethernet MAC User Guide (PG072) [Ref 6]. The
XGEMAC provides an MDIO interface for accessing registers of the attached PHY. In the
design, 10G BASE-R PHY registers are accessed through the XGEMAC MDIO interface.

Clocking and Reset
This section describes the clocking and reset scheme of the design.

Clocking Scheme

The design uses the following clocks from the external world:

• 100 MHz differential PCIe reference clock from the motherboard PCIe slot

• 200 MHz differential clock from the on-board source for the MIG IP

• 312.5 MHz differential clock from the clock source on the FMC for 10GBASE-R IP

X-Ref Target - Figure 3-8

Figure 3-8: Register Interface

UG927_c3_08_050114

DMA AXI4
Target
Master

AXI4LITE
IPIF (Slave)

IPIF

XGEMAC0 Registers
(0xB000 - 0xBFFF)

User Registers
(0x9000 - 0x9FFF)

XGEMAC1 Registers
(0xC000 - 0xCFFF)

User
Registers

MI
1

MI
0

MI
2

SI

AXI
Interconnect

Lite

Send Feedback

62 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 3: Functional Description

Figure 3-9 summarizes the various clock domains of this design.

Reset Scheme

The design uses only one external hard reset – PERST# provided by the motherboard
through PCIe slot. This also resets the memory controller and the 10G PHYs apart from
resetting all other design components. In addition, various soft resets are provided as
listed in Table 3-4.

X-Ref Target - Figure 3-9

Figure 3-9: Clocking Scheme

100 MHz from
host over PCIe

connector

G
T
X
E

P
C
I
E

X8

GEN2

NWL
DMA

IP

25
0

M
H

z
X
G
E
M
A
C

10
G

B
A
S
E
-
R

G
T
X
E

312.5 MHz

156.25MHz
RX

Logic

X
G
E
M
A
C

10
G

B
A
S
E
-
R

G
T
X
E

156.25MHz

RX
Logic

12
8-

bi
t @

 2
50

 M
H

z
12

8-
bi

t @
 2

50
M

H
z

64-bit @
156.25MHz

64-bit @
156.25 MHz

A
X
I
-
P
C
I
E

Target
Master Slave

Slave

Power
Monitor XADC

User
RegisterAXI-Interconnect

(Lite)

AXI Lite
Slave

IPIFA
X
I

L
I
T
E

S
2
C

S
2
C

C
2
S

C
2
S

50 MHz derived
from 200 MHz250 MHz

156.25MHz

156.25MHz

M1 M3M2M0

AXI VFIFO

W
R

RD

AXI VFIFO

AXIS IC
S1 S3S2S0

A
X
I

M
I
G

D
D
R
3

64
 x

16

00
 M

bp
s

51
2-

bi
t @

20

0
M

H
z

20
0M

H
z

AXIS IC

UG927_c3_09_050114

Table 3-4: Resets

Module PERST#
PCIe Link

Down
DDR3

Calibration
10G PHY

Link
Soft Resets

PCIe Wrapper X

DMA X X X

DDR3 Memory
Controller

X X X

AXI Interconnect X X X X

AXI4LITE
Interconnect

X X X X

Ten Gig Ethernet
MAC

X X X

10G BASE-R PHY X X X

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 63
UG927 (v7.0) December 18, 2014

Linux Device Driver and Application

PERSTN or PCIe Link down is the master reset for everything. The PCIe wrapper, memory
controller, and 10GBASE-R PHY get PERSTN directly. These blocks have higher
initialization latency hence these are not reset under any other condition. Once initialized,
PCIe asserts user_lnk_up, the memory controller asserts calib_done, and the 10G PHY asserts
block_lock (bit position zero in the status vector).

The DMA provides per channel soft resets which are also connected to the appropriate
user logic. Additionally, to reset only the AXI wrapper in the MIG and AXI-Interconnect,
another soft reset via a user space register is provided. However, this reset is to be asserted
only when the DDR3 FIFO is empty and there is no data lying in FIFO or in transit in FIFO.

Linux Device Driver and Application
The software component of the Kintex-7 Connectivity TRD comprises one or more Linux
kernel-space driver modules with one user-space application that controls design
operation. The software building blocks are designed with scalability in mind. It enables a
user to add more user-space applications to the existing infrastructure.

The software has been designed to meet the following requirements:

• Ability to source application data at very high rates to showcase the performance
capabilities of the hardware design.

• Effectively showcase the use of multi-channel DMA to support different applications.

• Provide a user interface that is easy to use and is intuitive.

• Provide a modular design which is extensible, reusable, and can be customized.

The feature list of the user application and Linux kernel-space drivers that enables the
above requirements to be met are as follows.

User-space Application Features
The user-space application GUI provides the following features:

• GUI management of the driver and device – for configuration control, and for status
display

• GUI front-end for a graphical display of performance statistics collected at the PCIe
transaction interface, DMA engine, and kernel level

• In Performance mode the GUI also spawns a multi-threaded application traffic
generator which generates and receives data

For control of Ethernet specific features, standard Linux tools should be used as described
in Ethernet Specific Features, page 38.

AXI Virtual FIFO IP X X X X

Packet Generator/
Checker X X X

Power Monitor X X

Table 3-4: Resets (Cont’d)

Module PERST#
PCIe Link

Down
DDR3

Calibration
10G PHY

Link
Soft Resets

Send Feedback

64 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 3: Functional Description

Kernel-space Driver Features
• Configuration of the DMA engine . to achieve data transfer between the hardware

and host system memory.

• Transfer of Ethernet packets from Linux TCP/IP stack to network path in hardware
for transmission into the LAN and from network path in hardware to Linux TCP/IP
stack for handling by networking applications. This is the Ethernet data flow.

Data Flow Model
This section provides an overview of the data flow in both software and hardware.

Application (Ethernet) Data Flow

Figure 3-10 illustrates the Ethernet data flow. On the transmit path, data from the
networking application (for example, an internet browser) is packetized in the TCP/IP
stack, converted into Ethernet frames, and handed over to the driver for transmission. The
Ethernet driver then queues up the packet for scatter gather DMA in the TRD. The DMA
fetches the packet through the PCIe Endpoint and transfers it to the XGEMAC where it is
transmitted through the Ethernet link to the LAN.

On the receive side, packets received by the XGEMAC are pushed to scatter gather DMA.
The DMA in turn pushes the packet to the driver through the PCIe Endpoint. The driver
hands off the packet to the upper layers for further processing.

In this mode, the user starts the test through the GUI. The GUI also displays the live
performance statistics for the test.

X-Ref Target - Figure 3-10

Figure 3-10: Ethernet Data Flow

UG927_c3_10_050114

Networking
Applications

TCP/IP Stack

Ethernet Handler

DMA Port

XGEMAC

Ethernet

Internet Browser

Payload

Packet Formation by
Header Inclusion

Descriptor Allocation for
Packet DMA

Payload

Frame Check Sequence
insertion

Internet Browser

Payload

Payload Extraction by
Stripping Headers

Payload

Packet DMA to
System Memory

Packet Handover to TCP Stack
Based on Descriptor Status

Packet DMA to
Hardware

DDR3

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 65
UG927 (v7.0) December 18, 2014

Linux Device Driver and Application

Performance Mode Data Flow

Figure 3-11 illustrates the data flow in Performance mode. On the transmit side, the GUI
spawns multiple threads (application traffic generator) according to the mode selected.
The data buffers are generated in the application traffic generator passed to the driver and
queued up for transmission in the host system memory. The scatter gather DMA fetches
the packets through the PCIe Endpoint and transfers them to the Virtual FIFO. In raw
Ethernet mode data written to the DDR3 is read and sent to the XGEMAC; data received is
then again stored in DDR3 and transferred back to the DMA creating a loopback scenario.
On the receive side, DMA pushes the packets to the software driver through the PCIe
Endpoint. The driver receives the packets and pushes them to a software queue. The
application traffic generator polls the queue periodically and verifies the data.

In a typical use scenario, the user starts the test through the GUI. The GUI displays the
performance statistics collected during the test until the user stops the test.

Software Architecture
The software for the Kintex-7 Connectivity TRD comprises several Linux kernel-space
drivers and a user-space application. Traffic is generated from the user application. Format
of data changes from raw data to raw Ethernet data modes. The following sections explain
data and control path flow.

X-Ref Target - Figure 3-11

Figure 3-11: Performance Mode Data Flow

UG927_c3_11_050114

Raw Data
Handler

DMA Port

DDR3

XGEMAC

Raw Data
Handler

DMA Port

DDR3

XGEMAC

Raw Data
Handler

DMA Port

CHK GEN

Send Feedback

66 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 3: Functional Description

Performance Mode (Gen/Chk and Raw Ethernet Mode)

Figure 3-12 depicts the software driver components. The description is divided into data
and control path components.

Data Path Components

Application Specific Traffic Generator

This block generates the raw data or raw Ethernet data according to the mode selected in
the user interface. The application opens the interface of the application driver through
exposed driver entry points. The application transfers the data using read and write entry
points provided by the application driver interface. the application traffic generator also
performs the data integrity test in the receiver side, if enabled.

X-Ref Target - Figure 3-12

Figure 3-12: Performance Mode Software Architecture

Application Traffic Generator

Driver Entry: ioctl,read,write

Driver Private Interface

Driver Entry: ioctl,read,write

Driver Private Interface

Driver Entry: open, ioctl

Application Layer Interface

DMA OperationsInterrupt or Polling Operations

Northwest Logic DMA

Perf
Monitor

GUI

User Space

Kernel Space

User Driver

Base DMA Driver

Software

Hardware

Driver Entry Points Poll/Interrupt
Routines

Data Path Flow Control Path Flow

UG927_c3_12_050114

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 67
UG927 (v7.0) December 18, 2014

Linux Device Driver and Application

Driver Entry Point

This block creates a character driver interface and enhances different driver entry points
for the user application. The driver entry point also enables sending of free user buffers for
filling the DMA descriptor. Additionally, the driver entry point conveys completed
transmit and receive buffers from the driver queue to the user application.

Driver Private Interface

This block enables interaction with the DMA driver through the private data structure
interface. The data that comes from the user application through the driver entry points is
sent to the DMA driver through the private driver interface. The private interface handles
received data and housekeeping of completed transmit and receive buffers by putting
them in a completed queue.

Application Driver Interface

This block is responsible for dynamic registering and unregistering of user application
drivers. The data that is transmitted from the user application driver is sent over to the
DMA operations block.

DMA Operations

For each DMA channel, the driver sets up a buffer descriptor ring. At test start, the receive
ring (associated with a C2S channel) is fully populated with buffers meant to store
incoming packets, and the entire receive ring is submitted for DMA while the transmit ring
(associated with a S2C channel) is empty. As packets arrive at the base DMA driver for
transmission, they are added to the buffer descriptor ring and submitted for DMA transfer.

Interrupt or Polling Operation

If interrupts are enabled (by setting the compile-time macro TH_BH_ISR), the interrupt
service routine (ISR) handles interrupts from the DMA engine. The driver sets up the DMA
engine to interrupt after every N descriptors that it processes. This value of N can be set by
a compile-time macro. The ISR schedules the bottom half (BH) which invokes the
functionality in the driver private interface pertaining to handling received data and
housekeeping of completed transmit and receive buffers.

In polling mode, the driver registers a timer function which periodically polls the DMA
descriptors. The poll function performs the following:

1. Housekeeping of completed transmit and receive buffer

2. Handling of received data

Control Path Components

Graphical User Interface

The control and monitor GUI is a graphical user interface tool used to monitor device
status, run performance tests, configure PCIe link speed and width, monitor system
power, and display statistics. It communicates the user-configured test parameters to the
user traffic generator application which in turn generates traffic with the specified
parameters. Performance statistics gathered during the test are periodically conveyed to
the GUI through the base DMA driver for display as graphs.

When installed, the base DMA driver appears as a device table entry in Linux. The GUI
uses the file-handling functions (open, close, and ioctl) on this device, to communicate
with the driver. These calls result in the appropriate driver entry points being invoked.

Send Feedback

68 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 3: Functional Description

Driver Entry Points

The DMA driver registers with the Linux kernel as a character driver to enable the GUI to
interface with the DMA driver. The driver entry points allow conveying of application
specific control information to the user application driver through the private interface.

A driver entry point also allows collecting and monitoring periodic statistical information
from hardware by means of the performance monitor block.

Performance Monitor

The performance monitor is a handler that reads all the performance-related registers
(PCIe link status, DMA Engine status, power monitoring parameters). Each of these
parameters is read periodically at an interval of one second.

Performance Mode Design Implementation

This section provides an overview of software component implementation. Users are
advised to refer to the driver code along with Doxygen generated documentation for
further implementation details.

User Application

The user traffic generator is implemented with multiple threads. The traffic generator
application spawns thread according to parameter and mode selected in the GUI. For
transmit, two threads are needed, one for transmitting and one for transmitter done
housekeeping. For receive, one thread provides free buffers for DMA descriptors and the
other thread receives packets from the driver. The receive thread is also responsible for a
data integrity check, if enabled in the GUI.

For one path two threads are needed for transmitting and two threads for receiving. On
both paths eight threads are needed to run full traffic. Performance can be maximized if all
of the threads are running on different CPUs. Any system having less than eight CPUs or
any other application or kernel housekeeping affects the scheduling of the thread which
intern affects performance. For running loopback or Gen/check on both paths, the threads
are reduced which is achieved by combining housekeeping threads to single threads. A
total of six threads are spawned for generating full traffic on both paths in the design.

To separate the application generator from the GUI, thread related functionality should be
decoupled from GUI.

Driver implementation

Improved performance can be achieved by implementing zero copy. The user buffers
address is translated into pages and mapped to PCI space for transmission to DMA. On the
receive side packets received from DMA are stored in a queue which is then periodically
polled by the user application thread for consumption.

Application Mode

This section describes the Ethernet Application mode (see Figure 3-13).

Control Path Components

Networking Tools

Unlike the raw data driver, the Ethernet functionality in the driver does not require the
control and monitor GUI to be operational. Ethernet comes up with the prior configured
settings. Standard Linux networking tools (for example, ifconfig and ethtool) can be

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 69
UG927 (v7.0) December 18, 2014

Linux Device Driver and Application

used by the system administrator when the configuration needs to be changed. The driver
provides the necessary hooks which enable standard tools to communicate with it.

Graphical User Interface

Unlike the Performance mode, the GUI does not control test parameters and traffic
generation in the Application mode. The GUI periodically polls and updates the various
statistics through DMA driver entry points.

X-Ref Target - Figure 3-13

Figure 3-13: Network Application Mode Software Architecture

Network ApplicationNetwork Tools
lfconfig, eth tool

Network Tools
lfconfig, eth tool

GUI

TCP/IP STACK

Driver Entry:
net_device,_ops,ethtooll_ops

Driver Private
Interface

Driver Entry:
net_device_ops, ethtool_ops

Driver Private
Interface

Driver Entry:
open, ioctl

Application Layer Interface

DMA OperationsInterrupt or Polling Operations

Northwest Logic DMA
10G MAC &

10G BASE-R PHY
10G MAC &

10G BASE-R PHY

PCIe Link, DMNA
Engine and Power

Statistics

Perf
Monitor

User Space

Kernel Space

User Driver

Base DMA Driver

Software

Hardware

Driver Entry Points Poll/Interrupt
Routines

Data Path Flow Control Path Flow

UG927_c3_13_050114

Send Feedback

70 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 3: Functional Description

Performance Monitor

The performance monitor is a handler which reads all the performance-related registers
(link level for PCI Express, DMA engine level and power level). Each of these parameters
is read periodically at an interval of one second.

Data Path Components

Networking Applications

Standard networking applications such as web browser, telnet, or Netperf can be used to
initiate traffic in the Ethernet Application mode. In this mode the driver hooks up with the
TCP/IP stack software present in the Linux kernel and enables transmission and reception
of Ethernet data.

TCP/IP Stack

The TCP/IP stack has defined hooks for the Ethernet driver to attach and allows
communication of all standard networking applications with the driver. TCP/IP stack calls
appropriate driver entry points to transfer data to driver.

Driver Entry Points

The driver has several entry points, some points are used for data connectivity and others
are used for Ethernet configurations. Standard network tools use driver entry points for
Ethernet configurations. The driver hooks in entry points configure 10G Ethernet MAC
and PHY. The other driver entry points are mainly used in the data flow for transmitting
and receiving Ethernet packets.

Application Driver Interface

This block is responsible for dynamic registering and unregistering of user application
drivers. The data that is sent from user application driver are sent to DMA operations
block.

The DMA and interrupt or polling mode operations remain the same as explained above
for Performance mode drivers.

Application Mode Implementation

This section provides an overview of software component implementation for the
Application mode. Users are advised to refer to the driver code along with Doxygen
generated documentation for further implementation details.

User Application

User applications in this mode are standard network applications such as ping, ftp, http,
and web browser. Networking tools open a socket interface and start transmitting the data.
The TCP/IP stack segments the packets according to MTU size set in the network device
structure. The TCP/IP stack opens the driver interface and sends the packet which is then
transmitted to hardware.

Driver Implementation

The user application driver sends the received socket buffer packet to the DMA driver for
mapping to PCI space. On the receiver side buffers are pre-allocated to store incoming
packets. These packets are allocated from networking stack. The received packets are
added to the network stack queue for further processing.

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 71
UG927 (v7.0) December 18, 2014

Linux Device Driver and Application

DMA Descriptor Management
This section describes the descriptor management portion of DMA operation. It also
describes the data alignment requirements of the DMA engine.

The nature of traffic, especially on the Ethernet side of the design, is bursty, and packets are
not of fixed sizes. For example, connect/disconnect establishment and ACK/NAK packets
are small. Therefore, the software is not able to determine in advance the number of
packets to be transferred, and accordingly set up a descriptor chain for it. Packets can fit in
a single descriptor, or might be required to span across multiple descriptors. Also, on the
receive side the actual packet might be smaller than the original buffer provided to
accommodate it.

It is therefore required that:

• The software and hardware are each able to independently work on a set of buffer
descriptors in a supplier-consumer model.

• The software is informed of packets being received and transmitted as it occurs.

• On the receive side, the software needs a way of knowing the size of the actual
received packet.

The rest of this section describes how the driver designed uses the features provided by
third party DMA IP to achieve the earlier stated objectives.

The status fields in descriptor help define the completion status, start, and end of packet to
the software driver.

Table 3-5 presents a summary of the terminology used in the upcoming sections:

Dynamic DMA Updates

This section describes how the descriptor ring is managed in the transmit or
system-to-card (S2C) and receive or card-to-system (C2S) directions. It does not give
details on the driver's interactions with upper software layers.

Initialization Phase

The driver prepares descriptor rings, each containing a configurable number of
descriptors, for each DMA channel. In the current design, driver thus prepares four rings.

Transmit (S2C) Descriptor Management

In Figure 3-14, the shaded blocks indicate descriptors that are under hardware control and
the un-shaded blocks indicate descriptors that are under software control.

Table 3-5: Terminology Summary

Term Description

HW_Completed Register with the address of the last descriptor for which the DMA
engine has completed processing.

HW_Next Register with the address of the next descriptor that the DMA engine
processes.

SW_Next Register with the address of the next descriptor that software submits
for DMA.

ioctl() Input/output control function is a driver entry point invoked by the
application tool.

Send Feedback

72 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 3: Functional Description

Initialization Phase (continued):

• Driver initializes HW_Next and SW_Next registers to start of ring

• Driver resets HW_Completed register

• Driver initializes and enables DMA engine

Packet Transmission:

• Packet arrives in Ethernet packet handler

• Packet is attached to one or more descriptors in ring

• Driver marks SOP, EOP and IRQ_on_completion in descriptors

• Driver adds any user control information (e.g., checksum-related) to descriptors

• Driver updates SW_Next register

Post-Processing:

• Driver checks for completion status in descriptor

• Driver frees packet buffer

This process continues as the driver keeps adding packets for transmission, and the DMA
engine keeps consuming them. Since the descriptors are already arranged in a ring,
post-processing of descriptors is minimal and dynamic allocation of descriptors is not
required.

Receive (C2S) Descriptor Management

In Figure 3-15, the shaded blocks indicate descriptors that are under hardware control and
the un-shaded blocks indicate descriptors that are under software control.

X-Ref Target - Figure 3-14

Figure 3-14: Transmit Descriptor Ring Management

1 2 3

HW_Next SW_Next

SW_Next

SW_Next

UG927_c3_15_050114

HW_Next HW_Completed
HW_Completed

HW_Next

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 73
UG927 (v7.0) December 18, 2014

Linux Device Driver and Application

Initialization Phase (continued)

• Driver initializes each receive descriptor with an appropriate Ethernet or block data
buffer

• Driver initializes HW_Next register to start of ring and SW_Next register to end of
ring

• Driver resets HW_Completed register

• Driver initializes and enables DMA engine

Post-Processing after Packet Reception

• Driver checks for completion status in descriptor

• Driver checks for SOP, EOP and User Status information

• Driver forwards completed packet buffer(s) to upper layer

• Driver allocates new packet buffer for descriptor

• Driver updates SW_Next register

This process continues as the DMA engine keeps adding received packets in the ring, and
the driver keeps consuming them. Since the descriptors are already arranged in a ring,
post-processing of descriptors is minimal and dynamic allocation of descriptors is not
required.

X-Ref Target - Figure 3-15

Figure 3-15: Transmit Descriptor Ring Management

1 2 3

HW_Next SW_Next

SW_Next

SW_Next

UG927_c3_15_050114

HW_Next HW_Completed
HW_Completed

HW_Next

Send Feedback

74 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 3: Functional Description

Windows Device Driver and Application
The Windows driver components are divided into different atomic blocks that generate
user traffic and control hardware blocks. These atomic blocks can be used in user driver
environment to build more sophisticated PCIe-based applications.

The Windows device driver architecture is intended to meet the following objectives:

• Arrange in layers so that user application can be hooked up directly to the driver

• Create a private driver interface which can interact with the block driver and the
Ethernet driver interface

Figure 3-16 depicts the software architecture.

At the bottom of the Figure 3-16 is the XDMA PCI Express driver, XBlock functional and
XNet NDIS drivers. These drivers operate in the kernel mode that operates in processor
ring 0 protection. The purpose of a kernel driver is to be the interface between a software
application and the hardware device. The driver is designed with specific knowledge of
the hardware and how best to make this interface available to applications. For this
discussion the term application is a program like a web browser, editor, viewer, etc.
Applications use Windows APIs to interface with the operating system.

In this design, the XDMA driver is the controlled access point to the NWL DMA block
present in the hardware design. The XDMA controls the DMA engines, handles interrupts
and has interfaces for both driver and application status requests. It also handles system
requests like system sleep (D1-D3) and wake (back to D0) functions. The XNet and XBlock
drivers are function specific drivers (FSD) that must interface with the XDMA driver. The
XDMA driver exposes a private driver to driver interface in which the XNet and XBlock
drivers communicate.

X-Ref Target - Figure 3-16

Figure 3-16: Software Architecture

UG927_c3_16_05014

XDMA

Network Stack
(TCP/IP)

User Space, Ring 3

XBLOCKXNET

GUI Application
Network Applications

(Web Browsers,
Software Statistics, etc.)

Device I/O Control Read/Write
(only when application
buffers are enabled)

Private driver to driver interfacePrivate driver to driver interface

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 75
UG927 (v7.0) December 18, 2014

Windows Device Driver and Application

The FSD interface abstracts all the details of the DMA engines. The FSDs handle the
interface to the operating system or applications. The FSD performs the necessary scatter/
gather operations and general request handling. A single function call is made to the
XDMA driver to start a transfer and a callback is supplied for request completions. The
two FSDs in this architecture are XBlock and XNet.

The XNet driver is a NDIS 6.x compliant driver and works with existing Microsoft
Windows networking stacks such as TCP/IP. The XNet driver works like any other
compliant NDIS device and presents a wired 10 gigabit Ethernet interface device to the
network stacks. Any standard network applications such as ping, iperf, ftp or web
browsers can be used to communicate through these interfaces.

The XBlock driver provides a block like read/write interface to the DMA engines on the
Xilinx hardware facilitating transmit or receive of data present in the buffers, from the
application user space, if that mode is enabled using the Windows registry key TestConfig.
By default, Application Buffer Transfer mode is enabled wherein buffer addresses to be
programmed in the buffer descriptors are provided by the user application. These modes
are described in Internal Buffer Transfers, page 78 and Application Buffer Transfers,
page 78. The XBlock drivers can also be configured to generate data with a standard
Ethernet header to showcase the capabilities of the 10G MAC used in the design. This
mode is called RAW Ethernet mode.

The application is the graphical user interface into the XBlock and XDMA driver in the case
of Performance/Raw Ethernet mode of operation. The application communicates to the
XBlock driver using standard Windows operating system calls such as CreateFile,
ReadFile, WriteFile, CloseFile, etc. The XDMA driver communicates using standard
Windows operating system calls such as CreateFile, DeviceIOControl, and CloseFile.

XDMA Overview
The XDMA driver is responsible for all things related to the NWL DMA block. It handles
the initialization of the DMA Engines, Interrupt control and routing, deferred procedure
calls (DPC), timers, request handlers, etc. The XDMA driver presents both a user
application interface via DeviceIOControl (ioctl) and a driver-to-driver interface. The
driver-to-driver interface allows for function specific drivers to be layered above the
XDMA driver. The interface is designed to be direct and efficient.

The XDMA driver verifies the hardware and initializes it according to the given
configuration. The driver creates one context space that is shared for all DMA Engines for
a particular board. The XDMA driver also creates separate data spaces for each DMA
engine yielding each DMA engine its own context to operate and does not share anything
with the other DMA engines with the exception of timers and interrupts. Each DMA
engine allocates its own DMA objects (both 32- and 64-bit), descriptor pool and DPC. The
driver creates a linked list of descriptors at initialization time along with head and tail
pointers that point directly at the DMA descriptors.

When a DMA request is given to the XDMA, the driver retrieves the next DMA descriptor,
fills out the descriptor with the scatter/gather information provided, and moves the DMA
engine software descriptor pointer to start the DMA For more information on DMA data
transfer please refer to Linux Device Driver and Application, page 63.

Interrupts are used to task the completion of the DMA. Once the interrupt has occurred
and is acknowledged for a DMA engine, a DPC is scheduled for that DMA engine alone.
When the DPC runs, the actual completion of the DMA transaction occurs. This includes
freeing the DMA descriptors for reuse, issuing the callback to the FSD to free the scatter/
gather list and to complete the WDF Request.

Send Feedback

76 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 3: Functional Description

XBlock Overview

When an application (in the Processor Ring 3 protection) wants to transfer data via a DMA
device it must use a kernel driver to do so. The application allocates a buffer but the
memory address is a virtual address. This virtual address can represent many fragments of
physical memory scattered throughout the system. It is the job of the kernel driver along
with the operating system WDF support functions to convert the virtual address into
something usable by the DMA device. In addition to converting the virtual address into
physical addresses the data at these addresses must be locked down, meaning the
operating system must not touch or swap the memory out to disk while a DMA is taking
place. The memory must also not be cached otherwise the DMA will have replaced the
contents while the processor reads from a stale cache.

The XBlock driver has read and write functions exposed to applications when Application
Buffers mode is enabled. This allows applications to access the DMA engines using
standard Open/CreateFile, ReadFile, WriteFile, CloseFile operating system functions to
move data across the PCI Express bus. ReadFile is used to program free buffers into the
DMA descriptors to receive data from the card and WriteFile is used to transmit data to
card. Multiple threads invoking ReadFile and WriteFile can be used to transmit/receive
data simultaneously.

The XBlock driver does not know about the underlying hardware as the XDMA driver
abstracts that information. The XBlock driver communicates through the XDMA_Link
structures that contains information on how to submit transactions, and contains a WDF
object that has specific information used by calls in the FSD to do scatter/gather
operations.

When the XBlock driver receives a request from the operation system, it performs a
scatter/gather operation using the WDF object to retrieve the physical buffer addresses
and to lock the buffers in preparation for DMA. Once the scatter/gather operation is

X-Ref Target - Figure 3-17

Figure 3-17: XBlock to XDMA Interface

UG927_c3_17_050114

DMA Direction

Number of DMA Descriptors

Context Value

Function Pointers

Context Pointer

Callback Function Pointers

Context Value

Context Pointer

XDMA

XBLOCK

PCI Express Hardware

Open/Close/Read/Write File Interface to Ring 3 Applications

DMA descriptor tables
one table per DMA engine

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 77
UG927 (v7.0) December 18, 2014

Windows Device Driver and Application

complete the XDMA driver is called. The XDMA driver retrieves the next available DMA
descriptors in the list, fills them out with the scatter/gather information and starts the
DMA by moving the DMA engine pointer. Control is returned to XBlock where the request
is marked pending and control returns to the kernel.

When an interrupt occurs the DMA engines are checked to determine which engine(s)
caused an interrupt and a DPC is schedule for each DMA engine that requires service.
When the DPC runs the DMA descriptor list is traversed looking for a completed packet. If
a completed packet is found the FSD (XBlock in this case) information is retrieved and the
FSD is called. The FSD releases the scatter/gather information along the with the DMA
transaction object. The request is completed by a WDF call with the request handle and the
information about the transfer. Control is returned to XDMA to look for more completed
packets or exit the DPC.

Windows requires the DMA transaction is complete before indicating completion to the
operating system. If this is not adhered to the operating will free resources being used
during the DMA transfer with disastrous consequences.

XNet Overview

The XNet driver is a standard NDIS 6.x driver that communicates on the bottom end with
the XDMA driver instead of directly with the hardware and presents a wired 10 gigabit
Ethernet network device the protocol stacks above. The XNet driver communicates
through the XDMA link structures that contains information on how to submit
transactions, and contains a WDF object that has specific information used by calls in the
FSD to do Scatter/Gather operations.

X-Ref Target - Figure 3-18

Figure 3-18: XNet to XDMA Interface

UG927_c3_18_050114

DMA Direction

Number of DMA Descriptors

Context Value

Function Pointers

Context Pointer

Callback Function Pointers

Context Value

Context Pointer

XDMA

XNET

PCI Express Hardware

NDIS Interface

DMA descriptor tables
one table per DMA engine

Kernel Allocated Receive
Buffer Pool

Send Feedback

78 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 3: Functional Description

Modes of Operation

XDMA

Child Driver Configuration

The child driver configuration uses the registry key name ChildDriverConfig to control
what function specific drivers are loaded. The registry key is a DWORD value that has the
following settings:

• XBlock - This loads up to two XBlock drivers. One for each DMA engine pair found.

• XNet - This loads up to two XNet drivers. One for each DMA engine pair found.

The registry key is created by the XDMA.inf file in the section
XDMAInst_ChildDriver_AddReg.

Performance

The scatter gather DMA fetches the buffers queued up for transmission in the host system
memory as packets to transfer them over the PCIe link. The performance mode depends on
the value of the registry key name RawEthernet. The registry key is a DWORD value. For
Performance mode the value is set to 0.

This key is created by the XDMA.inf file in the section XDMAInst_RawEthernet_AddReg.

RAW Ethernet

The Scatter Gather DMA fetches the buffers queued up for transmission in the host system
memory as packets to transfer them over the PCIe link. In the transmit direction, data is
transferred over to the 10G Ethernet MAC block in hardware. In the receive direction, the
data received in the 10G Ethernet MAC is transferred over to the host system.. The Raw
Ethernet mode depends on the value of registry key name RawEthernet. Also, all traffic
generated through the XBlock drivers contains an Ethernet header and this design
demonstrates the maximum capability of the 10G MAC because there are no TCP/IP stack
overheads. The registry key is a DWORD value. For raw Ethernet mode the value is set
to 1.

This key is created by the XDMA.inf file in the section XDMAInst_RawEthernet_AddReg.

Internal Buffer Transfers

The Internal Buffer Transfers mode uses the registry key name TestConfig to control the
application or kernel buffer type to be programmed into the DMA buffer descriptor rings.
The registry key is a DWORD value. For Internal Buffer Transfers mode the value is set
to 1.

This key is created by the XDMA.inf file in the section XDMAInst_TestConfig_AddReg.

When TestConfig key is set to 1, the driver uses an internal kernel buffer to transfer data
to/from the device. The DMA descriptors are set to kernel buffer addresses. In the Internal
Buffer Transfer mode interrupts are not used. A low resolution timer is used to poll the
descriptor list and gather statistics. PCIe and DMA performance numbers observed in this
mode are much higher than what is observed with application buffer transfers.

Application Buffer Transfers

The Application Buffer Transfers mode uses the registry key name TestConfig to control
the configuration of the driver when a start test command is issued. The Registry key is a
DWORD value. For Application Buffer Transfers mode the value is set to 0.

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 79
UG927 (v7.0) December 18, 2014

Windows Device Driver and Application

This key is created by the XDMA.inf file in the section XDMAInst_TestConfig_AddReg.

When application buffer transfers is selected the driver the buffer(s) are provided by the
function specific driver to transfer data to/from. Interrupts are used to control the DMA
engine and determine completion of a DMA. This is necessary in Windows so resources are
not released prematurely which can cause a system crash.

XBlock

There are no configurable modes for the XBlock driver.

XNet

Network Address override

The network address uses the registry key name NetworkAddress to override the
hardware-supplied MAC address used by the instance of the driver. This is a standard
NDIS registry key.

This key is created by the XNet.inf file in the section XilNetworkAddress.reg.

It is necessary to change the MAC address if two KC705 boards are connected back-to-back
in peer-to-peer mode because both of their MAC addresses will be initially the same.

Jumbo Frame

The jumbo frame uses the registry key name JumboFrame to control the maximum frame
size supported by the NDI driver.

This key is created by the XNet.inf file in the section XilJumboFrame.reg. The NDI
installer performs the transform from UI selection into a number ranging from 1,514 to
7,168 bytes. The frame size can be modified from the Windows standard networking and
sharing utility.

Data Flow

XDMA

Initialization

The driver starts at the DriverEntry function. DriverEntry registers the driver with the PnP
Manager. When a device is found the PnP Manger will call XlxEvtDeviceAdd. This is
where most of the driver setup is done and various driver functions are registered. The
driver allocates the device extension memory to hold information about the card. The
driver reads the registry entries to gather configuration information for what FSDs to load,
configure performance, or Raw Ethernet, etc. and sets up the interrupts based on the card
and system capabilities to support MSI-X, MSI or legacy interrupts. The driver creates a
private driver-to-driver interface in which the FSDs communicate. This is the interface that
the XNet and XBlock drivers use to establish connection to the XDMA driver.

When the operating system is ready it will call XlxEvtDevicePrepareHardware. The
Prepare hardware function is where we setup the individual DMA Engines. The driver
reads registers mapped via BAR0 to retrieve the configuration of the DMA engine. The
driver then initializes and sets up each DMA Engine with its own data space to be able to
operate autonomously. The driver pre-allocates space in the first 4 GB of memory for the
DMA descriptor pools, one pool for each DMA engine. The DMA descriptors are

Send Feedback

80 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 3: Functional Description

initialized and statically setup into a linked list with the head and tail pointers pointing to
the beginning of the list.

When the operating system is fully operational it signals the driver to enter D0 state which
corresponds to system power states. In this state the timers are started and the DMA
engines are marked as AVAILABLE. At this point linking to the FSBs are allowed.

DMA Engines 0 and 1 (hardware designation 0 and 1) are S2C or write interfaces while
DMA Engines 2 and 3 (hardware designation 32 and 33) are C2S or read interfaces.

Functional interfaces

The XDMA does not initiate DMA transfers unless it is configured for internal transfers.
The FSBs initiate data transfers. The XDMA driver does present an abbreviated xpmon_be
(Xilinx Performance Monitor Back End) I/O Control interface. XDMA supports the
following xpmon_be functions:

• IGET_TEST_STATE

• ISTART_TEST

• ISTOP_TEST

• IGET_LED_STATISTICS

• IGET_PCI_STATE

• IGET_ENG_STATE

• IGET_DMA_STATISTICS

• IGET_TRN_STATISTICS

• IGET_SW_STATISTICS

XBlock

Initialization

The XBlock driver performs the standard WDF driver entry and setup requires along with
establish a link to the XDMA driver. After the link to XDMA, the XBlock checks the
capabilities of the underlying hardware to make sure it is suitable for its use. XBlock sets
up entry points for read and write.

XBlock attempts to establish a linkage to a pair of DMA engines corresponding to App0. If
the linkage fails then App1 is attempted. If App0 is linked, XBlock will use DMA engines
0 and 2 (hardware designation 0 and 32). If App1 is linked, XBlock will use DMA engine 1
and 3 (hardware designation 1 and 33).

Functional interfaces

The XBlock driver can be opened like a file but the driver name uses a GUID, which is a
driver specific unique id as part of it name so it takes a little more work to resolve the
name. The GUI program includes a routine called OpenDriverInterface in the
DriverGenInfo.cpp file that can be an example of how to resolve the driver name. After
the driver name is resolved the interface can be opened using the Windows operating
system CreateFile call. ReadFile, WriteFile and CloseHandle can all be used when
interfacing with XBlock.

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 81
UG927 (v7.0) December 18, 2014

Windows Device Driver and Application

XNet

Initialization

The XNet driver on the top presents a NDIS 6.x interface while the bottom edge is WDF.
The XNet driver performs all the normal initialization functions necessary for an NDIS 6.x
driver in addition it also creates a WDF context for the bottom edge of the driver to allow
it to link with the XDMA driver. Once the NDIS initialization is accomplished the XNet
driver then attempts to link to the XDMA driver.

XNet establishes a linkage to a pair of DMA engines depending on what interface is set in
the registry when the driver is loaded. The definition XNET_SEND_DMA_ENGINE can be
defined as either DMA engines 0 or 1 (hardware designation 0 or 1). The definition
XNET_RECV_DMA_ENGINE can be defined as either DMA engines 2 or 3 (hardware
designation 32 or 33). DMA engines 0 and 1 (hardware designation 0 and 1) are S2C or
send interfaces while DMA Engines 2 and 3 (hardware designation 32 and 33) are C2S or
receive interfaces.

When the XNet driver loads it creates a network buffer list (NBL), scatter/gather list
entries and packet buffers for receives. These components are scatter/gathered once at
initialization time and recycled between the NDIS protocol stacks and the driver. This
increases the efficiency greatly since the scatter/gather is not in the performance path.
NDIS send packets do require scatter/gather in the performance path. This is due to data
in the buffer can be the application buffer.

Functional interfaces

The XNet driver supports the standard NDIS OIDs necessary to be NDIS 6.0 compliant.
XNet does not expose an xpmon_be interface since the NDIS driver naming is obscured
making a CreateFile, DeviceIOControl more difficult. Please refer to the NDIS 6.x
documentation regarding supported OIDs.

NDIS does not use or expose any standard operating system interfaces like ReadFile,
WriteFile, etc.

User Interface – Control and Monitor GUI
While invoking the GUI, a launching page is displayed which detects the PCIe device for
this design (Vendor ID = 0x10EE and Device ID = 0x7082). It allows driver installation to
proceed only on detection of the appropriate device. The user can select any one of the
following operating configurations:

1. Performance (PCIe-DMA or Gen/CHK) Mode

2. Performance Mode (Raw Ethernet)

3. Application Mode

All three modes of configuration are mutually exclusive. In Performance or Raw Ethernet
mode, the user can select an additional option to enable a data integrity check. Upon
successful installation of drivers, the control and monitor GUI is displayed.

GUI Control Function

The following parameters are controlled through the GUI:

• Packet size for traffic generation

• Test type loopback in case of raw Ethernet and loopback/Hw checker/Hw Generator
for Performance mode.

Send Feedback

82 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 3: Functional Description

• Changing PCIe Link speed and width

GUI Monitor Function

The driver always maintains information about the hardware status. The GUI periodically
invokes an I/O control, ioctl() to read this status information which comprises:

• PCIe link status, device status

• DMA engine status

• Power status

The driver maintains a set of arrays to hold per-second sampling points of different kinds
of statistics which are periodically collected by the performance monitor handler. The
arrays are handled in a circular fashion. The GUI periodically invokes an ioctl() to read
these statistics, and then displays them.

• PCIe link statistics provided by hardware

• DMA engine statistics provided by DMA hardware

• Graph display of all of the above

The various GUI fields highlighted in Figure 3-19 are explained as follows:

1. Indicates DDR3 calibration information, green on calibration red otherwise.

2. 10G PHY-0 link status.

3. 10G PHY-1 link status.

4. Mode of operation – In Performance GEN/CHEK mode the user has the option to
select Loopback or Hw Gen/Hw checker while in raw Ethernet only loopback is
allowed. In Application mode it is grayed out as traffic is generated from a networking
tool.

5. Packet size for test run. Allowed packet size is shown in tool tip.

6. Test start/stop control for Performance mode.

7. DMA statistics and software BD provides the following information:

• Throughput (Gb/s) – DMA payload throughput in gigabits per second for each
engine.

• DMA active time (ns) – The time in nanoseconds that the DMA engine has been
active in the last second.

• DMA wait time (ns) – The time in nanosecond that the DMA was waiting for the
software to provide more descriptors.

• BD errors – Indicates a count of descriptors that caused a DMA error. Indicated by
the error status field in the descriptor update.

• BD short errors. – Indicates a short error in descriptors in the transmit direction
when the entire buffer specified by length in the descriptor could not be fetched.
This field is not applicable for the receive direction.

• SW BDs – Indicates the count of total descriptors set up in the descriptor ring.

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 83
UG927 (v7.0) December 18, 2014

Windows Device Driver and Application

8. PCIe transmit (writes) (Gb/s) – Reports transmitted (Endpoint card to host) utilization
as obtained from the PCIe performance monitor in hardware.

9. PCIe receive (reads) (Gb/s) – Reports received (host to Endpoint card) utilization as
obtained from the PCIe performance monitor in hardware.

10. Message log – The text pane at the bottom shows informational messages, warnings,
or errors.

11. Performance plots tab – Plots the PCIe transactions on the AXI4-Stream interface and
shows the payload statistics graphs based on DMA engine performance monitor.

12. Close button – This button closes the GUI.

13. Directed link speed change – Option to change link speed. Drop down box shows
allowed speed changes. GO Button sets the corresponding speed.

14. Directed link width change – Option to change link width. Drop down box show cases
allowed width changes. GO button sets the corresponding width.

15. PCIe Endpoint status – Reports the status of various PCIe fields as reported in the
Endpoint's configuration space.

16. Host system's initial credits – Initial flow control credits advertised by the host system
after link training with the Endpoint. A value of zero implies infinite flow control
credits.

17. Block diagram button – This button show cases block diagram of each mode which is
running.

X-Ref Target - Figure 3-19

Figure 3-19: Software GUI Screen Capture

UG927_c3_19_050114

Send Feedback

84 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 3: Functional Description

18. Power statistics – Power in watts is plotted for various rails namely, VCCINT, GTVCC,
VCCAUX and VCCBRAM.

19. Temperature monitor shows current die temperature.

This GUI is developed in JAVA environment. Java Native Interface (JNI) is used to build
the bridge between driver and UI. Same code can be used for windows operating system
with minor changes in JNI for operating system related calls.

Power Management
The power management in the Kintex-7 Connectivity TRD supports various system power
states. System power management is based on PM events raised across the system. Events
such as standby and hibernate are raised as a move to bring the entire system to low power
states. Various system level transactions are show in Table 3-6.

The Kintex-7 TRD supports four system power transitions:

• System Suspend

• System resume

• System Hibernate

• System Restore.

These power transitions are supported by registering a set of call back functions with the
PM subsystem. These call back functions are invoked by the PM subsystem based on the
system level power state transitions.

Table 3-6: Power States

Global OS PCI Device Link State Description

G0 S0 D0 L0 Working

L0s
Hardware autonomous, software independent
low resume latency ASPM state

G1 Sleep

S1 D1 L1
Caches flushed, CPU stops execution, CPU,
RAM power is ON, and devices might/might
not be up.

S2 CPU is powered OFF (not commonly
implemented)

S3 D2 L1 Standby (suspend-to-RAM), remaining power
ON

S4 D3 Hot L2 Hibernation (suspend-to-Disk), powered down

G2 S5 D3 Cold L2 (aux power)
Soft OFF; some peripherals are ON for wake
signal (keyboard, clock, modem, LAN, USB
etc.)

G3 Mechanical OFF

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 85
UG927 (v7.0) December 18, 2014

Windows Device Driver and Application

Implementation Details of PM

Table 3-7 explains each call back function hook description and its corresponding
implementation in the Kintex-7 FPGA Connectivity TRD.

Table 3-7: Call Back Function Hook Description and Corresponding Implementation

Original Description Implementation

prepare()

• It is executed during
• Suspend
• Hibernation (image about to be created)
• Power off, after saving hibernate image
• System restore (hibernate image has just been

restored to memory)
• Role of prepare()

• Prevent new children being registered until any of
these callbacks are invoked: resume_noirq(),
thaw_noirq(), restore_noirq()

• It should not allocate any memory

• Change the DriverState to PM_PREPARE
• Flag is checked in:

• Do not allow any application driver registration
• Do not allow any application to open the driver

interface
• Invoke the application driver's prepare() hook

function.
• This makes the application driver stop the TX queue.

Send Feedback

86 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 3: Functional Description

suspend()

• It is executed during
• Suspend

• Role of suspend()
• Makes the device quiescent and prepares it for a low

power state.
• DO NOT save the configuration registers, prepare

wakeup signaling, or put the device in low power
state, because the PCI subsystem takes care of these
(a few drivers might deviate from this norm).

• Interrupts are still enabled.

• Ensure TX BD ring is empty (no more TX)
• Wait for DMA to complete all queued up packets.
• Do not schedule further packet transmission.

• Sleep awhile based on timeout
• This ensures that packets in transit have made it out

of the FPGA to their respective destinations.
• Invoke the App Driver’s suspend_early() hook

function.
• This hook function is to perform SUSPEND related

activities on the application hardware by the
application driver.

• Disable the MAC engine for TX.
• Disable the MAC engine for RX.

• Get the leftover contents from VFIFO.
• This data is passed to the application layer.
• Because RX has BDs already posted to DMA, the

leftover data comes to XDMA automatically.
• The driver has to handle this data normally. No

special action is required from the driver to get the
data from VFIFO.

• Issue a soft reset to DMA C2S engine after a timeout.
• This ensures that unused BDs (the ones that have

been pre-fetched by XDMA) are posted back by the
DMA engine.

• Ensure the RX BD ring is empty (no more RX).
• Pointers being the same in driver RX ring
• When RX is done, RX-XDMA is automatically

stopped.
• Invoke the application driver’s suspend_late() hook

function. This hook function is to perform SUSPEND
related activities on the application hardware by the
application driver.
• Stop TX and RX queues in the network interface.

Detach the network interface.
• Disable interrupts, timers, and/or polling.

Table 3-7: Call Back Function Hook Description and Corresponding Implementation (Cont’d)

Original Description Implementation

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 87
UG927 (v7.0) December 18, 2014

Windows Device Driver and Application

freeze()

• It is executed during
• Hibernation, after prepare() callbacks have been

executed for all devices in preparation for the
creation of a system image.

• Restore, after a system image has been loaded into
memory from persistent storage and the prepare()
callbacks have been executed for all devices.

• Role of freeze()
• It is analogous to suspend().
• Saves the configuration register.
• DO NOT otherwise put the device into a low power

state and DO NOT emit system wakeup events.

• Invoke SUSPEND.
• Set PCI device states.
• Save current PCI device state into hibernate image.
• Set PCI power state to current state.

poweroff()

• It is executed during
• Hibernation, when the system is about to be

powered off, after the system image is saved onto
disk.

• Role of poweroff()
• It is analogous to suspend() and freeze().
• It does not save the configuration registers.
• It saves other hardware registers, in case the driver

handles the low-power state.
• Interrupts are still enabled.

• Invoke SUSPEND

resume()

• It is executed during
• System resume, after enabling CPU cores (the

contents of main memory were preserved).
• Interrupts are enabled.

• Role of resume()
• Used to restore the pre-suspend configuration of the

device.

• Normal operation enable for DDR3.
• Enable interrupts, timers, and/or polling.
• Invoke application drivers’ resume() hook function.

This hook function does the following:
• Performs RESUME related activities on the

application hardware by the application driver.
• Enables PHY engine for the TX.
• Enables PHY engine for the RX.
• Enables MAC engine for the TX.
• Enables MAC engine for the RX.
• Attaches the network interface.
• Starts the TX queue in the network interface.
• Starts the RX queue in the network interface.

• Changes the flag DriverState to REGISTERED. This
allows the TX traffic to resume.

Table 3-7: Call Back Function Hook Description and Corresponding Implementation (Cont’d)

Original Description Implementation

Send Feedback

88 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 3: Functional Description

Test Procedure through Sys File System

Power management can be tested in Test mode or actual Power Management (PM) mode
using sys file system. In Test mode, the system transits to a changed state and resumes after
few seconds. In actual PM mode, the system transits to a corresponding state change. This
mode requires super user permission.

• Suspend in PM Test mode

• echo devices > /sys/power/pm_test

• echo platform > /sys/power/disk

• echo mem > /sys/power/state

Expected behavior:

Ping response stops for five seconds and resumes automatically.

• Suspend in actual PM mode

• echo none > /sys/power/pm_test

• echo platform > /sys/power/disk

• echo mem > /sys/power/state

Expected behavior:

Host machine turns off and ping response stops. If the host machine is powered
up, the ping response resumes automatically.

• Hibernate in PM Test mode

• echo devices > /sys/power/pm_test

• echo platform > /sys/power/disk

• echo disk > /sys/power/state

Expected behavior:

Ping response stops for five seconds and resumes automatically.

thaw()

• It is executed during
• Hibernate (after invoking thaw_noirq()).
• Interrupts are enabled.

• Role of thaw()
• Similar to resume().
• This call can modify the hardware registers.

• Invoke RESUME

restore()

• It is executed during
• Hibernate, specifically after invoking thaw_noirq()
• Interrupts are disabled.

• Role of restore_noirq()
• Similar to resume_noirq()

• Invoke RESUME

Table 3-7: Call Back Function Hook Description and Corresponding Implementation (Cont’d)

Original Description Implementation

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 89
UG927 (v7.0) December 18, 2014

Windows Device Driver and Application

• Hibernate in Actual PM mode (echo none > /sys/power/pm_test; echo disk > /sys/
power/state)

• echo none > /sys/power/pm_test

• echo platform > /sys/power/disk

• echo disk > /sys/power/state

Expected behavior:

Host machine turns off and ping response stops. If the host machine is powered
up, the ping response resumes automatically.

For further details, refer to corresponding kernel documentation available at the Linux
Kernel Organization.

Application Driven Power Management

The user can initiate application driven power management using the Kintex-7
Connectivity TRD GUI. The user can select link width and speed, and the driver programs
the appropriate registers. The power statistics changes are reflected in the power graph in
the GUI.

For more information on hardware programming, refer to Application Demand Driven
Power Management, page 59.

Send Feedback

90 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 3: Functional Description

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 91
UG927 (v7.0) December 18, 2014

Chapter 4

Performance Estimation

This chapter presents a theoretical estimation of performance, lists the performance
measured, and provides a mechanism for the user to measure performance.

Theoretical Estimate
This section provides a theoretical estimate of performance.

PCI Express - DMA
PCI Express® is a serialized, high bandwidth and scalable point-to-point protocol that
provides highly reliable data transfer operations. The maximum transfer rate for a
2.1-compliant device is 5 Gb/s/lane/direction. The actual throughput would be lower due
to protocol overheads and system design tradeoffs. Refer to Understanding Performance of PCI
Express Systems for more information (WP350) [Ref 8].

This section gives an estimate on performance on the PCI Express link using Northwest
Logic Packet DMA.

The PCI Express link performance together with scatter-gather DMA is estimated under
the following assumptions:

• Each buffer descriptor points to a 4 KB data buffer space

• Maximum payload size (MPS) = 12B

• Maximum read request size (MRRS) = 128B

• Read completion boundary (RCB) = 64B

• TLPs of 3DW considered without extended CRC (ECRC) – total overhead of 20B

• One ACK assumed per TLP – DLLP overhead of 8B

• Update FC DLLPs are not accounted for but they do affect the final throughput
slightly.

The performance is projected by estimating the overheads and then calculating the
effective throughput by deducting these overheads.

The following conventions are used in the calculations that follow.

MRD Memory read transaction

MWR Memory write transaction

Send Feedback

92 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 4: Performance Estimation

Calculations are done considering unidirectional data traffic, that is either transmit (data
transfer from system to card) or receive (data transfer from card to system).

Note: Traffic on upstream (card to system) PCIe link is bolded and traffic on downstream (system
to card) PCIe link is italicized.

The C2S DMA engine (which deals with data reception, that is, writing data to system
memory) first does a buffer descriptor fetch. Using the buffer address in the descriptor, it
issues memory writes to the system. After the actual payload in transferred to the system,
it sends a memory write to update the buffer descriptor. Table 4-1 shows the overhead
incurred during data transfer in the C2S direction.

For every 128 bytes of data sent from card to the system, the overhead on the upstream link
(in bold) is 21.875 bytes.

% Overhead = 21.875/(128 + 21.875) = 14.60%

The throughput per PCIe lane is 5 Gb/s, but because of 8B/10B encoding, the throughput
comes down to 4 Gb/s.

Maximum theoretical throughput per lane for Receive = (100 – 14.60)/100 *
4 = 3.40 Gb/s

Maximum theoretical throughput for a x8 Gen2 link for Receive = 8 * 3.4 = 27.2 Gb/s

The S2C DMA engine (which deals with data transmission, that is, reading data from
system memory) first does a buffer descriptor fetch. Using the buffer address in the
descriptor, it issues memory read requests and receives data from system memory through
completions. After the actual payload in transferred from the system, it sends a memory
write to update the buffer descriptor. Table 4-2 shows the overhead incurred during data
transfer in the S2C direction.

CPLD Completion with data

C2S Card to system

S2C System to card

Table 4-1: PCI Express Performance Estimation with DMA in the C2S Direction

Transaction Overhead ACK Overhead Comment

MRD – C2S Desc Fetch = 20/4096 = 0.625/128 8/4096 = 0.25/128
One descriptor fetch in C2S engine for
4 KB data (TRN–TX); 20B of TLP
overhead and 8 bytes DLLP overhead

CPLD – C2S Desc Completion = (20+32)/4096 = 1.625/128 8/4096 = 0.25/128
Descriptor reception C2S engine
(TRN-RX). CPLD header is 20 bytes and
the C2S Desc data is 32 bytes.

MWR – C2S buffer write = 20/128 8/128
MPS = 128B; Buffer write C2S engine
(TRN-TX).

MWR – C2S Desc Update = (20+12)/4096 = 1/128 8/4096 = 0.25/128
Descriptor update C2S engine (TRN-TX).
MWR header is 20 bytes and the C2S
Desc update data is 12 bytes.

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 93
UG927 (v7.0) December 18, 2014

Theoretical Estimate

For every 128 bytes of data sent from system to card, the overhead on the downstream link
(italicized) is 50.125 bytes.

% Overhead = 50.125/128 + 50.125 = 28.14%

The throughput per PCIe lane is 5 Gb/s, but because of 8B/10B encoding the throughput
comes down to 4 Gb/s.

Maximum theoretical throughput per lane for Transmit = (100 – 28.14)/100 *
4 = 2.86 Gb/s

Maximum theoretical throughput for a x8 Gen2 link for Transmit = 22.88 Gb/s

For transmit (S2C), the effective throughput is 22.8 Gb/s and for receive (C2S) it is
27.2 Gb/s.

The throughput numbers are theoretical and could go down further due other factors:

• The transaction interface of PCIe is 128-bit wide. The data sent is not always 128-bit
aligned and this could cause some reduction in throughput.

• Changes in MPS, MRRS, RCB, or buffer descriptor size also have significant impact on
the throughput.

• If bidirectional traffic is enabled, overhead incurred reduces throughput further.

• Software overhead or latencies contribute to throughput reduction.

AXI Virtual FIFO
The design uses 64-bit DDR3 operating at 800 MHz or 1600 Mb/s. This provides a total
performance of 64 x 1600 = 100 Gb/s.

For a burst size of 128, the total bits to be transferred is

64 x 128 = 8192 bits

For DDR3, the number of bits transferred per cycle is

64 (DDR3 bit width) x 2 (double data rate) = 128 per cycle

Table 4-2: PCI Express Performance Estimation with DMA in the S2C Direction

Transaction Overhead ACK Overhead Comment

MRD – S2C Desc Fetch =20/4096=0.625/128 8/4096 = 0.25/128
Descriptor fetch in S2C engine
(TRN-TX)

CPLD – S2C Desc Completion =(20+32)/4096=1.625/128 8/4096 = 0.25/128
Descriptor reception S2C engine
(TRN-RX). CPLD header is 20 bytes and
the S2C Desc data is 32 bytes.

MRD – S2C Buffer Fetch = 20/128 8/128
Buffer fetch S2C engine (TRN-TX).
MRRS=128B

CPLD – S2C buffer Completion = 20/64 = 40/128 8/64 = 16/128
Buffer reception S2C engine (TRN-RX).
Because RCB=64B, 2 completions are
received for every 128 byte read request

MWR – S2C Desc Update =20+4/4096=0.75/128 8/4096=0.25/128
Descriptor update S2C engine
(TRN-TX). MWR header is 20 bytes and
the S2C Desc update data is 12 bytes.

Send Feedback

94 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 4: Performance Estimation

The total number of cycles for transfer of 8192 bits is

8192/128 = 64 cycles

Assuming 10 cycles read to write overhead, efficiency is

64/74 = 86%

Assuming 5% overhead for refresh and so on, the total achievable efficiency is ~81%, which
is ~81 Gb/s throughput on the AXI Virtual FIFO controller.

Ten Gig Ethernet MAC
The XGEMAC operates at 156.25 MHz clock and a 64-bit datapath width (64 x
156.25 = 10 Gb/s).

For XGMII, three cycles of Interframe gap is the minimum required. Additionally, one byte
each for Start and Terminate control characters is needed. Ethernet frame in itself requires
1 byte of preamble, 6 bytes each of source and destination address and 4 bytes of FCS. This
gives a total overhead of 43 bytes per Ethernet packet.

Measuring Performance
This section shows how performance is measured in the TRD.

Note that PCI Express performance depends on factors like maximum payload size,
maximum read request size, and read completion boundary, which are dependent on the
systems used. With higher MPS values, performance improves as packet size increases.

Hardware provides the registers listed in Table 4-4 for software to aid performance
measurement.

Table 4-3: XGEMAC Performance Estimate

Ethernet Payload Size in Bytes Overhead Effective Throughput in Gb/s

64 43/(64 + 43) = 40.1% 5.98

512 43/(43 + 512) = 7.7% 9.2

1024 43/(43 + 1024) = 4.02% 9.59

16384 43/(16384 + 43) = 0.26% 9.9

Table 4-4: Performance Registers in Hardware

Register Description

DMA Completed Byte Count
DMA implements a completed byte count register per engine,
which counts the payload bytes delivered to the user on the
streaming interface.

PCIe AXI TX Utilization
This register counts traffic on the PCIe AXI TX interface
including TLP headers for all transactions.

PCIe AXI RX Utilization
This register counts traffic on the PCIe AXI RX interface
including TLP headers for all transactions.

PCIe AXI TX Payload
This register counts payload for memory write transactions
upstream, which includes buffer write and descriptor
updates.

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 95
UG927 (v7.0) December 18, 2014

Performance Observations

These registers are updated once every second by hardware. Software can read them
periodically at one second intervals to directly get the throughput.

The PCIe monitor registers can be read to understand PCIe transaction layer utilization.
The DMA registers provide throughput measurement for actual payload transferred.

Performance Observations
This section summarizes the performance measured and the trends seen.

Note: The performance measured on a system at the user end might be different due to PC
configuration and PCIe parameter differences.

PCIe-DMA Performance
This section summarizes performance as observed with PCIe-DMA Performance mode
(GEN/CHK mode). See Figure 4-1.

As can be seen,

• Performance improves with increasing packet size as with the same setup overheads,
DMA can fetch more data (actual payload)

• PCIe transaction layer performance (reads and writes) include the DMA setup
overheads, whereas DMA performance includes only the actual payload.

PCIe AXI RX Payload
This register counts payload for completion transactions
downstream, which includes descriptor or data buffer fetch
completions.

XGEMAC Statistics registers
The XGEMAC core provides transmit and receive frame
statistics.

Table 4-4: Performance Registers in Hardware (Cont’d)

Register Description

X-Ref Target - Figure 4-1

Figure 4-1: PCIe-DMA Performance

System-to-card Performance

Packet Size in Bytes

T
hr

ou
gh

pu
t i

n
G

bp
s

32768

30

25

20

15

10

5

0
4096 2048

DMA-S2C PCIe-RX (Reads)

1024 512 64

Card-to-system Performance

Packet Size in Bytes

T
hr

ou
gh

pu
t i

n
G

bp
s

32768

30

25

20

15

10

5

0
4096 2048

DMA-C2S PCIe-TX (Writes)

1024 512 64

UG927_c4_01_061612

Send Feedback

96 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 4: Performance Estimation

Raw Ethernet Performance
This section presents performance as seen with raw Ethernet, that is XGEMAC included
but broadcast Ethernet frames generated by the software and no connection to the
networking (TCP/IP) stack. See Figure 4-2.

This depicts that the network path hardware can achieve ~92% throughput on a 10 Gb/s
link.

X-Ref Target - Figure 4-2

Figure 4-2: Raw Ethernet Performance

10G Raw Ethernet Performance

Packet Size in Bytes

T
hr

ou
gh

pu
t i

n
G

bp
s

16383

12

10

8

6

4

2

0

8192 4096

DMA-S2C DMA-C2S PCIe-TX PCIe-RX

2048 1024 512

UG927_c4_03_081612

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 97
UG927 (v7.0) December 18, 2014

Chapter 5

Designing with the TRD Platform

The TRD platform acts as a framework for system designers to derive extensions or modify
designs. This chapter outlines various ways for a user to evaluate, modify, and re-run the
TRD. The suggested modifications are grouped under these categories:

• Software-only modifications—Modify software component only (drivers, demo
parameters, and so on). The design does not need to be re-implemented.

• Design (top-level only) modifications—Changes to parameters in the top-level of the
design. Modify hardware component only (change parameters of individual IP
components and custom logic). The design must be re-implemented through the
Vivado tool.

• Architectural changes—Modify hardware and software components. The design must
be re-implemented through the Vivado tool. Remove or add IP blocks with similar
interfaces (supported by Xilinx and its partners). The user needs to do some design
work to ensure the new blocks can communicate with the existing interfaces in the
framework. Add new IP so as to not impact any of the interfaces within the
framework. The user is responsible for ensuring that the new IP does not break the
functionality of the existing framework.

All of these use models are fully supported by the framework provided that the
modifications do not require the supported IP components to operate outside the scope of
their specified functionality.

This chapter provides examples to illustrate some of these use models. While some are
simple modifications to the design, others involve replacement or addition of new IP. The
new IP could come from Xilinx (and its partners) or from the customer's internal IP
activities.

Software-Only Modifications
This section describes modifications to the platform done directly in the software driver.
The same hardware design (BIT/MCS files) works. After any software modification, the
code needs to be recompiled. The Linux driver compilation procedure is detailed in
Compiling Traffic Generator Applications, page 115.

Macro-Based Modifications
This section describes the modifications that can be realized by compiling the software
driver with various macro options, either in the Makefile or in the driver source code.

Send Feedback

98 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 5: Designing with the TRD Platform

Descriptor Ring Size

The number of descriptors to be set up in the descriptor ring can be defined as a compile
time option. To change the size of the buffer descriptor ring used for DMA operations,
modify DMA_BD_CNT in linux/driver/xdma/xdma_base.c.

Smaller rings can affect throughput adversely, which can be observed by running the
performance tests. A larger descriptor ring size uses additional memory but improves
performance because more descriptors can be queued to hardware.

Note: The DMA_BD_CNT in the driver is set to 1999. Increasing this number might not improve
performance.

Log Verbosity Level

To control the log verbosity level (in Linux):

• Add DEBUG_VERBOSE in the Makefiles in the provided driver directories. This
causes the drivers to generate verbose logs.

• Add DEBUG_NORMAL in the Makefiles in the provided driver directories. This
causes the drivers to generate informational logs.

Changes in the log verbosity are observed when examining the system logs. Increasing the
logging level also causes a drop in throughput.

64-Bit Driver Compilation

The internal scripts detect the operating system and install the drivers accordingly.

• To compile specific 64 bit drivers, add X86_64 in the Makefile for the corresponding
drivers.

• To compile all drivers as 64 bit, initialize and export OS_TYPE as 64 bit in linux/
driver/Makefile.

Driver Mode of Operation

The base DMA driver can be configured to run in either Interrupt mode (Legacy or MSI as
supported by the system) or in Polled mode. Only one mode can be selected. To control the
driver:

• Add TH_BH_ISR in the Makefile linux/driver/xdma to run the base DMA driver
in Interrupt mode.

• Remove the TH_BH_ISR macro to run the base DMA driver in Polled mode.

Jumbo Frames

The corresponding change in software requires jumbo frames to be enabled in the Ethernet
driver:

• Add ENABLE_JUMBO in the linux/driver/xxgbeth0/Makefile

• Add ENABLE_JUMBO in the linux/driver/xxgbeth1/Makefile

Enabling JUMBO allows networking stack to send big packets. User can change MTU with
standard networking tools for sending bigger packets.

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 99
UG927 (v7.0) December 18, 2014

Design Changes

Driver Queue Depth

The depth of queue implemented in the driver can be modified through these changes:

• Edit macro MAX_BUFF_INFO in the linux/driver/xrawdata0/sguser.c

• Edit macro MAX_BUFF_INFO in the linux/driver/xrawdata1/sguser.c

The depth increase helps in queuing more packets of the receiver side and transmit
housekeeping. This helps reduce packet drop when the thread is not able to pool in time.

Design Changes
This section describes architecture level changes to the functionality of the platform. These
include adding or deleting IP with similar interfaces used in the framework.

Packet Generator/Checker Behind AXI Virtual FIFO
The packet generator and checker module provided with the TRD can be placed behind
the virtual FIFO to estimate the performance of the PCIe-DMA-DDR3 FIFO system. See
Figure 5-1.

This requires removing the network path and connecting the virtual FIFO AXI4-Stream
interface ports to generator/checker modules.

The same raw data driver works with this hardware change.
X-Ref Target - Figure 5-1

Figure 5-1: Virtual FIFO with Generator/Checker

UG927_c5_01_050114

G
T

Multi-channel
DMA for PCIe

PC
Ie

 In
te

gr
at

ed
 E

nd
po

in
t B

lo
ck

 x
8

G
en

2

A
XI

-S
T

B
as

ic
 W

ra
pp

er

AXI
MIG

DDR3

S2C0

64 x
1600Mbps

PC
Ie

 x
8

G
EN

2
Li

nk

Software
Driver

G
U
I

Integrated Blocks in FPGA Third Party IPXilinx IP On BoardCustom Logic

AXI-Lite AXI-ST AXI-MM

HardwareSoftware

AXI4 Master

D
D
R
3

I
O

AXI
Interconnect

51
2-

bi
t @

20

0M
H

z

A
XI

-S
T

12
8-

bi
t @

 2
50

M
H

z

A
XI

-S
T

12
8-

bi
t @

 2
50

M
H

z

AXI Lite Interconnect

User
Registers

AXI4 Lite
Slave

IPIF

128-bit @ 250MHz

128-bit @ 250MHz

Software DriverStandard OS Components

C2S0

C2S1

S2C1

CHK

G
E
N

G
E
N

CHK

AXIC IC
M1 M3M2M0

AXI VFIFO

WR

RD

AXI VFIFO

AXIC IC
S1 S3S2S0

Send Feedback

100 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Chapter 5: Designing with the TRD Platform

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 101
UG927 (v7.0) December 18, 2014

Appendix A

Register Description

The appendix describes registers most commonly accessed by the software driver. The
registers implemented in hardware are mapped to base address register (BAR0) in PCIe.

Table A-1 shows the mapping of multiple DMA channel registers across the BAR.

Registers in DMA for interrupt handling are grouped under a category called common
registers, which are at an offset of 0x4000 from BAR0.

Table A-1: DMA Channel Register Address

DMA Channel Offset from BAR0

Channel-0 S2C 0x0

Channel-1 S2C 0x100

Channel-0 C2S 0x2000

Channel-1 C2S 0x2100

Send Feedback

102 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Appendix A: Register Description

Figure A-1 shows the layout of registers.

The user logic registers are mapped as shown in Table A-2.

X-Ref Target - Figure A-1

Figure A-1: Register Map

UG927_c6_01_102512

RCW1

TC

XGEMAC-0
(0xB000 - 0xBFFF)

10G BASE-R PHY

PHY Control Register
PHY Specific Status

Register
DMA Completed Byte

Count

DMA Common
Control_Status

DMA Engine Control

Reg_Next_Desc_Ptr

Reg_SW_Desc_Ptr

NWL PACKET DMA

BAR0

BAR0 + 0x4000

Target Master
Interface

M
D

IO

In
te

rf
ac

e

 Engine Registers

GenChk-1

USER SPACE REGISTERS (0x9000 – 0x9FFF)

GenChk-0

Ethernet Statistics

RCW1

TC

XGEMAC-1
(0xC000 – 0xCFFF)

10G BASE-R PHY

PHY Control Register
PHY Specific Status

Register

M
D

IO

In
te

rf
ac

e

Ethernet Statistics

PCIe Core

A
XI

4L
IT

E
In

te
rc

on
ne

ct

PCIe Monitor

Power Monitor

Table A-2: User Register Address Offsets

User Logic Register Group Range (Offset from BAR0)

PCIe performance registers

Design version and status registers

0x9000 - 0x90FF

Performance mode GEN/CHK 0 registers 0x9100 - 0x91FF

Performance mode GEN/CHK 1 registers 0x9200 - 0x92FF

Power Monitor registers 0x9400 - 0x94FF

XGEMAC - 0 registers 0xB000 - 0xBFFF

XGEMAC - 1 registers 0xC000 - 0xCFFF

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 103
UG927 (v7.0) December 18, 2014

DMA Registers

DMA Registers
This section describes certain prominent DMA registers used very frequently by the
software driver. For a detailed description of all registers available, refer to the Northwest
Logic DMA user guides.

Channel Specific Registers
The registers described in this section are present in all channels. The address of the
register is the channel address offset from BAR0 plus the register offset.

Engine Control (0x0004)

Table A-3: DMA Engine Control Register

Bit Field Mode
Default
Value

Description

0 Interrupt Enable RW 0 Enables interrupt generation.

1 Interrupt Active RW1C 0
Interrupt Active is set whenever an interrupt event
occurs. Write '1' to clear.

2 Descriptor Complete RW1C 0
Interrupt Active was asserted due to completion of
descriptor. This is asserted when descriptor with
interrupt on completion bit set is seen.

3 Descriptor Alignment Error RW1C 0
This causes interrupt when descriptor address is
unaligned and that DMA operation is aborted.

4 Descriptor Fetch Error RW1C 0
This causes interrupt when descriptor fetch errors, that
is, completion status is not successful.

5 SW_Abort_Error RW1C 0
This is asserted when the DMA operation is aborted by
software.

8 DMA Enable RW 0
Enables the DMA engine and once enabled, the engine
compares the next descriptor pointer and software
descriptor pointer to begin execution.

10 DMA_Running RO 0 Indicates DMA is in operation.

11 DMA_Waiting RO 0
Indicates DMA is waiting on software to provide more
descriptors.

14 DMA_Reset_Request RW 0
Issues a request to user logic connected to DMA to abort
outstanding operation and prepare for reset. This is
cleared when the user acknowledges the reset request.

15 DMA_Reset RW 0
Assertion of this bit resets the DMA engine and issues a
reset to user logic.

Send Feedback

104 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Appendix A: Register Description

Next Descriptor Pointer (0x0008)

Software Descriptor Pointer (0x000C)

Completed Byte Count (0x001C)

Common Registers

The registers described in this section are common to all engines. These registers are
located at the given offsets from BAR0.

Common Control and Status (0x4000)

Table A-4: DMA Next Descriptor Pointer Register

Bit Field Mode Default Value Description

[31:5] Reg_Next_Desc_Ptr RW 0
Next Descriptor Pointer is writable when DMA is not
enabled. It is read only when DMA is enabled. This should
be written to initialize the start of a new DMA chain

[4:0] Reserved RO 5'b00000 Required for 32-byte alignment

Table A-5: DMA Software Descriptor Pointer Register

Bit Field Mode Default Value Description

[31:5] Reg_SW_Desc_Ptr RW 0
Software Descriptor Pointer is the location of the first
descriptor in the chain that is still owned by the software.

[4:0] Reserved RO 5'b00000 Required for 32-byte alignment.

Table A-6: DMA Completed Byte Count Register

Bit Field Mode Default Value Description

[31:2]
DMA_Completed_Byte
_Count

RO 0
Completed byte count records the number of bytes that
transferred in the previous one second. This has a
resolution of 4 bytes.

[1:0] Sample Count RO 0
This sample count increments every time a sample is taken
at a one second interval.

Table A-7: DMA Common Control and Status Register

Bit Field Mode Default Value Description

0 Global Interrupt Enable RW 0
Global DMA Interrupt Enable
This bit globally enables or disables interrupts for all
DMA engines.

1 Interrupt Active RO 0
Reflects the state of the DMA interrupt hardware output
considering the state of global interrupt enable.

2 Interrupt Pending RO 0
Reflects the state of DMA interrupt output without
considering state of global interrupt enable.

3 Interrupt Mode RO 0
0: MSI mode

1: Legacy interrupt mode

4 User Interrupt Enable RW 0 Enables generation of user interrupts.

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 105
UG927 (v7.0) December 18, 2014

User Space Registers

User Space Registers
This section describes the custom registers implemented in the user space. All registers are
32-bit wide. Register bits positions are to be read from 31 to 0 from left to right. All bits
undefined in this section are reserved and return zero on read. All registers would return
default values on reset. Address holes return a value of zero on being read.

All registers are mapped to BAR0 and relevant offsets are provided. See Table A-8 through
Table A-19.

Design Version and Status Registers

Design Version (0x9000)

Design Status (0x9008)

5 User Interrupt Active RW1C 0 Indicates active user interrupt

23:16 S2C Interrupt Status RO 0
Bit[i] indicates the interrupt status of S2C DMA engine[i].

If the S2C engine is not present, this bit is read as zero.

31:24 C2S Interrupt Status RO 0
Bit[i] indicates the interrupt status of C2S DMA engine[i].

If the C2S engine is not present, this bit is read as zero.

Table A-7: DMA Common Control and Status Register (Cont’d)

Bit Field Mode Default Value Description

Table A-8: Design Version Register

Bit Position Mode Default Value Description

3:0 RO 0000 Minor version of the design

7:4 RO 0001 Major version of the design

15:8 RO 0100 NWL DMA version

19:16 RO 0001 Device-0001 - Kintex-7

Table A-9: Design Status Register

Bit Position Mode Default Value Description

0 RO 0
DDR3 memory controller initialization/
calibration done (design operational status
from hardware).

1 RW 1

axi_ic_mig_shim_rst_n
When software writes to this bit position,
the bit is automatically cleared after nine
clock cycles.

5:2 RO 1
ddr3_fifo_empty
Indicates the DDR3 FIFO and the preview
FIFOs per port are empty.

31:30 RO 00 xphy0 and xphy1 link status.

Send Feedback

106 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Appendix A: Register Description

Transmit Utilization Byte Count (0x900C)

Receive Utilization Byte Count (0x9010)

Upstream Memory Write Byte Count (0x9014)

Downstream Completion Byte Count (0x9018)

Table A-10: PCIe Performance Monitor - Transmit Utilization Byte Count Register

Bit Position Mode Default Value Description

1:0 RO 00 Sample count. increments every second.

31:2 RO 0

Transmit utilization byte count
This field contains the interface utilization
count for active beats on PCIe AXI4-Stream
interface for transmit. It has a resolution of
4 bytes.

Table A-11: PCIe Performance Monitor - Receive Utilization Byte Count Register

Bit Position Mode Default Value Description

1:0 RO 00 Sample count, increments every second.

31:2 RO 0

Receive utilization payload byte count.
This field contains the interface utilization
count for active beats on PCIe AXI4-Stream
interface for receive. It has a resolution of 4
bytes.

Table A-12: PCIe Performance Monitor - Upstream Memory Write Byte Count
Register

Bit Position Mode Default Value Description

1:0 RO 00 Sample count, increments every second.

31:2 RO 0

Upstream memory write byte count.
This field contains the payload byte count
for upstream PCIe memory write
transactions. It has a resolution of 4 bytes.

Table A-13: PCIe Performance Monitor - Downstream Completion Byte Count
Register

Bit Position Mode Default Value Description

1:0 RO 00 Sample count, increments every second.

31:2 RO 0

Downstream completion byte count.
This field contains the payload byte count
for downstream PCIe completion with
data transactions. It has a resolution of 4
bytes.

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 107
UG927 (v7.0) December 18, 2014

User Space Registers

Initial Completion Data Credits for Downstream Port (0x901C)

Initial Completion Header Credits for Downstream Port (0x9020)

PCIe Credits Status - Initial Non Posted Data Credits for Downstream Port
(0x9024)

PCIe Credits Status - Initial Non Posted Header Credits for Downstream Port
(0x9028)

PCIe Credits Status - Initial Posted Data Credits for Downstream Port
(0x902C)

Table A-14: PCIe Performance Monitor - Initial Completion Data Credits Register

Bit Position Mode Default Value Description

11:0 RO 00
INIT_FC_CD
Captures initial flow control credits for
completion data for host system.

Table A-15: PCIe Performance Monitor - Initial Completion Header Credits Register

Bit Position Mode Default Value Description

7:0 RO 00
INIT_FC_CH
Captures initial flow control credits for
completion header for host system.

Table A-16: PCIe Performance Monitor - Initial NPD Credits Register

Bit Position Mode Default Value Description

11:0 RO 00
INIT_FC_NPD
Captures initial flow control credits for
non-posted data for host system.

Table A-17: PCIe Performance Monitor - Initial NPH Credits Register

Bit Position Mode Default Value Description

7:0 RO 00
INIT_FC_NPH
Captures initial flow control credits for
non-posted header for host system.

Table A-18: PCIe Performance Monitor - Initial PD Credits Register

Bit Position Mode Default Value Description

11:0 RO 00
INIT_FC_PD
Captures initial flow control credits for
posted data for host system.

Send Feedback

108 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Appendix A: Register Description

PCIe Credits Status - Initial Posted Header Credits for Downstream Port
(0x9030)

Table A-19: PCIe Performance Monitor - Initial PH Credits Register

Bit Position Mode Default Value Description

7:0 RO 00
INIT_FC_PH
Captures initial flow control credits for
posted header for host system

Directed Change Link Capability User Register (0x9034)

0 RO 0 Link Status

1 RO 0

Current link speed

0: 2.5G

1: 5G

3:2 RO 0

Current link width

00: x1

01: x2

10: x4

11: x8

4 RO 0 Link up-configure capable

5 RO 0 Link GEN2 capable

6 RO 0 Link partner GEN2 capable

9:7 RO 000

Initial link width

000: Link not trained

001: x1

010: x2

011: x4

100: x8

Directed Change Link Control User Register (0x9038)

1:0 RW 00

Directed link speed

00: 2.5 Gb/s

01: 5 Gb/s

4:2 RW 000

Directed Link Width

000: x1

001: x2

010: x4

011: x8

30 RW 0 Initiate speed change

31 RW 0 Initiate width change

Directed Change Link Status User Register (0x903C)

0 RO 0 Width change done

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 109
UG927 (v7.0) December 18, 2014

User Space Registers

Power Monitoring Registers
Table A-20 lists power monitoring registers.
]

1 RO 0 Width change error

3:2 RO 00

Negotiated width

00: x1

01: x2

10: x4

11: x8

7 RO 0 Speed change done

8 RO 0 Speed change error

9 RO 00

Negotiated speed

00: 2.5 Gb/s

01: 5 Gb/s

Table A-19: PCIe Performance Monitor - Initial PH Credits Register (Cont’d)

Bit Position Mode Default Value Description

Table A-20: Power Monitoring Registers

Bit Position Mode Default Value Description

VCCINT Power Consumption (0x9040) [TI UCD Address 52 Rail 1]

31:0 RO 00 Power for VCCINT

VCCAUX Power Consumption (0x9044) [TI UCD Address 52 Rail 2]

31:0 RO 00 Power for VCCAUX

VCC3.3 Power Consumption (0x9048) [TI UCD Address 52 Rail 3]

31:0 RO 00 Power for VCC3.3

VADJ Power Consumption (0x904C) [TI UCD Address 52 Rail 4]

31:0 RO 00 Power for VADJ

VCC2.5 Power Consumption (0x9050) [TI UCD Address 53 Rail 1]

31:0 RO 00 Power for VCC2.5

VCC1.5 Power Consumption (0x9054) [TI UCD Address 53 Rail 2]

31:0 RO 00 Power for VCC1.5

MGT AVCC Power Consumption (0x9058) [TI UCD Address 53 Rail 3]

31:0 RO 00 Power for MGT AVCC

MGT AVTT Power Consumption (0x905C) [TI UCD Address 53 Rail 4]

31:0 RO 00 Power for MGT AVTT

VCCAUX_IO Power Consumption (0x9060) [TI UCD Address 54 Rail 1]

31:0 RO 00 Power for VCCAUX_IO

Send Feedback

110 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Appendix A: Register Description

Performance Mode: Generator/Checker/Loopback Registers for
User APP 0

Table A-21 lists the registers to be configured in Performance mode for enabling
generator/checker or Loopback mode.

Performance Mode: Generator/Checker/Loopback Registers for
User APP 1

Table A-22 lists the registers to be configured in Performance mode for enabling
generator/checker or Loopback mode.

VCC_BRAM Power Consumption (0x9064) [TI UCD Address 54 Rail 2]

31:0 RO 00 Power for MGT VCC_BRAM

MGT_VCCAUX Power Consumption (0x9068) [TI UCD Address 54 Rail 3]

31:0 RO 00 Power for MGT_VCCAUX

Table A-20: Power Monitoring Registers (Cont’d)

Bit Position Mode Default Value Description

Table A-21: Registers to be Configured in Performance Mode for User APP 0

Bit Position Mode Default Value Description

PCIe Performance Module #0 Enable Generator Register (0x9100)

0 RW 0 Enable traffic generator - C2S0

PCIe Performance Module #0 Packet Length Register (0x9104)

15:0 RW 16'd4096
Packet length to be generated. Maximum
supported is 32 KB size packets. (C2S0)

Module #0 Enable Loopback/Checker Register (0x9108)

0 RW 0 Enable traffic checker - S2C0

1 RW 0 Enable loopback - S2C0 () C2S0

PCIe Performance Module #0 Checker Status Register (0x910C)

0 RW1C 0
Checker error
Indicates data mismatch when set (S2C0)

PCIe Performance Module #0 Count Wrap Register (0x9110)

31:0 RW 511
Wrap count
Value at which sequence number should
wrap around.

Table A-22: Registers to be Configured in Performance Mode for User APP 1

Bit Position Mode Default Value Description

PCIe Performance Module #0 Enable Generator Register (0x9200)

0 RW 0 Enable traffic generator - C2S1

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 111
UG927 (v7.0) December 18, 2014

User Space Registers

XGEMAC Related User Registers
These registers in Table A-23 are not part of the IP and are registers implemented
additionally for the TRD.

PCIe Performance Module #0 Packet Length Register (0x9204)

15:0 RW 16'd4096
Packet length to be generated. Maximum
supported is 32 KB size packets. (C2S1)

Module #0 Enable Loopback/Checker Register (0x9208)

0 RW 0 Enable traffic checker - S2C1

1 RW 0 Enable loopback - S2C1 () C2S1

PCIe Performance Module #0 Checker Status Register (0x920C)

0 RW1C 0
Checker error
Indicates data mismatch when set (S2C1).

PCIe Performance Module #0 Count Wrap Register (0x9210)

31:0 RW 511
Wrap count
Value at which sequence number should
wrap around.

Table A-22: Registers to be Configured in Performance Mode for User APP 1

Bit Position Mode Default Value Description

Table A-23: Additional Registers

Bit Position Mode Default Value Description

XGEMAC0 Address Filtering Control Register (0x9400)

0 RW 0 Promiscuous mode enable for XGEMAC0

31 RO 0 Receive FIFO overflow status for XGEMAC0

XGEMAC0 MAC Address Lower Register (0x9404)

31:0 RW 32'hAABBCCDD MAC address lower

XGEMAC0 MAC Address Upper Register (0x9408)

15:0 RW 16'hEEFF MAC address upper

XGEMAC1 Address Filtering Control Register (0x940C)

0 RW 0 Promiscuous mode enable for XGEMAC1

31 RO 0 Receive FIFO overflow status for XGEMAC1

XGEMAC1 MAC Address Lower Register (0x9410)

31:0 RW 32'hAAAACCCC MAC address lower

XGEMAC1 MAC Address Upper Register (0x9414)

15:0 RW 16'hEEEE MAC address upper

Send Feedback

112 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Appendix A: Register Description

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 113
UG927 (v7.0) December 18, 2014

Appendix B

Directory Structure and File Description

Directory Structure
Figure B-1 shows the Kintex®-7 Connectivity TRD directory structure.
X-Ref Target - Figure B-1

Figure B-1: Kintex-7 Connectivity Directory Structure

UG927_aB_01_120914

ready_to_test

k7_connectivity_trd

doc

ip_cores/ip_package

testbench

hdl/constraints

hardware

linux/windows

scripts

runs_ipi

vivado

software

sources

- Contains prebuilt bit files

- Contains software driver/GUI source code

- Contains Windows source/executables

- Contains hardware design

- Contains source folders

- Contains IP configuration files

- Contains testbench files for simulation

- Contains HDL/contstraint files

- Contains simulation/implementation run/scripts folders

- Contains unified scripts for simulation/implementation

- Contains result folder for simulation/implementation

- Contains TRD documents (doxygen and readme)

Send Feedback

114 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Appendix B: Directory Structure and File Description

File Descriptions
The design folder contains all the hardware design deliverables:

• The sources/hdl folder contains source code deliverable files.

• The sources/testbench folder contains test bench related files for simulation.

• The vivado/scripts folder contains implementation and simulation scripts for the
design for both Windows and Linux operating systems in command line and Vivado
Design Suite GUI mode.

• The sources/ip_package and sources/ip_cores folders contain Xilinx IP
cores required for this design and also the DMA netlists.

The doc folder contains this TRD documentation:

• Doxygen generated HTML files for software driver details

• Readme file

• Targeted Reference Design Documentation Advisory

The ready_to_test folder contains programming files and scripts to configure the
KC705 board.

The linux folder contains the software design deliverables.

The windows folder contains the setup.exe files for Windows operating system

• The driver folder contains these subdirectories:

• xrawdata0 contains raw datapath driver files for path 0.

• xrawdata1 contains raw datapath driver files for path 1.

• xgbeth0 contains 10G Ethernet driver files for path 0.

• xgbeth1 contains the 10G Ethernet driver files for path 1.

• xdma contains the xdma driver files.

• include contains the include files used in the driver.

• makefile contains files for driver compilation.

• The gui folder contains the Java source files and executable file for running the
control and monitor GUI.

• The linux folder contains various scripts to compile and execute drivers.

Other files in the top-level directory include:

• The readme file, which provides details on the use of simulation and implementation
scripts.

• The quickstart.sh file, which invokes the control and monitor GUI for Linux.

• The quickstart.bat file which invokes the control and monitor GUI for the
Windows operating system.

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 115
UG927 (v7.0) December 18, 2014

Appendix C

Software Application and Network
Performance

This appendix describes the software application compilation procedure and private
network setup for the Linux operating system.

Note: The traffic generator needs the CPP (C++) compiler, which is not shipped with live OS. It
needs additional installation for compilation. Likewise, Java compilation tools are not shipped as part
of LiveDVD. So GUI compilation needs additional installations. The source code is provided for the
user to build upon this design. For TRD testing, recompiling the application or GUI is not
recommended.

Compiling Traffic Generator Applications
This section provides steps for traffic generator compilation. The source code for the
design (threads.cpp) is available under the directory k7_connectivity_trd/
software/linux/gui/jnilib/src.

The user can add debug messages or enable log verbose for verbosity to aid in debug.

Note: Any changes in data structure lead to GUI compilation, which is not recommended.

To compile the application traffic generator:

1. Open a terminal window.

2. Navigate to the k7_connectivity_trd/linux/gui/jnilib/src folder.

3. At the prompt, type:

$./genlib.sh

The .so files (shared object files) are generated in the same folder. Copy all .so files to the
k7_connectivity_trd/software/linux/gui/jnilib folder.

User can enable log verbose messages by adding a -DDEBUG_VERBOSE flag to
genlib.sh. Enabling log verbose makes debug simpler (if needed).

Private Network Setup and Test
This section explains how to try network benchmarking with this design. The
recommended benchmarking tool is netperf which operates in a client-server model. This
tool can be freely downloaded and is not shipped as part of LiveDVD. Install netperf before
proceeding further.

Send Feedback

116 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Appendix C: Software Application and Network Performance

Default Setup
In the setup connected to same machine, the network benchmarking tool can be run as
follows:

1. Follow the procedure to install Application mode drivers and try ping as documented
in Installing the Linux Device Drivers, page 18. The two interfaces are ethX and
eth(X+1) with IP addresses of 10.60.0.1 and 10.60.1.1, respectively.

2. Disable the firewall to run netperf.

3. Open a terminal and type:

$ netserver -p 5005

This sets up the netserver to listen at port 5005.

4. Open another terminal and type:

$ netperf -H 10.60.0.1 -p 5005

This runs netperf (TCP_STREAM test for 10 seconds) and targets the server at port
5005.

5. To repeat the same process for 10.60.1.1 IP, set up netserver at a different port, for
example, 5006, and repeat the previous steps.

Peer Mode Setup and Test
This section describes steps to set up a private LAN connection between two machines for
10G Ethernet performance measurement. Figure C-1 shows the private LAN setup in peer
mode.

To set up a private LAN connection:

1. Connect two machines that contain the KC705 board and connect the fiber optic cable
between the FMCs.

Connect the fiber cable in a 1:1 manner, that is, FMC channel 2 connected together and
FMC channel 3 connected together.

For this procedure, these machines are called A and B.

2. Run the quickstart.sh script provided in the package. Select the Application
mode with Peer to Peer option. Click Install. This installs the Application mode
drivers.

X-Ref Target - Figure C-1

Figure C-1: Private LAN Setup

Standard PC with KC705 Board Standard PC with KC705 Board

Private LAN

UG927_aC_01_071812

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 117
UG927 (v7.0) December 18, 2014

Private Network Setup and Test

3. After installing the Application mode driver at both ends using the steps documented
in Installing the Linux Device Drivers, page 18):

a. On end A, change the MAC address using ifconfig:

$ ifconfig ethX down

$ ifconfig ethX hw ether 22:33:44:55:66:77 172.16.64.7 up

b. For the corresponding interface on end B, set the IP to be in the same subnet:

$ ifconfig ethX 172.16.64.6 up

c. Follow the same steps for the interface eth(X+1). Change the MAC address at one
end and assign the IP address to be in a different subnet as the subnet assigned for
ethX.

4. Try ping between the machines.

5. Make one end a server. On a terminal, invoke netserver as shown:

$ netserver

6. Make the other end a client. On a terminal, run netperf:

$ netperf -H <IP-address>

This runs a ten second TCP_STREAM test by default and reports outbound performance.

Note: Connecting the two FMC channels at each end in 1:1 mode ensures that ethX on one
machine connects to ethX on another machine. If the order of connection is changed, ethX of one
machine gets connected to eth(X+1), which means setting up MAC and IP addresses has to be
handled appropriately based on the connections made.

Send Feedback

118 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Appendix C: Software Application and Network Performance

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 119
UG927 (v7.0) December 18, 2014

Appendix D

Troubleshooting

This section lists selected self-help tips for when things do not work as expected. This
section is not an exhaustive troubleshooting guide. It is based on the following
assumptions:

• The user has followed instructions as explained in Chapter 2, Getting Started.

• The user has ensured the PCIe link is up and that the endpoint device is discovered by
the host and can be seen with lspci.

• The LEDs indicate various link status as described in Chapter 2, Getting Started.

Table D-1 lists troubleshooting tips and possible corrective actions.

Table D-1: Troubleshooting Tips

Problem Possible Resolution

Performance is low. Check if the design linked at x8 5 Gb/s rate

Link width change doesn't
work.

Check the message log. It t is possible that the motherboard slot being used is not
upconfigure capable.

Power numbers do not
populate in the GUI.

Power cycle the board. The cause of this problem is PMBus signals get into an
unknown state during FPGA configuration and the only way to bring PMBus back to
a working state is to power cycle the board to reset the UCD9248 part.

Test does not start while using
an Intel motherboard.

Check dmesg command if user is getting nommu_map_single then user can bring
up by followings ways.

• If OS is installed on the hard disk, the user can edit the
/etc/grub2.cfg file and add mem=2g to kernel options.

• While using LiveDVD, stop LiveDVD at the boot prompt and add mem=2g to
kernel boot up options.

Performance numbers are very
low and the system hangs upon
un-installing the TRD driver.

This problem might be noticed in Intel motherboards.

• If OS is installed on the hard disk, edit the /etc/grab2.cfg to add Add
IOMMU=pt64 to kernel boot up options.

Drivers cannot be installed. An error message pops up when trying to install if there is a problem with the
installation. The popup message mentions the reason, but the user can select the
View Log option for a detailed analysis. This action creates an open driver_log
file.

Send Feedback

120 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Appendix D: Troubleshooting

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 121
UG927 (v7.0) December 18, 2014

Appendix E

Building the Windows Software

Required Tools
• Microsoft Visual Studio 2012

• Microsoft Windows Driver Kit Version 7.1.0

• Code signing certificate (required if creating and distributing your own version)

• InstallShield Professional Edition

Xilinx provides a framework to build the TRD Windows driver project using Microsoft
Visual Studio 2012.

The Windows drivers are built using the Windows 7 Windows Driver Kit (WDK) version
7.1.0. The current WDK, version 7600.16385.1 MUST be used. It is available here. at no cost.

Note: It is an the WDK is an ISO image and must be burned to a CD/DVD in to install it.

It is necessary to code sign the drivers to allow the drivers to be installed on Vista and
Windows 7 64-bit versions. This requirement can be disabled by pressing the F8 key before
windows starts and selecting Disable Code Signing Enforcement.

Note: Code signing enforcement must be disabled every time Windows is started when using
drivers that are not code signed.

Code-signing the drivers requires a Software Publisher Certificate (SPC) from a
Certification Authority (CA). Contact a CA to obtain the SPC and instructions for installing
a private key on the signing computer.

To build a setup for distribution, InstallShield Professional Edition from Flexera Software
is recommended.

Batch File Modifications
Note: If the WDK is installed to any location other than C:\WinDDK\7600.16385.1 the batch files
build_XBlock.bat, build_XDMA.bat, and build_XNet.bat must be modified as described in
this section.

For each batch file build_XBlock.bat, build_XDMA.bat, and build_XNet.bat:

1. Open the batch file and locate the line:
Set DDKROOT=C:\WINDDK\7600.16385.1

2. Change the path to point to the directory where the WDK is located.

Send Feedback

122 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Appendix E: Building the Windows Software

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 123
UG927 (v7.0) December 18, 2014

Appendix F

Enabling Debugging with the Windows
Driver

To debug the Windows drivers, the free (release) build version of the drivers must be
replaced by the checked (debug) version. This replacement is done by copying the checked
build version over the already-installed free build version located in the
Windows\System32\Drivers directory. After the copy is complete a reboot is necessary
to reload the image.

Debug messages can be viewed by using the Kernel Debugger WinDbg or by using the
application DbgView. Search the internet for DbgView. It is normally found in the
Microsoft Sys internals website and is free to download.

To enable debug messages:

1. Open Regedit on the machine running the driver

2. Go to HKLM\SYSTEM\CurrentControlSet\Control\Session Manager. If the
Debug Print Filter key does not exist create it.

3. In the HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\Debug Print Filter section add a 32-bit ULONG value called IHVDRIVER
for the XDMA driver and XBlock driver and/or IHVNETWORK for the XNet driver.

Set the value to:

• 1 for ERRORs only

• 2 for ERRORs and WARNINGs

• 3 for ERRORs, WARNINGs, and information

• 4 for ERRORs, WARNINGs, information, and trace messages

• 5 for ERRORs, WARNINGs, information, trace messages and verbose messages

• 0xFFFFFFFF for any/all messages

The Windows driver uses a macro for debug statements. The macro is called DEBUGP
which consists of several DbgPrintEx statements. This macro is defined in trace.h. To
use the Microsoft tracing facility, search and replace all DEBUGP macros with DEBUGP.
This replacement is necessary because of the way the tracing is implemented. It cannot be
used in a macro for easy substitution and tracing is difficult to setup and use. The debug
print filter method is easier to use than tracing.

For example replace: DEBUGP(DEBUG_INFO
with: DEBUGP(TRACE_LEVEL_INFORMATION, DBG_INIT

Send Feedback

124 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Appendix F: Enabling Debugging with the Windows Driver

Send Feedback

Kintex-7 FPGA Connectivity TRD www.xilinx.com 125
UG927 (v7.0) December 18, 2014

Appendix G

Additional Resources

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website.

For continual updates, add the Answer Record to your myAlerts.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

References
The most up to date information related to the KC705 Evaluation Kit and its
documentation is available on these websites:

Kintex-7 FPGA KC705 Evaluation Kit

Kintex-7 FPGA Connectivity Kit Documentation

Kintex-7 FPGA Connectivity Kit (AR 50555)

These Xilinx documents and sites provide supplemental material useful with this guide:

1. Vivado Design Suite Migration Methodology Guide (UG911)

2. Vivado Design Suite Implementation User Guide (UG904)

3. 7 Series FPGAs Integrated Block for PCI Express v2.2 Product Guide (PG054)

4. Synthesis and Simulation Design Guide (UG626)

5. Vivado Design Suite Logic Simulation User Guide (UG900)

6. LogiCORE IP 10-Gigabit Ethernet MAC Product Guide (PG072)

7. LogiCORE IP 10-Gigabit Ethernet PCS/PMA Product Guide (PG068)

8. Understanding Performance of PCI Express Systems (WP350)

9. KC705 Evaluation Board for the Kintex-7 FPGA User Guide (UG810)

10. 7 Series FPGAs GTX Transceivers User Guide (UG476)

11. 7 Series FPGAs Memory Interface Solutions User Guide (UG586)

12. Kintex-7 FPGA Base Targeted Reference Design Getting Started Guide (UG883)

13. LogiCORE IP AXI4-Stream Interconnect Product Guide (PG035)

Send Feedback

126 www.xilinx.com Kintex-7 FPGA Connectivity TRD
UG927 (v7.0) December 18, 2014

Appendix G: Additional Resources

14. LogiCORE IP AXI Virtual FIFO Controller Product Guide (PG038)

15. Kintex-7 FPGA Connectivity Kit Getting Started Guide (Vivado Design Suite) (UG929)

These external websites provide supplemental material useful with this guide:

16. Northwest Logic
PCI Express® Solution IP, including DMA Back-End Core

17. Fedora Project
Fedora operating system information and downloads

18. Linux Kernel Organization
The Linux kernel archives

19. Silicon Labs
CP2103 VCP Drivers

20. Ayera Technologies
TeraTerm Pro Enhanced Telnet/SSH2 Client terminal program

21. Faster Technology, LLC
FM-S14 Quad SFP/SFP+ transceiver VITA 57 FMC module

22. Avago Technologies
AFBR-703SDZ 10 Gb/s Ethernet, 850 nm, 10GBASE-SR, SFP+ Transceiver

23. Xilinx AXI Interconnect IP
AXI Interconnect IP product page

24. Amphenol Corporation
LC-LC Duplex 10 Gb/s Multimode 50/125 OM3 Fiber Optic Patch Cable - 2 x LC Male
to 2 x LC Male

Send Feedback

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Programmable Logic IC Development Tools category:

Click to view products by Xilinx manufacturer:

Other Similar products are found below :

DK-DEV-5SGXEA7N SLG4DVKADV 88980182 DEV-17526 DEV-17514 LCMXO3L-SMA-EVN 471-014 80-001005 iCE40UP5K-

MDP-EVN ALTHYDRAC5GX ALTNITROC5GX 471-015 Hinj SnoMakrR10 DK-DEV-1SDX-P-A DK-DEV-1SDX-P-0ES DK-DEV-

1SMC-H-A DK-DEV-1SMX-H-0ES DK-DEV-1SMX-H-A DK-DEV-4CGX150N DK-DEV-5CGTD9N DK-DEV-5CSXC6N DK-DEV-

5M570ZN DK-MAXII-1270N DK-SI-1SGX-H-A DK-SI-1STX-E-0ES DK-SI-1STX-E-A DK-SI-5SGXEA7N ATF15XX-DK3-U

SLG46824V-DIP SLG46826V-DIP 240-114-1 6003-410-017 ICE40UP5K-B-EVN DK-SOC-1SSX-L-D ICE5LP4K-WDEV-EVN L-ASC-

BRIDGE-EVN LC4256ZE-B-EVN LCMXO2-7000HE-B-EVN LCMXO3D-9400HC-B-EVN LCMXO3L-6900C-S-EVN LF-81AGG-EVN

LFE3-MEZZ-EVN LIF-MD6000-ML-EVN LPTM-ASC-B-EVN M2S-HELLO-FPGA-KIT VIDEO-DC-USXGMII 12GSDIFMCCD

SFP+X4FMCCD NAE-CW305-04-7A100-0.10-X

https://www.x-on.com.au/category/embedded-solutions/engineering-tools/embedded-development-tools/programmable-logic-ic-development-tools
https://www.x-on.com.au/manufacturer/xilinx
https://www.x-on.com.au/mpn/intel/dkdev5sgxea7n
https://www.x-on.com.au/mpn/dialogsemiconductor/slg4dvkadv
https://www.x-on.com.au/mpn/crouzet/88980182
https://www.x-on.com.au/mpn/sparkfun/dev17526
https://www.x-on.com.au/mpn/sparkfun/dev17514
https://www.x-on.com.au/mpn/lattice/lcmxo3lsmaevn
https://www.x-on.com.au/mpn/digilent/471014
https://www.x-on.com.au/mpn/criticallink/80001005
https://www.x-on.com.au/mpn/lattice/ice40up5kmdpevn
https://www.x-on.com.au/mpn/lattice/ice40up5kmdpevn
https://www.x-on.com.au/mpn/mpression/althydrac5gx
https://www.x-on.com.au/mpn/mpression/altnitroc5gx
https://www.x-on.com.au/mpn/digilent/471015
https://www.x-on.com.au/mpn/alorium/hinj
https://www.x-on.com.au/mpn/alorium/snomakrr10
https://www.x-on.com.au/mpn/intel/dkdev1sdxpa
https://www.x-on.com.au/mpn/intel/dkdev1sdxp0es
https://www.x-on.com.au/mpn/intel/dkdev1smcha
https://www.x-on.com.au/mpn/intel/dkdev1smcha
https://www.x-on.com.au/mpn/intel/dkdev1smxh0es
https://www.x-on.com.au/mpn/intel/dkdev1smxha
https://www.x-on.com.au/mpn/intel/dkdev4cgx150n
https://www.x-on.com.au/mpn/intel/dkdev5cgtd9n
https://www.x-on.com.au/mpn/intel/dkdev5csxc6n
https://www.x-on.com.au/mpn/intel/dkdev5m570zn
https://www.x-on.com.au/mpn/intel/dkdev5m570zn
https://www.x-on.com.au/mpn/intel/dkmaxii1270n
https://www.x-on.com.au/mpn/intel/dksi1sgxha
https://www.x-on.com.au/mpn/intel/dksi1stxe0es
https://www.x-on.com.au/mpn/intel/dksi1stxea
https://www.x-on.com.au/mpn/intel/dksi5sgxea7n
https://www.x-on.com.au/mpn/microchip/atf15xxdk3u
https://www.x-on.com.au/mpn/dialogsemiconductor/slg46824vdip
https://www.x-on.com.au/mpn/dialogsemiconductor/slg46826vdip
https://www.x-on.com.au/mpn/digilent/2401141
https://www.x-on.com.au/mpn/digilent/6003410017
https://www.x-on.com.au/mpn/lattice/ice40up5kbevn
https://www.x-on.com.au/mpn/intel/dksoc1ssxld
https://www.x-on.com.au/mpn/lattice/ice5lp4kwdevevn
https://www.x-on.com.au/mpn/lattice/lascbridgeevn
https://www.x-on.com.au/mpn/lattice/lascbridgeevn
https://www.x-on.com.au/mpn/lattice/lc4256zebevn
https://www.x-on.com.au/mpn/lattice/lcmxo27000hebevn
https://www.x-on.com.au/mpn/lattice/lcmxo3d9400hcbevn
https://www.x-on.com.au/mpn/lattice/lcmxo3l6900csevn
https://www.x-on.com.au/mpn/lattice/lf81aggevn
https://www.x-on.com.au/mpn/lattice/lfe3mezzevn
https://www.x-on.com.au/mpn/lattice/lifmd6000mlevn
https://www.x-on.com.au/mpn/lattice/lptmascbevn
https://www.x-on.com.au/mpn/microchip/m2shellofpgakit
https://www.x-on.com.au/mpn/microchip/videodcusxgmii
https://www.x-on.com.au/mpn/mpression/12gsdifmccd
https://www.x-on.com.au/mpn/mpression/sfpx4fmccd
https://www.x-on.com.au/mpn/newae/naecw305047a100010x

