
Spartan-6 FPGA
Connectivity Targeted
Reference Design
User Guide

UG392 (v1.5) October 5, 2010

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com UG392 (v1.5) October 5, 2010

Xilinx is disclosing this user guide, manual, release note, and/or specification (the “Documentation”) to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

CRITICAL APPLICATIONS DISCLAIMER
XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE
FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR SAFETY
DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE DEPLOYMENT OF
AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, “CRITICAL APPLICATIONS”). FURTHERMORE, XILINX
PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE OR
AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN
THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR.
CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX PRODUCTS, TO
THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL APPLICATIONS.

AUTOMOTIVE APPLICATIONS DISCLAIMER
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING
FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A
VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE
XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES
THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF
XILINX PRODUCTS IN SUCH APPLICATIONS.

© Copyright 2009–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are
trademarks of Xilinx in the United States and other countries. PCI, PCI Express, PCIe, and PCI-X are trademarks of PCI-SIG. All other
trademarks are the property of their respective owners.

UG392 (v1.5) October 5, 2010 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide

Revision History
The following table shows the revision history for this document.

Date Version Revision

12/08/09 1.0 Initial Xilinx release.

12/17/09 1.1 Updated Figure 1-1, page 12. Revised register and LUT utilization numbers in Table 1-1
and Table 1-2.

Updated Software Bring Up in Chapter 2 section. Updated the MAC address to
$./setmac_id ethX <SP605_MAC_ID>. Added clarification to Test Setup and Payload
Statistics. Edited Using Various Features including removal of Checksum Offload
section and updating NIC Statistics. Updated Packet Size. Revised the following
command line instruction to: $./implement_1000basex.sh. Added a note above
Figure 2-23.

Minor edits to Figure 3-1, Figure 3-3, Figure 3-4, Figure 3-5, Figure 3-8, Figure 3-9 and
Figure 3-11. Changed Checksum Field Mapping for C2SDescUserStatus[63:32] in
Table 3-3. Clarifying edits to the Clocking Strategy section.

Added Checksum Offload in Chapter 5. Revised some of the TRD file/folder names.

Added troubleshooting tips in Table D-1.

05/13/10 1.2 Updated resource utilization numbers in Table 1-1 and Table 1-2.

Added ProjNav Based Flow.

Added the html folder to Figure B-1 and updated the design and driver discussion.

06/14/10 1.3 Updated DDR3 interface performance to 667 Mb/s in Figure 1-1 and on page 13.
Updated LUT resource utilization numbers in Table 1-1 and Table 1-2.

Revised Simulation Requirements and IP Cores with TRD sections.

Revised the differential clock input requirement to 333.5 MHz on page 57 and updated
the PLL settings in the memc3_infrastructure.v file. Also updated the Clocking
Strategy section. Updated to 667 MHz clock in Figure 3-9.

Updated the Theoretical Calculation section.

08/11/10 1.4 Removed references to specific ISE software releases in Hardware Test Setup
Requirements and Simulation Requirements. In IP Cores with TRD, changed
gig_eth_pcs_pma_v10_4 to gig_eth_pcs_pma_v10_5 and mig_v3_4.xco to
mig_v3_5.xco.

10/05/10 1.5 Updated resource utilization numbers in Table 1-1 and Table 1-2. Updated description in
Simulation Requirements. Updated core/netlist names and added information about
readme.txt in IP Cores with TRD. Added Simulating the Design with ISim. Changed
“Simulating the Design” to Simulating the Design with ModelSim and updated the
description. Moved User Controlled Macros and Test Selection sections. Added Design
Version Register (0x8000). Updated 0x8000 to 0x8004 in UserApp Advertisement
Register (0x8004) heading.

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com UG392 (v1.5) October 5, 2010

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 5
UG392 (v1.5) October 5, 2010

Revision History . 3

Preface: About This Guide
Guide Contents . 9
Additional Documentation . 10
Additional Support Resources . 10

Chapter 1: Introduction to the Reference Design
The Targeted Reference Design . 11
Introduction . 11
Features. 13

Base Features . 13
Application Features . 13
Resource Utilization . 14

Chapter 2: Getting Started
Introduction . 15
Requirements . 15

Hardware Test Setup Requirements . 15
Simulation Requirements . 15

Hardware Test Setup . 15
Hardware Bring Up . 16
Software Bring Up . 20
Network Bring Up . 24
Using Application GUI . 29

Using Various Features. 32
Ethernet Specific Features . 32

NIC Statistics . 32
Autonegotiation . 33
Promiscuous Mode . 33

Memory Application Specific Features . 33
Packet Size . 33

Shutting Down the System . 34
IP Cores with TRD . 35
Implementing the Design . 35

Script Based Flow . 35
ProjNav Based Flow . 36

Programming the SP605 . 37
Board Settings . 37
Board Programming . 37

Testing 1000BASE-X Mode . 38

Table of Contents

6 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Simulation . 40
Overview . 40
User Controlled Macros . 41
Test Selection . 42
Simulating the Design with ISim . 42
Simulating the Design with ModelSim . 43

Chapter 3: Functional Description
Hardware Design Description . 45

Base Design Architecture . 47
Integrated Endpoint for PCI Express . 47

Packet DMA . 47
Network Path Architecture . 52

XPS-LL-TEMAC . 52
Ethernet 1000BASE-X PCS-PMA Core . 57

Memory Path Architecture . 57
Memory Interface Generator. 57
Virtual FIFO . 58

Common Registers . 60
TRN Monitor Registers . 60

Clocking and Reset . 60
Clocking Strategy . 60
Reset Scheme . 61

Software Design Description . 62
User-Space Application Features . 62
Kernel-Space Driver Features . 62

Data Flow Model . 63
Ethernet Data Flow . 63
Memory Data Flow . 64

Software Architecture . 64
Applications . 65
Kernel Components . 66

DMA Descriptor Management. 67
Dynamic DMA Updates . 67

User Interface—Control and Monitor GUI . 70
System Logging . 72

Chapter 4: Performance Estimation
PCI Express Performance . 73
Ethernet Performance . 75
Memory Controller Performance . 75
Measuring Performance . 76

Ethernet Performance Measurement . 77
Throughput Estimate and Analysis . 77
CPU Utilization Analysis . 77

Chapter 5: Designing with the TRD Platform
Software-Only Modifications . 79

Macro-Based Modifications . 79
Descriptor Ring Size . 79

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 7
UG392 (v1.5) October 5, 2010

Log Verbosity Level . 80
Driver Mode of Operation . 80
Size of Block Data . 80
Checksum Offload . 80

Software Driver Code Modifications . 80
Design Top-Level Modifications . 81

Hardware-Only Modifications . 81
PCIe High-Performance Mode . 81

Hardware and Software Modifications . 81
Jumbo Frames . 81
PCIe Vendor and Device ID . 81

Architectural Modifications . 82
Aurora IP Integration . 82
Using Multiple Virtual FIFO Instances . 83

Appendix A: Register Description
DMA Registers. 86

Channel Specific Registers . 86
DMA Engine Control (0x0004) . 87
Next Descriptor Pointer (0x0008) . 87
Software Descriptor Pointer (0x000C) . 87
Completed Byte Count (0x001C) . 88

Common Registers . 88
Common Control and Status (0x4000) . 88

Network Path IP Registers. 88
XPS-LL-TEMAC Registers . 88

Reset and Address Filter Register (0x0) . 89
Statistics Registers. 89
Receive Configuration Word Register (Indirect, 0x240) . 89
Transmit Configuration Word Register (Indirect, 0x280) . 90
Management Configuration Register (Indirect, 0x340) . 90
Address Filter Mode Register (Indirect, 0x390) . 91

User Application Registers . 91
Design Version Register (0x8000) . 91
User Application Advertisement Registers . 92

UserApp Advertisement Register (0x8004). 92
User Interrupt Registers . 92

User Interrupt Enable Register (0x8100) . 92
User Interrupt Status Register (0x8104) . 93

TRN Monitor Registers . 93
Transmit Utilization Byte Count (0x8200). 93
Receive Utilization Byte Count (0x8204) . 94
Upstream Memory Write Byte Count (0x8208). 94
Downstream Completion Payload Byte Count (0x820C). 94
TRN Monitor Control (0x8210) . 95

User App1 Registers . 95
Virtual FIFO Status Register (0x9100) . 95
Virtual FIFO Receive Packet Length Register (0x9104) . 95
Virtual FIFO Start Address Register (0x9108) . 95
Virtual FIFO End Address Register (0x910C) . 96
Virtual FIFO Error Statistics Register (0x9110) . 96

8 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Appendix B: Directory Structure
Introduction . 97

Appendix C: Setting Up a Private LAN
Introduction . 99

Appendix D: Troubleshooting
Introduction . 101

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 9
UG392 (v1.5) October 5, 2010

Preface

About This Guide

The Spartan®-6 FPGA Connectivity Targeted Reference Design delivers all the basic
components of a targeted design platform for the connectivity domain in a single package.
Targeted Design Platforms from Xilinx provide customers with simple, smart design
platforms for the creation of FPGA-based solutions in a wide variety of industries.

This user guide details a targeted reference design developed for the connectivity domain
on a Spartan-6 FPGA. The aim is to accelerate the design cycle and enable FPGA designers
to spend less time developing the infrastructure of an application and more time creating
a unique value-add design.

Guide Contents
This document contains the following chapters:

• Chapter 1, Introduction to the Reference Design provides an introduction to the
targeted reference design and outlines its features.

• Chapter 2, Getting Started provides a quick-start guide to help the user get started
with the hardware setup and simulation.

• Chapter 3, Functional Description provides a detailed architectural description of the
hardware and software driver implemented. A separate software programming
manual listing the software APIs is delivered with the software source.

• Chapter 4, Performance Estimation provides a detailed report on theoretical
estimation and analysis of the design performance.

• Chapter 5, Designing with the TRD Platform provides suggested variations and
add-ons to the platform to implement different functions.

• Appendix A, Register Description details certain registers programmed by the
software driver. This section provides a comprehensive register programming
manual.

• Appendix B, Directory Structure details the directory structure and the organization
of various files and folders.

• Appendix C, Setting Up a Private LAN provides instructions on setting up a private
LAN connection to enable testing with Netperf.

• Appendix D, Troubleshooting provides tips on areas to look for when debugging a
design.

10 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Preface: About This Guide

Additional Documentation
The following documents have been used as a reference to develop this Targeted Reference
Design (TRD).

• UG654, Spartan-6 FPGA Integrated Endpoint Block for PCI Express User Guide

• Northwest Logic Packet DMA Backend Core User Guide

• Product Sheet

• DS537, XPS LL TEMAC (v2.03a) Data Sheet

• UG388, Spartan-6 FPGA Memory Controller User Guide

• UG155, LogiCORE IP Ethernet 1000BASE-X PCS/PMA or SGMII v10.4 User Guide

• DS563, PLBV46 Master Single (v1.00a) Data Sheet

• MARVELL PHY 88E1111 Data Sheet

• UG526, SP605 Hardware User Guide

• Fedora Project

• Netperf v2.4 - Manual

• GTK+ 2.0 - Manual

Additional Support Resources
To search the database of silicon and software questions and answers or to create a
technical support case in WebCase, see the Xilinx website at:

http://www.xilinx.com/support.

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 11
UG392 (v1.5) October 5, 2010

Chapter 1

Introduction to the Reference Design

The Targeted Reference Design
The targeted reference design demonstrates the key integrated components in a
Spartan®-6 FPGA, namely the integrated Endpoint block for PCI Express®, the
transceivers, and the memory controller working together in an application along with
additional IP cores including the third-party (Northwest Logic) Packet Direct Memory
Access (DMA) engine, Xilinx® Platform Studio LocalLink Tri-Mode Ethernet MAC
(XPS-LL-TEMAC), and the Xilinx Memory Interface Generator (MIG) in the
CORE Generator™ tool.

This chapter introduces the targeted reference design for Spartan-6 FPGAs and outlines its
features.

Introduction
The block diagram of the Targeted Reference Design (TRD) is shown in Figure 1-1, page 12.
This design is a PCI Express v1.1 compliant x1 Endpoint block showcasing these
independent applications.

• Network interface card (network path), providing either:

• GMII mode using an external Ethernet PHY (typically used to connect to Copper
networks) or

• 1000BASE-X mode using the GTP transceivers on the FPGA (typically used to
connect to optical fiber Ethernet networks).

This card allows the designer to connect to an external network and run networking
applications including browsing web pages, telnet, and ftp sites.

• External memory interface over PCI Express—also referred to as the memory path.

This application showcases data movement between system memory and DDR3
SDRAM through the Spartan-6 FPGA.

The TRD uses a bus-mastering packet Direct Memory Access (DMA) engine to offload
processor data transfer overhead. The DMA works in conjunction with the integrated
Endpoint for PCI Express and enables high-speed data movement between system
memory and the FPGA.

The TRD framework is built with the integrated Endpoint and DMA blocks forming the
foundation of an entire platform. The network path and memory path are two applications
developed around this foundation.

12 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 1: Introduction to the Reference Design

The TRD uses the XPS-LL-TEMAC IP core along with a PLBv46 master and slave on the
network path. The host system is connected to the integrated Endpoint and uses the
PLBv46 interface to configure the registers of the XPS-LL-TEMAC. The Ethernet
applications are demonstrated in two modes:

• GMII mode using the external PHY onboard

• 1000BASE-X mode using the Spartan-6 FPGA transceivers through an additional
1000BASE-X PCS-PMA IP core

The memory path showcases the integrated memory controller on a Spartan-6 FPGA. The
controller communicates to onboard DDR3 SDRAM through MIG. Using the connected
components, data can be written to and read back from the external memory.

X-Ref Target - Figure 1-1

Figure 1-1: Top-Level Design Overview

Packet
DMA

(32-bit)

C
2S

S
2C

C
2S

S
2C

Target
Interface

x1
 L

in
k

fo
r

 P
C

I E
xp

re
ss

Third Party IP FPGA Logic

32
-b

it
Tr

an
sa

ct
io

n
In

te
rf

ac
e

@
 6

2.
5

M
H

z

DMA
Register
Interface

Virtual
FIFO
Layer

DMA
Driver
(Linux)

Blockdata
Driver
(Linux)

Ethernet
Driver
(Linux)

GUI

MIG User
Interface

@62.5 MHz

User Space Registers

Control
Plane
Bridge

DMA to
TEMAC
Bridge

TEMAC to
DMA

Bridge

PLBv46
@62.5 MHz

1000BASE-X

GMII
@125 MHz

16-bit
DDR3
@667 Mb/s

32-bit
LocalLink

@62.5 MHz

32-bit
Streaming
Interface
@62.5 MHz

32-bit
Streaming
Interface
@62.5 MHz

User
Data

User
Status

G
T

P
 T

ra
ns

ce
iv

er
s

x1
 E

nd
po

in
t B

lo
ck

 fo
r

 P
C

I E
xp

re
ss

 v
1.

1

W
ra

pp
er

 fo
r

P
C

I E
xp

re
ss

Xilinx IPIntegrated Blocks On SP605

Memory
Controller

Block

M
IG

 W
ra

pp
er

S
D

R
A

M

PLBv46
Master

XPS-LL
TEMAC

PLBv46
Slave

G
T

PPCS
PMA S

F
P

Marvell
PHY

TCP
Stack

R
J4

5

ug392_c1_01_060210

HardwareSoftware

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 13
UG392 (v1.5) October 5, 2010

Features

Features
The design features are classified as either:

• Base Features: Features of the base components of the design including DMA and the
integrated Endpoint block for PCI Express.

• Application Features: Features supported by each application developed on top of the
base features.

Additionally, the source code of the software driver for a Linux platform is provided. The
layered implementation of the software driver enables the designer to choose any layer
(pertaining to specific hardware functionality) and customize it to specific requirements.

Base Features
This section lists the base features of the integrated Endpoint block for PCI Express and
Packet DMA which form the backbone of the entire design.

• PCI Express v1.1 compliant x1 Endpoint block

• One lane operation with GTP transceiver at a line rate of 2.5 Gb/s/direction

• MSI and Legacy interrupt support

• Transaction interface utilization engine for PCI Express

• Optional high-performance mode utilizing extra block RAMs

• Bus Mastering Packet DMA

• Multichannel operation

• Packetized interface (similar to LocalLink)

• Scatter Gather operation

• DMA performance engine

• Full-duplex operation (independent transmit and receive channels)

Application Features
The various application features are:

• Network Path Features

• Ethernet address filtering

• Ethernet statistics engine

• TCP/UDP checksum offload

• Auto-negotiation

• Jumbo frames

• Optional 1000BASE-X mode

• Memory Path Features

• Integrated DDR3 controller providing up to 667 Mb/s performance

- 16-bit single-component memory interface providing up to 10.672 Gb/s
aggregate bandwidth

• Reusable virtual FIFO interface with programmable depth

14 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 1: Introduction to the Reference Design

Resource Utilization
Table 1-1 and Table 1-2 list the resource utilization obtained from the map report during
implementation phase. The XC6SLX45T-3-FGG484 is the target FPGA.

Note: The utilization numbers reported are obtained with the default options as provided in the
top-level design. A change in default options will result in a change in utilization. The transceiver
utilization is reported for the GTPA1_DUAL; one transceiver each is utilized from the GTPA1_DUAL
(not both).

The 1000BASE-X mode utilizes the PCS-PMA core, which increases the utilization of LUTs.
Because the 1000BASE-X mode provides a serial interface as compared to a parallel
interface with GMII mode, a corresponding reduction is seen in IOB usage. The
1000BASE-X mode uses an additional GTP transceiver.

Table 1-1: Resource Utilization—GMII Mode with External PHY

Resource Utilization Total Available
Percentage
Utilization

Slice registers 21,990 54,576 40

Slice LUTs 17,623 27,288 64

IOB 82 296 28

RAMB16BWER 35 116 29

RAMB8BWER 3 232 1

DCM 1 8 12

PLL_ADV 2 4 50

BUFG 10 16 62

GTPA1_DUAL 1 2 50

Table 1-2: Resource Utilization—1000BASE-X Mode

Resource Utilization Total Available
Percentage
Utilization

Slice registers 22,439 54,576 41

Slice LUTs 17,662 27,288 64

IOB 58 296 19

RAMB16BWER 35 116 29

RAMB8BWER 3 232 1

DCM 1 8 12

PLL_ADV 2 4 50

BUFG 10 16 62

GTPA1_DUAL 2 2 100

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 15
UG392 (v1.5) October 5, 2010

Chapter 2

Getting Started

Introduction
This chapter is a quick-start guide enabling the user to test the Targeted Reference Design
(TRD) in hardware with the software driver provided and also simulate it. It provides
step-by-step instructions for testing the design in hardware.

Requirements
This section lists the minimum prerequisites of hardware testing and simulation.

Hardware Test Setup Requirements
The prerequisites for testing the design in hardware are:

• SP605 board with an XC6SLX45T-3 device

• ISE® software design tools

• USB JTAG for FPGA programming

• RJ45 cable and network connectivity

• PC with PCIe® v1.1 compliant slot, with at least 1GB of RAM and a 1MB cache

• Fedora 10 Linux (32-bit) OS corresponding with Linux kernel version 2.6.27

• GTK+ v2.0 package required for GUI application

• Netperf v2.4 (optional)

Simulation Requirements
This section lists the prerequisites for simulation:

• ISE software design tools (system or embedded edition with EDK installed)

• ModelSim v6.5c or later

Hardware Test Setup
This section details the hardware setup and use of the provided application GUI to help the
user get started quickly with the design in hardware. It provides a step-by-step
explanation on hardware bring-up, software bring-up, Ethernet bring-up, and using the
application GUI provided.

All procedures listed require super-user access on Linux machines. When using the Fedora
10 Linux OS LiveCD provided with the kit, super-user access is granted by default due to

16 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 2: Getting Started

the way the kernel image is built; if not using LiveCD, contact your system administrator
for super-user access.

Note: The changes made during LiveCD environment are not saved. For example, if the driver files
were copied on the desktop after booting with LiveCD, they do not exist anymore after the system is
shutdown and booted again with LiveCD. This is because the root file system for OS on LiveCD is
created on system RAM and is not permanently on the hard disk.

Hardware Bring Up
This section lists the detailed steps for hardware bring-up.

1. With the host system switched to off, insert the SP605 board in the PCI Express® slot
through the PCI Express x1 edge connector.

2. Connect the 12V ATX power supply 4-pin disk drive type connector to the board and
also connect an Ethernet LAN cable in the RJ-45 slot provided. Do not power the board
with both an external supply and the ATX supply at the same time.

3. Make sure the connections are secure so as to avoid loose contact problems. Power on
the system.

4. If using a PC with the Fedora 10 installed, proceed directly to step 7.

X-Ref Target - Figure 2-1

Figure 2-1: Board Setup

UG392_c2_01_120609

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 17
UG392 (v1.5) October 5, 2010

Hardware Test Setup

5. When using the Fedora 10 LiveCD provided in the SP605 kit, configure the desktop PC
to boot from the CD ROM in the BIOS while the system starts. The Fedora 10 LiveCD
provided in the kit is for Intel compatible PCs. The CD contains a complete bootable
Fedora 10 Live environment and packages required for the targeted reference design
demonstration. While the system boots from the CD, the screen is as shown in
Figure 2-2.

X-Ref Target - Figure 2-2

Figure 2-2: Fedora 10 LiveCD Boot Screen

UG392_c2_02_120609

18 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 2: Getting Started

6. On the login screen (Figure 2-3), follow the instructions and proceed.

7. Verify the hardware status through visual inspection. Make sure that the following
indicators glow after powering on the system. Figure 2-4 indicates the location of the
indicators.

• PCI Express link up

• Ethernet link status (seen on the left-hand side in Figure 2-4, side-view of the
board)

• Memory calibration complete

X-Ref Target - Figure 2-3

Figure 2-3: Fedora 10 LiveCD Automatic Login

UG392_c2_03_120609

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 19
UG392 (v1.5) October 5, 2010

Hardware Test Setup

Figure 2-4 shows the entire design as mapped to hardware and the various components
used on the SP605 board. The figure also highlights the visual indicators.

8. Check if the Endpoint block for PCI Express is detected by the system after the system
boots by opening a terminal window (go to Application→ System Tools→ Terminal)
and perform the following:

At the terminal command line:

$ lspci

One of the entries should show the following information:

01:00.0 Communication controller: Xilinx Corporation Device 6011 (rev 04)

Where, 01:00.0 shows the PCI Express bus, device, and function number. As details
in the output of the lspci command can vary from system to system, it is important
that the Xilinx device is identified.

To view details about the device configuration space, perform the following:

$ lspci -d 10EE:6011 -v -x

where, 10EE is the vendor ID and 6011 is the device ID for the Endpoint. As details
can vary from system to system, it is important to check that the vendor ID (10EE) and
device ID (6011) match.

X-Ref Target - Figure 2-4

Figure 2-4: Design on SP605 Board

Packet
DMA

(32-bit)

C
2S

S
2C

C
2S

S
2C

Target Interface

x1
 L

in
k

fo
r

 P
C

I E
xp

re
ss

Third Party IP FPGA Logic

32
-b

it
Tr

an
sa

ct
io

n
In

te
rf

ac
e

@
 6

2.
5

M
H

z

DMA Register
Interface

Virtual
FIFO
Layer

MIG User
Interface

@62.5 MHz

User Space Registers

Control Plane
Bridge

DMA to TEMAC
Bridge

TEMAC to DMA
Bridge

PLBv46
@62.5 MHz

1000BASE-X

GMII
@125 MHz

16-bit DDR3
@400 MHz

32-bit
LocalLink

@62.5 MHz

32-bit
Streaming
Interface
@62.5 MHz

32-bit
Streaming
Interface
@62.5 MHz

User
Data

User
Status

G
T

P
 T

ra
ns

ce
iv

er
s

x1
 E

nd
po

in
t B

lo
ck

 fo
r

 P
C

I E
xp

re
ss

 v
1.

1

W
ra

pp
er

 fo
r

P
C

I E
xp

re
ss

Xilinx IPIntegrated Blocks On SP605

Memory
Controller

Block

M
IG

 W
ra

pp
er

S
D

R
A

M

PLBv46
Master

XPS-LL
TEMAC

PLBv46 Slave

S
F

PPCS
PMA G

T
P

Marvell
PHY R

J4
5

Ethernet Status
Indicators

Network

x1 Endpoint for
PCI Express v1.1

SFP
Connector

Left
DUP
TX
RX

Right
10
100
100

Memory Calibration Done

12V ATX
Supply

128MB
DDR3

MARVELL
PHY

XC6SLX45T

Bus Master Enable

Heartbeat LED (Indicates Clock)

Linkup for Endpoint Block for PCI Express
ug392_c2_04_121509

20 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 2: Getting Started

To see more configuration space details type:

$sudo lspci -d 10EE:6011 -vvv -xxx

Software Bring Up
This section gives steps for bringing up the software driver, application, and using the
various scripts provided.

1. After the device is detected, copy the s6_pcie_dma_ddr3_gbe folder from the USB
flash drive provided in the Connectivity kit to the desktop (or a folder of choice). After
the folder is copied, unmount and disconnect the USB drive.

Double-click on the copied s6_pcie_dma_ddr3_gbe folder.

The screen capture in Figure 2-6 shows the contents of the s6_pcie_dma_ddr3_gbe
TRD folder.

X-Ref Target - Figure 2-5

Figure 2-5: lspci Output

UG392_c2_05_120609

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 21
UG392 (v1.5) October 5, 2010

Hardware Test Setup

2. This step involves driver compilation and insertion of the kernel modules. Separate
steps are defined for a command line user conversant with Linux or for a user
preferring button-click operations.

Command Line Mode using Makefile

To compile and insert the driver, type at the command line in the terminal in the driver
folder. Navigate to the s6_pcie_dma_ddr3_gbe/driver folder and follow the
steps.

To clean the area:

$ make clean

To compile the files and build the kernel objects:

$ make

To insert the kernel object files:

$ make insert

Command Line Mode using Executable Scripts

The executable scripts provided can be run as-is on the command line:

For compilation of the driver modules:

$./s6_trd_driver_build

For insertion of the driver modules and to invoke the application GUI:

$./s6_trd_driver_insert

Mouse Click Driven Mode

To compile the driver, open the s6_pcie_dma_ddr3_gbe folder.

X-Ref Target - Figure 2-6

Figure 2-6: TRD Folder on the USB Flash Drive

UG392_c2_06_120609

22 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 2: Getting Started

Double-click on s6_trd_driver_build. This cleans the area and builds the kernel
objects. A window prompt appears (shown in Figure 2-7), click on Run in Terminal
and proceed.

Double-click on s6_trd_driver_insert (Figure 2-8). A Window prompt appears
(shown in Figure 2-8), click on Run in Terminal and proceed. This inserts the driver
modules into the kernel.

Proceed to Network Bring Up for network bring-up and GUI application usage.

X-Ref Target - Figure 2-7

Figure 2-7: Executing the Build Script

X-Ref Target - Figure 2-8

Figure 2-8: Executing the Insert Script

UG392_c2_07_120609

UG392_c2_08_120609

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 23
UG392 (v1.5) October 5, 2010

Hardware Test Setup

3. To check if the driver modules are loaded into the kernel, try to use the lsmod utility
in Linux. To see a list of kernel objects loaded:

$lsmod | more

xblockdata_s6, xgbeth, and xdma_s6 modules are the Xilinx driver modules
loaded as part of this TRD.

X-Ref Target - Figure 2-9

Figure 2-9: lsmod Output

UG392_c2_09_120609

24 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 2: Getting Started

Network Bring Up
After successful completion of the steps listed in Hardware Bring Up, page 16 and
Software Bring Up, page 20, proceed to enable the Ethernet interface.

This section details Ethernet bring-up and uses the Network Configuration GUI on Linux.

1. To add a new network device, open the Network Configuration GUI (Figure 2-10)

Note: If the LiveCD is not being used, invoking the Network Configuration GUI requires super-user
password.

X-Ref Target - Figure 2-10

Figure 2-10: Network Configuration GUI Path

UG392_c2_10_120509

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 25
UG392 (v1.5) October 5, 2010

Hardware Test Setup

The GUI in Figure 2-11 appears.

With the LiveCD, the devices tab does not show anything as no interface is active.
Make sure that the Ethernet cable is not connected to the existing LAN port on the PC.

Note: Activating multiple Ethernet ports on the same system requires each of the ports to be on
different subnets. For this setup, do not connect any other network cable to the existing Ethernet
ports on the PC. Connect the network cable only to the SP605 board RJ45 slot provided.

The Hardware tab shows the hardware devices present. As an example for this section,
assume the NIC is detected as eth1 as shown in Figure 2-12.

X-Ref Target - Figure 2-11

Figure 2-11: Network Configuration GUI—Devices Tab

UG392_c2_11_120609

26 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 2: Getting Started

To have the SP605 NIC show up in the Devices tab, a new Ethernet connection needs
to be created.

Click on New→ Create New Ethernet Connection.

Complete the setup process by following the instructions carefully on the screen. If an
existing Ethernet connection(s) is available, this NIC is detected as an additional ethX
interface where X would depend on the number of existing Ethernet interfaces.

The IP address assignment can be static or dynamic depending on the network setup.
Contact the network administrator to understand IP address assignments on the
network and also to obtain the necessary settings for network configuration.

Enter appropriate DNS settings for DHCP configuration as per the network
administrator's instructions.

Once done, what is shown in Figure 2-13 should appear on the screen.

X-Ref Target - Figure 2-12

Figure 2-12: Network Configuration GUI—Hardware Tab

UG392_c2_12_120609

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 27
UG392 (v1.5) October 5, 2010

Hardware Test Setup

Save changes by clicking on the File→ Save Changes option. Do not close the
network configuration GUI as it will be required later to activate the interface.

2. MAC Address Assignment

Use the ifconfig utility to check the device:

$ /sbin/ifconfig eth1

Initially the NIC is assigned an Ethernet interface eth1 with a default MAC address of
AA:BB:CC:DD:EE:FF.

Make note of the MAC ID assigned to the SP605 board with your kit (Figure 2-14).

X-Ref Target - Figure 2-13

Figure 2-13: Network Configuration after Adding Interface

UG392_c2_13_120609

28 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 2: Getting Started

Open a terminal and navigate to the s6_pcie_dma_ddr3_gbe folder. Set the MAC
address for the Ethernet MAC in the design using the script provided:

$./setmac_id ethX <SP605_MAC_ID>

For the MAC ID shown, the command would be:

$./setmac_id eth1 00:0A:35:01:EF:1B

After the MAC ID is assigned, try ifconfig again and the assigned MAC ID assigned
to the NIC should appear.

Refer to the screen capture in Figure 2-15.

X-Ref Target - Figure 2-14

Figure 2-14: MAC Address Label on SP605 Board

UG392_02_03_112409

UG392_c2_14_120609

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 29
UG392 (v1.5) October 5, 2010

Hardware Test Setup

3. Invoke the Network Configuration GUI and activate the interface by clicking on the
Activate button.

4. Invoke the browser and set the browser proxy settings as required for your network
(contact your network administrator). Now online service should be available.

Using Application GUI
This section explains the application GUI provided and various features available.

1. This step involves GUI invocation. Separate steps are defined for a command line user
conversant with Linux or for a user preferring button-click operations.

Command Line Mode Using Makefile

To compile and invoke the GUI navigate to the s6_pcie_dma_ddr3_gbe/xpmon
folder, follow these steps:

To clean the area.

$ make clean

To compile the files.

$ make

To invoke the GUI.

$./xpmon

X-Ref Target - Figure 2-15

Figure 2-15: MAC ID Assignment

UG392_c2_15_120609

30 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 2: Getting Started

Command Line Mode Using Executable Scripts

The executable scripts provided in s6_pcie_dma_ddr3_gbe folder can be used as is
on the command line:

$./s6_trd_app_gui

Mouse Click Driven Mode

Double click on s6_trd_app_gui. A window prompt appears (Figure 2-16), click on
Run in Terminal and proceed.

2. GUI walk-through screen-by-screen:

Test Setup and Payload Statistics

This screen defines the various test options provided for the memory path. The packet
size for Ethernet can not be controlled by the application GUI as it is managed by the
network (TCP/IP) stack.

There is an option to set the minimum and maximum packet size in bytes. While
executing the test, the software driver builds packets of random length within the
specified range. The range supported is 256-4096 bytes.

The screen in Figure 2-17 plots the data throughput obtained from the various DMA
engines.

X-Ref Target - Figure 2-16

Figure 2-16: Invoking GUI through Script

UG392_c2_17_120609

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 31
UG392 (v1.5) October 5, 2010

Hardware Test Setup

System Status Screen

This screen gives the status of the PCI Express and DMA engine.

Transaction Statistics

This screen plots the transaction utilization statistics on the PCI Express Transaction
interface.

X-Ref Target - Figure 2-17

Figure 2-17: Test Setup and Payload Statistics Screen

X-Ref Target - Figure 2-18

Figure 2-18: System Status Screen

UG392_c2_18_120609

UG392_c2_19_120609

32 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 2: Getting Started

Using Various Features
This section explains the various features of Ethernet configurable via standard tools or
software driver macros. These features, when tested with LiveCD, will require the Linux
commands given to be preceded by sudo.

Ethernet Specific Features
The Ethernet specific features can be exercised by using command line utilities like
ifconfig and ethtool present in Linux.

The Ethernet driver provides functions which are used by ifconfig and ethtool to
report information about the NIC. For reporting packet drops due to FCS errors, registers
provided by the Ethernet Statistics IP are used.

The ifconfig utility is defined as the interface configurator and is used to configure the
kernel-resident network interface and the TCP/IP stack. It is commonly used for setting an
interface's IP address and netmask and disabling or enabling a given interface apart from
assigning MAC address, and changing maximum transfer unit (MTU) size.

The ethtool utility is used to change or display Ethernet card settings. ethtool with a
single argument specifying the device name prints the current setting of the specific
device.

More information about ifconfig and ethtool can be obtained from the manual (man)
pages on Linux machines.

NIC Statistics

The NIC statistics can be obtained using the ethtool command:

$ ethtool –S ethX

X-Ref Target - Figure 2-19

Figure 2-19: Transaction Utilization Statistics

UG392_c2_20_120609

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 33
UG392 (v1.5) October 5, 2010

Using Various Features

The error statistics are obtained by reading the registers provided by the Ethernet Statistics
IP.

PHY registers (MARVELL PHY registers in case of GMII mode and PCS-PMA registers in
case of 1000BASE-X mode) can be read using the following command:

$ ethtool –d ethX

Certain statistics can also be obtained from the ifconfig command:

$ ifconfig ethX

Autonegotiation

The tri-mode Ethernet MAC (TEMAC) is capable of operating at 10 Mb/s, 100 Mb/s or
1,000 Mb/s speeds. Autonegotiation is the process by which two devices capable of
supporting different speeds choose a common speed and establish a link.

The following command results in the information about the Ethernet interface selected,
which also lists the speed of operation currently selected.

$ ethtool -S ethX

To change the speed, use the following command and select a speed. If the device is
currently operating at 1000 Mb/s, select the 100 Mb/s or 10 Mb/s options to set a different
speed. The speed change should succeed if the link partner supports the newly advertised
speed.

$ ethtool -s ethX speed [10|100|1000]

Promiscuous Mode

Enabling promiscuous mode disables address filtering in the TEMAC. This causes the
driver to receive all the traffic which increases the CPU load.

The following command can be used to enable promiscuous mode:

$ ifconfig ethX promisc

The following command disables the promiscuous mode:

$ ifconfig ethX -promisc

Using a packet sniffer like Wireshark in promiscuous mode puts the driver and in turn the
device in promiscuous mode.

Memory Application Specific Features
This section describes the feature usage specific to the memory path connected to external
DDR3 SDRAM through the Spartan-6 Memory Controller block. The packet size feature is
available through the GUI.

Packet Size

As there are no sidebands to store the start-of-packet and end-of-packet information in
DDR3, the design builds packets of a programmed size when sending data to system
memory. This packet size can be programmed by writing to a specific register in the
memory path user-space register. The application GUI programs this register with an
average of the minimum and the maximum packet size value entered by the user.

34 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 2: Getting Started

Shutting Down the System
The driver modules are automatically removed if the system is rebooted; however, the
following steps are advised before shutting down the system for a graceful exit.

1. This step involves removal of the kernel modules. The steps are defined for both a
command line user conversant with Linux and for a user preferring button-click
operations.

Command Line Mode using Makefile

To remove the driver, type in the following command line in the terminal in the driver
folder.

$ make remove

Command Line Mode using Executable Scripts

The executable scripts provided can be run as-is on the command line.

For removal of driver modules:

$./s6_trd_driver_remove

Mouse-Click Driven Mode

To compile the driver, navigate to the s6_pcie_dma_ddr3_gbe folder.

To unload the driver modules (Figure 2-20), click on s6_trd_driver_remove.

2. To shut down the system select the System→ Shutdown option. The LiveCD will be
ejected. Follow the onscreen instructions. Any files saved during the LiveCD session
are not accessible the next time LiveCD is run.

X-Ref Target - Figure 2-20

Figure 2-20: Executing Driver Removal Script

UG392_c2_21_120609

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 35
UG392 (v1.5) October 5, 2010

IP Cores with TRD

IP Cores with TRD
The Xilinx LogiCORE IPs required for the TRD are shipped with the TRD. The following
cores/netlists are located in the design/coregen_ip directory:

• s6_pcie_ip

• gig_eth_pcs_pma_ip

• Netlist for FIFOs

The XPS-LL-TEMAC IP is present in the EDK install directory and is used from there.

MIG is generated from the CORE Generator tool.

Open a terminal window (on Linux) or a DOS command (on Windows) and navigate to the
design/coregen_ip directory. Type the following on the command line:

coregen -b mig_ip.xco -p coregen.cgp

Additionally a golden set of XCO files are also provided under the
reference/xco_files directory so that the cores can be regenerated.

Generating MIG cores overwrites the mig_ip.xco provided. To regenerate the core, copy
the mig_ip.xco and mig.prj from the design/reference/xco_files.

Information on the version of IP cores used can be obtained from the readme.txt
provided with the design directory.

A node-free hardware evaluation license is shipped with the TRD under the
design/license directory.

Start the Xilinx License Manager and click on Copy License to install the license provided
on your PC. For details on license installation, refer to UG665: Spartan-6 FPGA Connectivity
Kit Getting Started Guide or http://www.xilinx.com/tools/faq.htm.

Implementing the Design
This section explains how to implement the design after making certain modifications. The
implementation flow is provided in two modes, script based and ProjNav based (ISE
software GUI flow).

Script Based Flow
Implementation scripts for both Linux and Windows operating systems are provided
under the design/implement folder.

Implementation on Linux

1. Navigate to the design/implement/lin folder.

2. To generate a design using GMII through a MARVELL PHY, execute the following on
a command line:

$./implement_gmii.sh

To generate a design with a PCS-PMA core in the 1000BASE-X mode, execute the
following on a command line:

$./implement_1000basex.sh

3. After completion of the implementation process, a results folder is created with the
bitstream, all the reports, and intermediate implementation results.

36 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 2: Getting Started

Implementation on Windows

1. Navigate to the design/implement/nt folder

2. To generate a design using GMII through a MARVELL PHY, double-click on
implement_gmii.bat

3. To generate a design with a PCS-PMA core in the 1000BASE-X mode, double-click on
implement_1000basex.bat

After completion of the implementation process, a results folder is created with the
bitstream, all the reports, and intermediate implementation results.

ProjNav Based Flow
The Spartan-6 FPGA Connectivity TRD provides files for a GUI-based flow, where
designers can view the design hierarchy and source code. Execution of this flow requires a
Xilinx ISE tools’ installation, where both the XILINX and XILINX_EDK environment
variables are defined.

• To implement a GMII design, navigate to the
design/implement/projnav_flow_gmii folder.

• To implement a 1000BASE-X design, navigate to the
design/implement/projnav_flow_1000basex folder.

The scripts for the GMII design flow are in projnav_gmii.bat and for the 1000BASE-X
design flow are in projnav_1000basex.bat. Execution of these scripts:

• Generates the MIG IP core

• Generates the ISE design tools project files from the Tcl file provided (xise files)

• Opens the ISE software GUI and loads the relevant project

Note: Do not manually modify the Tcl or xise files.

• On Linux

$./projnav_gmii.bat
or
$./projnav_1000basex.bat

• On Windows

Source the ISE environment and execute the bat file.

Once the ISE software GUI opens, a designer can manually click on the various options of
synthesis, implementation, and bitstream generation, and work through the flow. Files
generated during the flow are available in the same directory.

A copy of reference set of scripts is provided under the design/reference folder.

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 37
UG392 (v1.5) October 5, 2010

Programming the SP605

Programming the SP605
The SPI flash on the SP605 board is pre-programmed with the TRD file. This section
provides a check on the on-board jumper settings after modification or use by another user.

Board Settings
This section shows the jumper settings required on the board (Figure 2-21) for the TRD to
work when programmed in SPI x4 Flash mode.

1. Set the mode switch SW1 to 01 (M1 = 0 and M0 = 1).

2. Jumper J46 is required to be ON for the FPGA to be programmed with the onboard
SPI x4 flash.

3. All other jumpers and switches are required to be in default position. Refer to UG526,
SP605 Board User Guide for default jumper/switch settings.

Board Programming
This section explains the programming of the SP605’s onboard SPI x4 Flash.

1. Connect the USB download cable between the SP605 board and the PC. The SP605
board is required to be powered ON for programming. Use the power-supply brick
provided with the connectivity kit for this purpose.

2. Navigate to the design/reference/configuration folder and copy the flash
programming file to this folder.

3. Open the file spi_program.cmd and modify the name of the MCS file to be
programmed to be the same as the one copied.

On Linux, execute the following on the command line of a terminal window:

$ impact -batch spi_program.cmd

X-Ref Target - Figure 2-21

Figure 2-21: Board Setup

UG392_c2_22_120609

38 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 2: Getting Started

On Windows, double-click on the spi_program.bat file. Programming on Windows
opens the DOS command window as shown in Figure 2-22.

Testing 1000BASE-X Mode
The design supports the 1000BASE-X mode of operation. To test this, the additional
requirements are to use an SFP to RJ45 adapter (for a copper cable) or an SFP optical
adapter (for an optical cable). These items are not part of the SP605 connectivity kit.

To test the 1000BASE-X mode of operation, program the device with either
sp605_use_1000basex.bit or sp605_use_1000basex.mcs provided under the
reference/configuration folder.

Jumpers J44 and J22 are required to be in default position. Refer to UG526, SP605 Board
User Guide for default jumper settings.

To test the 1000BASE-X mode of operation, the Ethernet driver needs to be compiled by
enabling an additional macro.

• Navigate to the driver/xgbeth folder

• Open the Makefile and add -DUSE_1000BASEX to the end of the line defining
EXTRA_CFLAGS

Hardware programming of the 1000BASE-X design and recompilation of drivers with this
change works in the same flow as described in the Hardware Bring Up, Software Bring Up,
and Network Bring Up sections.

The LEDs indicated as Ethernet status indicators in Figure 2-3 do not apply when using a
1000BASE-X design.

The setup with 1000BASE-X using an SFP to RJ45 adapter is shown in Figure 2-23.

X-Ref Target - Figure 2-22

Figure 2-22: Programming Status on Windows

UG392_c2_23_120609

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 39
UG392 (v1.5) October 5, 2010

Testing 1000BASE-X Mode

The 1000BASE-X mode in this TRD was tested with the HP 378928-B21 Cisco Gigabit
Ethernet RJ45 SFP module. This is a RJ45 SFP module that can connect to copper media.

Note: The 1000BASE-X mode of operation requires a 1 Gb/s Ethernet connection.
X-Ref Target - Figure 2-23

Figure 2-23: Board Setup with an SFP to RJ45 Adapter

UG392_c2_16_120609

40 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 2: Getting Started

Simulation
This section details the simulation environment provided with the design. This simulation
environment is provided to show the functionality of the design. The simulation
environment showcases basic traffic movement and demonstrates the functionality of the
various components.

Overview
The simulation environment (Figure 2-24) consists of the design (commonly referred to as
the design under test or DUT) connected to a Virtex-6 FPGA root-port model for PCI
Express.

The root-port model for PCI Express is a limited test-bench environment that provides a
test-program interface. The root-port model provides a source mechanism for generating
downstream PCI Express traffic to stimulate the DUT and a destination mechanism for
receiving upstream PCI Express traffic from the DUT in a simulation environment.

This simulation environment is built on top of the simulation environment generated by
Virtex-6 FPGA integrated block for PCI Express.

The simulation environment consists of the following:

• A root-port model connected to DUT

• Transaction Layer Packet (TLP) generation tasks for various programming operations

• Test cases to generate different traffic scenarios

The simulation environment demonstrates the basic functionality of the design through
various test-cases. The simulation environment shows the following:

• Configuration transactions for PCI Express

• DMA initialization

• XPS-LL-TEMAC initialization

• Virtual FIFO initialization

• Traffic movement over Ethernet

• Traffic movement over virtual FIFO

• Depending on the test case selected, it shows:

• Interrupt handling (MSI or legacy interrupt)

• DMA disable operation

• Packet spanning across multiple descriptors

The simulation test bench sets up the buffer descriptors and corresponding buffers based
on the compilation macros explained in detail in User Controlled Macros. The length of the
packets in a network path is selected randomly and the packet size is fixed for a memory
path.

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 41
UG392 (v1.5) October 5, 2010

Simulation

The simulation environment uses the Micron DDR3 memory model and connects the
Ethernet interface in loopback mode (either GMII or serial-interface loopback depending
on the mode selected).

The simulation environment creates log files during simulation. These log files contain a
detailed record of every TLP that was received and transmitted respectively, by the root
port model.

User Controlled Macros
The simulation environment allows definition of some macros controlling test bench
configuration. These values can be changed in the user_defines.v file under the
design/sim/include folder.

Table 2-1 describes the parameters that can be modified.

X-Ref Target - Figure 2-24

Figure 2-24: Simulation Overview

Packet
DMA

(32-bit)

Test

C
2S

S
2C

C
2S

S
2C

Target
Interface

Command Line or User
Defined Parameters

P
C

Ie
 x

1
Li

nk

T
as

ks
 F

or
T

LP
 G

en
er

at
io

n

Third Party IP FPGA Logic

32
-b

it
Tr

an
sa

ct
io

n
In

te
rf

ac
e

DMA
Register
Interface

Virtual
FIFO
Layer

MIG
User

Interface

User Space Registers

Control Plane
Bridge

DMA to TEMAC
Bridge

TEMAC to DMA
Bridge

PLBv46

1000BASE-X

Interface
Selectable By
Parameter
Define USE_GMII
To Select GMII

To Be Generated
From MIG Design
In Coregen

GMII
LocalLink

32-bit
Streaming
Interface

32-bit
Streaming
Interface

User
Data

User
Status

G
T

P
 T

ra
ns

ce
iv

er
s

x1
 E

nd
po

in
t B

lo
ck

 fo
r

 P
C

I E
xp

re
ss

 v
1.

1

W
ra

pp
er

 fo
r

P
C

I E
xp

re
ss

P
C

I E
xp

re
ss

 R
oo

t P
or

t M
od

el
 (

V
ir

te
x-

6
F

P
G

A
)

Xilinx IPIntegrated Blocks On SP605

Memory
Controller

Block

M
IG

 W
ra

pp
er

DDR3
Memory
Model

GMII
Loopback

Serial
Loopback

PLBv46
Master

XPS-LL
TEMAC

PLBv46
Slave

PCS
PMA G

T
P

ug392_c2_24_060210

Table 2-1: User Controlled Macro Description

Macro Name Default Value Description

CH0 Defined Enables network path initialization and traffic.

CH1 Not defined Enables memory path initialization and traffic.

CH0_S2C_BD_COUNT
6

Number of S2C descriptors set up for network path. For basic_test, this is
also the total number of packets to be transmitted. This value can be
increased to a maximum of 25 for one packet per descriptor.

42 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 2: Getting Started

Test Selection
The test environment generates packets of random length for network path and builds
appropriate Ethernet frames. For memory path, packets of fixed length (1024 bytes) are
generated.

Table 2-2 describes the various tests provided by the simulation environment.

Simulating the Design with ISim
The relevant script for simulation with ISim is provided. On Linux, open a terminal and
source the Xilinx environment.

• Navigate to the design/sim/isim_lin folder.

• Execute this script:

$./simulate_isim.sh

On Windows, open a command prompt and source the Xilinx environment.

• Navigate to the design/sim/isim_nt folder.

• Execute the simulate_isim.bat file.

Execution of these scripts results in compilation, elaboration, opening of the ISim GUI,
running simulation, and tracing of the waveform.

CH1_S2C_BD_COUNT
6

Number of S2C descriptors set up for memory path. For basic_test, this is
also the total number of packets to be transmitted. This value can be
increased to a maximum of 25 for one packet per descriptor.

USE_GMII
Not defined

Enables GMII loopback for XPS_LL_TEMAC. By default, 1000BASE-X
mode is enabled.

LEGACY_INTR
Not defined

Enables legacy interrupts for PCI Express when defined, otherwise, MSI
is enabled.

DETAILED_LOG Not Defined Enables a detailed log of each transaction.

Table 2-1: User Controlled Macro Description (Cont’d)

Macro Name Default Value Description

Table 2-2: Test Description

Test Name Description

basic_test Basic Test: This test runs a defined number of packets per application. One buffer descriptor
defines one full packet in this test.

packet_spanning Packet Spanning Multiple Descriptors: This test spans a packet across two buffer descriptors.

test_interrupts Interrupt Test: Sets the interrupt bit in descriptor and enables interrupt registers. This test also
shows interrupt handling by acknowledging relevant registers.

dma_disable DMA Disable Test: Shows a DMA disable operation sequence on a channel.

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 43
UG392 (v1.5) October 5, 2010

Simulation

Simulating the Design with ModelSim
The simulation environment provides scripts for simulation with ModelSim. Simulation of
the TRD requires compilation of the Xilinx EDK Simulation Libraries for ModelSim. Xilinx
provides a tool called compxlib for this purpose. UG628: Command Line Tools User Guide
(Chapter 26) contains details on options specific to the ModelSim simulator version.

To run the simulation, execute the following scripts at the command prompt after setting
the required environment.

ModelSim (design/sim/mti folder)

• On Linux

$./simulate_mti.bat

• On Windows

Execute simulate_mti.bat. This invokes the ModelSim GUI and runs simulation.

By default, the simulation script file specifies the Basic Test to be run using the following
syntax:

"+TESTNAME=basic_test"

The test selection can be changed by specifying a different test-case argument as specified
in Table 2-2 in the scripts provided.

44 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 2: Getting Started

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 45
UG392 (v1.5) October 5, 2010

Chapter 3

Functional Description

This chapter describes the hardware design and software driver architecture in detail.

Hardware Design Description
This section discusses the hardware design architecture in detail. Figure 3-1 shows a
detailed view of the TRD. The network application is denoted by USER_APP0 and the
external memory application is denoted by USER_APP1. The hardware design contains
several key IP components which are stitched together with additional FPGA logic to
create the entire TRD framework.

46 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 3: Functional Description

The hardware architecture is described in detail under the following sections:

• Base Design Architecture: Describes the Endpoint block for PCI Express and the
Packet DMA block

• Network Path Architecture: Details the network path, use of various IPs, and
developed FPGA logic

• Memory Path Architecture: Details the memory path, use of various IPs, and
developed FPGA logic

X-Ref Target - Figure 3-1

Figure 3-1: Detailed Design Block Diagram

C
2S

S
2C

C
2S

S
2C

Target
Interface

x1
 P

C
Ie

 v
1.

1

Third Party IP FPGA Logic

32
-b

it
Tr

an
sa

ct
io

n
In

te
rf

ac
e

Register
Interface

Packet
DMA

G
T

P
 T

ra
ns

ce
iv

er
s

x1
 E

np
oi

nt
 B

lo
ck

 fo
r

P
C

I E
xp

re
ss

Xilinx IP
Integrated
Blocks on

Spartan-6 FPGA

Memory
Controller

MIG

MCB
Port

ug392_c3_01_121509

1000BASE-X

USER_APP0
(Network Application)

GMII

Serial
XPS-LL
TEMAC

PLBv46
Slave

PLBv46
Master
Single

S2C–LL Bridge
Header/Footer Insertion

LL – C2S Bridge
Header/Footer Extraction

Common Registers

UserApp_Registers

Target
Control
Bridge

dma_mem
_interface

PLBv46

plbv46_control_bridge

PCS
PMA G

T
P

mem_dma
_interface

FIFO

cmd
control

FIFO

wr port
control

rd port
control

network_datapath

DMA-VFIFO
Interface

Virtual FIFO

USER_APP1 (Memory Application)

FIFO

FIFO

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 47
UG392 (v1.5) October 5, 2010

Hardware Design Description

Base Design Architecture
The TRD is made up of two key base building blocks: the integrated Endpoint for PCI
Express (PCIe) and the Packet DMA. The Endpoint provides a high-speed serial bus
interface between the Spartan®-6 FPGA and a host system. Any movement of data
between system memory and hardware over the PCI Express interface involves huge
memory transfers, which could potentially consume a large amount of processor
bandwidth if entirely managed by the processor. This transfer overhead is reduced by
using a bus mastering Packet DMA controller to transfer data with minimal processor
intervention. These building blocks together form the basis of the network application and
external memory application detailed in this chapter.

Integrated Endpoint for PCI Express

The LogiCORE IP Spartan-6 FPGA Integrated Endpoint Block for PCI Express provides
wrappers around the integrated Endpoint block for PCI Express. It is a PCI Express v1.1
compliant core supporting x1 lane width operating at 2.5 Gb/s line rate per direction. The
wrapper combines the integrated Endpoint block with GTP transceivers, clocking, and
reset logic to provide a simplified user interface also known as the transaction interface
(TRN). The user interface data width is 32-bits operating at a 62.5 MHz clock.

For details on this core, refer to UG654, Spartan-6 FPGA Integrated Endpoint Block for PCI
Express User Guide.

This core is generated with two 32-bit base-address registers (BAR) for this design. One
BAR maps to DMA registers and another BAR maps to the XPS-LL-TEMAC and external
PHY registers.

A device ID value of 6011 is used and class code is set to 07_80_00 to indicate a
communication controller.

By selecting the SP605 board, a 125 MHz reference clocking scheme is automatically picked
up. All other settings remain at the default values.

Packet DMA
This block is a four-channel bus-mastering packet direct memory access (DMA) controller.

This controller helps move high-speed data between the system memory and FPGA using
PCI Express. It enables the simultaneous operation of two different user applications
through the four channels provided. Each channel of DMA is either a system-to-card (S2C
or transmit) or a card-to-system (C2S or receive). The four-channel DMA used in this
design has two system-to-card (S2C) or transmit channels and two card-to-system (C2S) or
receive channels.

Each DMA channel has a set of independent registers. Registers specific to this TRD are
described in DMA Registers in Appendix A. Further details of various registers can be
obtained from the NorthWest Logic (NWL) Packet DMA user guide.

The DMA interfaces to the Integrated Endpoint block for PCI Express through the
transaction interface and provides a streaming packetized user interface. Refer to the
NorthWest Logic Packet DMA User Guide for details on this user interface.

The DMA controller requires a 64 KB register space mapped to BAR0.

48 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 3: Functional Description

The DMA controller provides the following interfaces for register space mapped to BARs
in the configuration space for PCI Express:

• Register interface for registers mapped to BAR0

• All DMA registers are mapped to BAR0 from 0x0000 to 0x7FFF. The address
range from 0x8000 to 0xFFFF is available to the user through this interface.

• Target interface for registers mapped to a BAR other than BAR0

Both these interfaces have independent read and write interfaces.

The user is required to perform read or write operations on the user implemented registers.
All other aspects including building an appropriate completion TLP or extracting data
from a memory write TLP are managed by the DMA controller.

Target read and target write interfaces have a command phase (transactions are granted)
and a data phase (transaction data is transferred). Though the target interface can support
multiple DW transactions, it is only used for one DW transactions (only register
operations) in this TRD. Not all available target interface ports are used in this TRD. For
details on register and target interface signals, refer to the NorthWest Logic Packet DMA
user guide.

Scatter Gather Operation

A scatter gather scheme requires a common memory resident data structure that holds the
list of DMA operations to be performed. DMA operations are organized as a linked list of
buffer descriptors.

The term scatter refers to the ability to write the data into different memory locations
(basically scattering data in memory). The term gather refers to the capability to gather data
from different locations in memory and build a packet out of it.

Buffer descriptors, as the name suggests, describe the data buffer. Each buffer descriptor is
eight double words (DW) in size. One DW has four bytes. Eight DWs is a total of 32 bytes.
The DMA operation implements buffer descriptor chaining which allows a packet to be
described by more than one buffer descriptor.

The buffer descriptor layout is slightly different for S2C and C2S directions as highlighted
in Figure 3-2. The various fields are described in Table 3-1.

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 49
UG392 (v1.5) October 5, 2010

Hardware Design Description

X-Ref Target - Figure 3-2

Figure 3-2: Buffer Descriptor Layout

User Control [31:0]

Rsvd ByteCount[19:0]00
C
M
P

S
H
T

E
R
R

000

Rsvd ByteCount[19:0]000
lr
q
C

lr
q
Er

0
E
O
P

S
O
P

User Control [63:32]

Card Address – (Reserved)

System Address [31:0]

System Address [63:32]

NextDescPtr[31:5], 5’b00000

S2C Buffer Descriptor C2S Buffer Descriptor

User Status [31:0]

Rsvd ByteCount[19:0]
L
0

Hi
0

C
M
P

S
H
T

E
R
R

0
E
O
P

S
O
P

Rsvd
RsvdByteCount

[19:0]000
lr
q
C

lr
q
Er

0
E
O
P

S
O
P

User Status [63:32]

Card Address – (Reserved)

System Address [31:0]

UG392_c3_02_120709

System Address [63:32]

NextDescPtr[31:5], 5’b00000

Table 3-1: Buffer Descriptor Field Description

Descriptor Fields Functional Description

SOP Start of Packet: In the S2C direction, indicates the start of a new packet. In the C2S direction,
DMA updates this field to indicate to software the start of a new packet.

EOP End of Packet: In the S2C direction, indicates the end of current packet. In the C2S direction,
DMA updates this field to indicate to software the end of the current packet.

ERR Error: Set by the DMA on a descriptor update to indicate an error while executing that
descriptor.

SHT
Short: Set when the descriptor is completed with a byte count less than the requested byte
count. It is common for C2S descriptors having an EOP status set and should not be treated
as an error in the C2S direction, but should be analyzed when set for S2C descriptors.

CMP
Complete: This field is updated by the DMA to indicate to the software the completion of
an operation associated with that descriptor.

Hi 0
User status High is zero: Applicable only to C2S descriptors. This is set to indicate User
Status [63:32] = 0. This bit is also used to ensure coherency to make sure that the descriptor
status is valid.

L 0
User status Low is zero: Applicable only to C2S descriptors. This is set to indicate User
Status [31:0] = 0. This bit is also used to ensure coherency to make sure that the descriptor
status is valid.

Irq Er
Interrupt on Error: This bit indicates to the DMA to issue an interrupt when the descriptor
results in error.

Irq C
Interrupt on Completion: This bit indicates to the DMA to issue an interrupt when an
operation associated with the descriptor is completed.

50 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 3: Functional Description

Packet Transmission

Initially, the software driver prepares a ring of descriptors in system memory and writes
the starting and ending addresses of the descriptors in the relevant channel registers in the
DMA. Once enabled, the DMA fetches the descriptor followed by the buffer it points to.
Data is fetched from the host memory and made available to the user application at the
DMA S2C streaming interface. The packet interface signals (for example, start-of-packet,
end-of-packet) are built from the control fields in the descriptor. The information present in
the user-control field is made available during s2c_sop.

To indicate completion of the data fetch corresponding to this descriptor, the DMA engine
updates the first DW of the descriptor by setting a completed bit by highlighting the Status
and ByteCount field as shown in Figure 3-3. Software driver analyzes the completed field
to free up the buffer memory and also move the descriptor back under software
ownership.

ByteCount[19:0]
Byte Count: In S2C direction, this indicates to the DMA the byte count queued up for
transmission. In C2S direction, the DMA updates this field to indicate the byte count
updated in system memory.

RsvdByteCount[19:0]
Reserved Byte Count: In S2C direction, this is equivalent to the byte count queued up for
transmission. In C2S direction, this indicates the data buffer size allocated. Depending on
the packet size, the DMA might or might not utilize the entire buffer.

User Control/User Status
User Control or Status Field: In S2C direction, this is used to transport application specific
data to the DMA. In C2S direction, the DMA can update application specific data in this
field.

Card Address Card Address Field: Reserved for packet DMA.

System Address
System Address: Defines the system memory address where the buffer is to be fetched from
(for S2C direction) or written to (for C2S direction).

NextDescPtr
Next Descriptor Pointer: This field points to the next descriptor in the linked list. All
descriptors are required to be 32-byte aligned.

Table 3-1: Buffer Descriptor Field Description (Cont’d)

Descriptor Fields Functional Description

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 51
UG392 (v1.5) October 5, 2010

Hardware Design Description

Packet Reception

The software driver prepares a ring of descriptors with each descriptor pointing to an
empty buffer and programs the starting and ending addresses in relevant DMA channel
registers. The DMA reads the descriptors and waits for the user application to provide data
on the C2S streaming interface (Figure 3-4). When the user application provides data, the
DMA writes the data into one or more empty buffers pointed to by the pre-fetched
descriptors. After the packet is written to host memory, the DMA updates the status in the
descriptor. The user status field is considered valid only during c2s_eop. When updating
EOP status, the DMA engine updates three DWs in descriptor otherwise, it only updates
one DW. The completed bit in the updated status field indicates to the software driver the
availability of data received from the hardware.

X-Ref Target - Figure 3-3

Figure 3-3: Data Movement from System to Card

Complete=1

clk

s2c_sop

s2c_user_control

s2c_data

s2c_src_rdy

s2c_dst_rdy

s2c_eop

Data
Buffer

SOP=1

Next Descriptor

System Address [63:32]

System Address [31:0]

Control Flags and Count

Card Address

User Control [63:32]

User Control [31:0]

Status and ByteCount

Next Descriptor

System Address [63:32]

System Address [31:0]

Control Flags and Count

Card Address

User Control [63:32]

User Control [31:0]

Status and ByteCount

Complete=1

UG392_c3_03_121509

EOP=1

Data
Buffer

52 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 3: Functional Description

Transmit and receive channel registers are updated in between (dependent on data
availability in the transmit direction and dependent on periodic time-out or interrupts in
the receive direction) to ensure uninterrupted data flow to the DMA. By analyzing the
buffer descriptor, the software driver can read the status of the associated DMA transfers,
fetch user information on receive channels, and determine the completion of transfer.

Network Path Architecture
A network interface card (NIC) is a device used to connect computers to a local-area
network (LAN). The software driver interfaces to the networking stack (or the TCP-IP
stack) and the Ethernet frames are transferred between system memory and Ethernet MAC
in hardware through the base design.

The NIC application supports the following modes of operation:

• GMII mode interfacing to an external Ethernet PHY (typically used to connect to
copper Ethernet networks)

• 1000BASE-X mode using the Spartan-6 FPGA GTP transceivers (typically used to
connect to optical-fiber Ethernet networks)

The following sections describe the various IP cores and relevant features used.

XPS-LL-TEMAC

The XPS-LL-TEMAC IP is generated with a soft TEMAC option for the Spartan-6 FPGA. It
provides options to support checksum offload and Ethernet statistics monitoring which
make the XPS-LL-TEMAC core an obvious choice for this TRD framework. For the user,
this simplifies and accelerates design as it eliminates the additional overhead of designing
FPGA logic when connecting individual cores (such as soft TEMAC and Ethernet
statistics) together in a system.

X-Ref Target - Figure 3-4

Figure 3-4: Data Movement from Card to System

Complete=1

clk

c2s_sop

c2s_user_status

c2s_data

c2s_src_rdy

c2s_dst_rdy

c2s_eop

Data
Buffer

SOP=1

Next Descriptor

System Address [63:32]

System Address [31:0]

Control Flags and Count

Card Address

User Status [63:32]

User Status [31:0]

Status and ByteCount

Next Descriptor

System Address [63:32]

System Address [31:0]

Control Flags and Count

Card Address

User Status [63:32]

User Status [31:0]

Status and ByteCount

Complete=1

UG392_c3_04_121509

EOP=1

Data
Buffer

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 53
UG392 (v1.5) October 5, 2010

Hardware Design Description

Register Access

The XPS-LL-TEMAC provides a PLBv46 slave interface to enable access to its registers. The
external PHY registers are accessed through the MDIO interface in the XPS-LL-TEMAC.
Certain registers are described in XPS-LL-TEMAC Registers in Appendix A. For more
details, refer to DS537, XPS LL TEMAC (v2.03a) Data Sheet or a later version.

Use of Target Interface Instead of Register Interface

The DMA controller provides a register interface for registers mapped to BAR0. However,
this interface requires that the register read data be available immediately one cycle after
the read request is issued. As this one cycle access requirement is not possible with
XPS-LL-TEMAC registers or with external PHY registers, these registers are mapped onto
a different BAR. The DMA controller provides a target interface for accesses to user space
that is not mapped to BAR0. Refer to the DMA user guide for details on a target interface.

PLBv46 master is used to connect a target interface to PLBv46 slave. Control logic, as
shown in Figure 3-5, is designed to convert target interface commands to IP interconnect
(IPIC) signaling. This IPIC interface is input to the PLBv46 master, which in turn drives the
corresponding read or write commands onto the PLBv46 bus. Port description of IPIC and
PLBv46 interface can be obtained from DS563, PLBV46 Master Single (v1.00a) Data Sheet or
a later version.

Data Interface

The interface bridge logic is designed to connect the DMA streaming interface to
XPS-LL-TEMAC data interface. The XPS-LL-TEMAC LocalLink interface requires header
and footer in addition to payload. It does the following:

• For the S2C DMA port, the bridge builds the relevant header for the XPS-LL-TEMAC
transmit LocalLink with the given user control fields and it functions as the
DMA-to-LocalLink header-insert logic.

• For the C2S DMA port, the bridge extracts the relevant footer fields from the
XPS-LL-TEMAC receive LocalLink and provides the DMA with a user-status field
and it functions as the LocalLink-to-DMA footer-strip logic.

Checksum Offload

For TCP or UDP Ethernet protocols, data integrity is maintained by calculating and
verifying checksum values over the frame data. Checksum calculation in software can be
relatively slow and use significant processor utilization for large frames at high Ethernet
data rates.

This design demonstrates hardware acceleration by offloading the TCP/UDP checksum
calculation to the hardware. Checksum information is passed between the software and
the hardware (XPS-LL-TEMAC) by user control and status fields in the buffer descriptors

X-Ref Target - Figure 3-5

Figure 3-5: Control Plane Logic

DMA
Target

Interface

Control
Plane Bridge

IPIC

Third Party IP FPGA Logic Xilinx IP

PLBv6
Slave

PLBv46
Master
Single

PLBv46

UG392_c3_05_12159

XPS_LL_TEMAC

54 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 3: Functional Description

which are subsequently mapped to header and footer fields of the transmit and receive
LocalLink frames.

This section describes the mapping of header and footer fields in the transmit and receive
directions respectively.

In the transmit direction, the 64-bit user control field provided in the buffer descriptor is
used to communicate checksum related specific information to the hardware. The user
control field is made available along with the start-of-packet (s2c_sop) signal.

Table 3-2 and Figure 3-6 shows the mapping of the user-control field to LocalLink header.

Table 3-2: Mapping of User Control to LocalLink Header

S2C Descriptor User
Control Field

Checksum Field Mapping Description

S2CDescUserControl[31:0] {TX_CSCNTRL,15'd0,TX_CSBEGIN}

TX_CSCNTRL is the checksum control which
controls insertion of checksum into the data
frame. TX_CSBEGIN is the beginning offset
which points to the first data byte to be included
in the checksum calculation

S2CDescUserControl[63:32] {TX_CSINSERT,TX_CSINIT}

TX_CSINSERT is the offset which points to the
location where the checksum should be written
into the TCP/UDP segment header. TX_CSINIT
is the seed used to insert the pseudo header into
the checksum calculation. If the stack inserts the
pseudo header checksum into the packet, this
field should be zeroed.

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 55
UG392 (v1.5) October 5, 2010

Hardware Design Description

In the receive direction, the checksum value obtained from the XPS-LL-TEMAC is
transferred to the system through the 64-bit user-status field in the buffer descriptor. The
user status is considered valid only during the assertion of the end-of-packet (c2s_eop).

Table 3-3 and Figure 3-7 shows the footer-field mapping diagrammatically.

X-Ref Target - Figure 3-6

Figure 3-6: User-Control Field Mapping to LocalLink Header

s2c_sop

s2c_user_control[63:0]

s2c_data[31:0]

s2c_eop

Data
Buffer

Header

Next Descriptor Ptr

Buffer Address [63:32]

Buffer Address [31:0]

Desc Control

Card Address

User Control [63:32]

User Control [31:0]

Desc Status

Payload

Payload

UG392_c3_06_120709

FTR

XPS-LL-TEMAC
TX Signaling

Hdr 5 TX_CSINITHdr 3 TX_CSCNTRL

Hdr 4 TX_CSBEGIN, TX_CSINSERT

S2C DMA
Port Signaling

Table 3-3: Mapping of Footer to User Status Field

C2S Descriptor User
Status Field

Checksum Field
Mapping

Description

C2SDescUserStatus[31:0] {RX_CSRAW,16'd0}
RX_CSRAW is the raw checksum calculated over the entire
Ethernet payload starting from the 14th byte.

C2SDescUserStatus[63:32] {RX_BYTECNT,16'd0}
RX_BYTECNT is the length of the received frame in bytes. It is
the number of bytes in the Ethernet frame.

56 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 3: Functional Description

The XPS-LL-TEMAC core also supports programmable transmit and receive block RAM
size. An increased block RAM size supports jumbo frames up to 9 KB.

Use of Additional Asynchronous FIFOs in Network Datapath

The GTX_CLK, which is the GMII transmit clock, is required to be 125 MHz within a range
of ±100 ppm variation as per the IEEE 802.3 specification. The PCI Express specification
allows for a variation of ±300 ppm or +2800 ppm variation with spread-spectrum enabled.
Therefore, a 125 MHz clock derived from a 62.5 MHz clock provided by the integrated
Endpoint for PCI Express can not be used as a GTX_CLK. A 200 MHz crystal available on
the SP605 board is used to source the GTX_CLK.

XPS-LL-TEMAC requires LocalLink clock to be edge aligned with the GTX_CLK. This
necessitates using the 62.5 MHz clock derived from the 200 MHz on-board crystal as the
LocalLink clock on the XPS-LL-TEMAC datapath. To satisfy this requirement, an
asynchronous LocalLink FIFO is used in the network datapath to cross both the 62.5 MHz
PCI Express and 62.5 MHz XPS-LL-TEMAC clock domains.

The asynchronous LocalLink FIFO is 512 locations deep with a 40-bit data width. 32-bits
are used to store data, four bits to store the remainder (REM) field and one bit each for
framing signals (SOF, SOP, EOP, and EOF).

X-Ref Target - Figure 3-7

Figure 3-7: LocalLink Footer Mapping to User Status Field

c2s_sop

c2s_user_status[63:0]

c2s_data[31:0]

c2s_eop

Data
Buffer

Footer

Next Descriptor Ptr

Buffer Address [63:32]

Buffer Address [31:0]

Desc Control

Card Address

User Status [63:32]

User Status [31:0]

Desc Status

Payload

Payload

UG392_c3_07_121609

HDR

XPS-LL-TEMAC
RX Signaling

Ftr 7 RX_BYTECOUNTFtr 6 RX_CSRAW

C2S DMA
Port Signaling

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 57
UG392 (v1.5) October 5, 2010

Hardware Design Description

Ethernet 1000BASE-X PCS-PMA Core

The TRD framework provides an optional 1000BASE-X mode of operation enabled by
integrating Ethernet 1000BASE-X PCS/PMA core. The transceivers on Spartan-6 FPGA
provide certain Physical Coding Sublayer (PCS) and Physical Medium Attachment (PMA)
sub-layers for 1G Ethernet.

The Ethernet 1000BASE-X PCS/PMA core implements the PCS and PMA specific
functionality as defined in IEEE 802.3 specific to 1000BASE-X operation. The core
implements logic for clause 36 and 37 of the specification. For more details on the
functionality implemented by this core, refer to UG155, LogiCORE IP Ethernet 1000BASE-X
PCS/PMA or SGMII v10.3 User Guide.

In 1000BASE-X mode, instead of multiple GMII signals being exposed at the FPGA
interface, only the serial transceiver interface is made visible.

The serial interface is routed to the SFP connector on the SP605 board where an optical
module (using a fiber optic connection) or SFP to RJ45 converter module (using a copper
connection) can be plugged in.

Memory Path Architecture
This section details the external memory connection through the integrated memory
controller block on the Spartan-6 FPGA.

Additional FPGA logic implements the virtual FIFO layer around the user interface
delivered by the MIG wrapper.

Memory Interface Generator

MIG provides a wrapper around the integrated memory controller and physical interface
block. MIG defines all the necessary attributes required to implement a memory interface.

When selecting the memory component as MT41J64M16LA-187E DDR3 (which is the
available DDR3 component on the SP605 board), the MIG wrapper automatically
programs the appropriate memory attributes and timing parameters. This DDR3
component is connected to the MCB in bank 3 of the FPGA. The DDR3 SDRAM is selected
as memory in bank 3 of the FPGA.

One 32-bit bidirectional port (out of five) is used at the user interface. Details of the MIG
user interface signals can be obtained from UG388, Spartan-6 FPGA Memory Controller User
Guide.

MIG Wrapper Modification for 200 MHz Clock Support

The MIG core generated from the CORE Generator tool requires a 333.33 MHz differential
clock input (3000 ps time period). As the SP605 board does not have a direct 333.33 MHz
differential clock source, the following changes are made to the file delivered from the MIG
core to facilitate the use of a 200 MHz differential clock available on the SP605 board.

In the file infrastructure.v, the following changes are made:

• The input clock period to PLL is changed to five

• The PLL settings are changed to generate a 667 MHz clock and other relevant clocks
for the memory controller

The user constraints file is modified suitably for locations and constraints. The MIG core
generated files, which are changed for this purpose, are provided with the design.

58 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 3: Functional Description

Virtual FIFO

The DMA packetized interface is a streaming interface providing data and frame
delineation signals (for example, start-of-packet). DDR3 requires an address for data access
in memory.

To enable a packetized interface to direct the data into memory, a virtual FIFO wrapper is
designed around the MIG core provided user interface. The virtual FIFO wrapper makes
the DDR3 appear as a FIFO; the logic implemented takes care of address generation for
read and write. The virtual FIFO design requires the frame size to be a multiple of four
bytes, as there is no easy way to store the frame-delineator information in external
memory.

The memory path logic writes the data obtained from the DMA into memory, reads it back,
and presents the same data to the DMA. An overview of this block is shown in Figure 3-8.

The DMA-VFIFO interface logic connects the DMA streaming interface to the virtual FIFO
interface and also implements the registers used on the memory path.

Since the packetization information is lost while storing the data into memory, a packet of
a fixed size is built and presented to the DMA C2S interface. The size of the frames to be
provided back to the DMA can be programmed through a register as described in Virtual
FIFO Receive Packet Length Register (0x9104) in Appendix A. The MEM-DMA interface
block manages packetization in the C2S direction.

The address region in the DDR3 memory being used as a virtual FIFO can be defined by
programming the start and end address registers as described in Virtual FIFO Start
Address Register (0x9108) in Appendix A and Virtual FIFO End Address Register
(0x910C) in Appendix A.

The virtual FIFO interface is similar to general FIFO interface, and the ports available to the
user are listed in Table 3-4. The virtual FIFO interfaces to the MIG core through the MIG
user interface as described in UG388, Spartan-6 FPGA Memory Controller User Guide.

X-Ref Target - Figure 3-8

Figure 3-8: Virtual FIFO Block Diagram

VFIFO-REG
Interface

VFIFO Write
Control

Write Port
Control

Core
Generator

FIFO

Core
Generator

FIFO

FIFO
Write

Interface

Control
Input

FIFO
Read

Interface

MIG Data
Write

Interface

DMA
Register
Interface

DMA S2C
Interface

DMA C2S
Interface

MIG
Command
Interface

MIG Data
Read

Interface

Read Port
Control

Command
Port

Control

VFIFO-Read
Control

DMA-MEM
Interface

DMA-FIFO
Interface

Virtual FIFO

MEM-DMA
Interface

UG392_c3_08_121609

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 59
UG392 (v1.5) October 5, 2010

Hardware Design Description

As seen in Figure 3-8, two CORE Generator FIFOs are used at the input and output
interfaces of the virtual FIFO logic to provide a continuous stream of data with adequate
buffering to the user.

The depth of the CORE Generator FIFOs is 512 × 32, that is, it can store 32-bits of data with
a depth of 512 locations.

A summary of the functionality of the various modules is listed in Table 3-5.

Table 3-4: Virtual FIFO User Interface Description

Port Type Functional Description

vfifo_wr_en Input Write enable to indicate write data availability

vfifo_wr_data[31:0] Input Write data to be written to memory

vfifo_wr_space[8:0] Output Indicates the available write buffer space

vfifo_rd_en Input Read enable to read data

vfifo_rd_data[31:0] Output Read data output from memory

vfifo_rd_space[8:0] Output Indicates the available read data

vfifo_empty Output Indicates an absence of data (FIFO is empty)

rst Input Reset to virtual FIFO

clk Input Clock to virtual FIFO

start_addr[31:0]
Input

Start address for DDR3 which is implemented in
FIFO

end_addr[31:0]
Input

End address for DDR3 which wraps around the
FIFO

Table 3-5: Virtual FIFO Modules

Module Description

VFIFO Write Control
A bridge between DMA S2C and virtual FIFO write interfaces. The
payload of packets received on the DMA S2C streaming interface is
written into the FIFO.

Write Port Control
Manages the write interface of the MIG core and works with the
command port control block.

Command Port Control
Responsible for generating the commands to the MIG command
interface. It works with the write and read modules and drives the
respective commands on the MIG interface.

Read Port Control
Manages the read interface of the MIG core and works with the
command port control block.

VFIFO Read Control

A bridge between the virtual FIFO read interface and the DMA C2S
interface. The module manages the conversion of data read from
the virtual FIFO into packets as defined by packet size and builds
the corresponding LocalLink format for the entire frame.

60 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 3: Functional Description

Common Registers
A set of common registers are defined and shown in Figure 3-1. These registers include the
following:

TRN Monitor Registers

The TRN monitor registers provide transaction interface utilization for PCI Express. A
transaction interface utilization monitor is designed to help analyze the transaction layer
utilization. The TRN monitor provides registers to count the following:

• Double words transmitted on TRN-TX, including packet headers

• Double words received on TRN-RX, including packet headers

• Transmitted memory write transactions payload count

• Received completion transactions payload count

Details of these register bits are found in TRN Monitor Registers in Appendix A.

Clocking and Reset
This section describes the clocking and reset scheme of the design.

Clocking Strategy

An overview of the clocking strategy is shown in Figure 3-9. Apart from various clock
requirements of the cores, the FPGA logic in the design runs at a uniform clock rate of
62.5 MHz.

The Endpoint for PCI Express outputs a 62.5 MHz clock. DMA, FPGA logic, and data and
control interfaces of the network and memory paths operate at the same speed.

Additionally, XPS-LL-TEMAC requires a 125 MHz clock for driving GMII signals and a
200 MHz reference clock for clocking the IODELAY controllers for GMII signals. These
clocks are derived from the 200 MHz differential clock available on the SP605 board
through a DCM. The LocalLink clock of 62.5 MHz to XPS-LL-TEMAC is also derived from
this 200 MHz input clock.

The differential clock required by the MCB and the DDR3 SDRAM is also derived from the
200 MHz differential clock source available onboard.

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 61
UG392 (v1.5) October 5, 2010

Hardware Design Description

Figure 3-10 shows the clocking structure when connecting to the PCS-PMA core for
1000BASE-X mode. The difference arises only with 125 MHz clock connection to
XPS-LL-TEMAC. The 62.5 MHz LocalLink clock is derived from this 125 MHz clock
provided. For 1000BASE-X mode, a 200 MHz clock input to XPS-LL-TEMAC is not
required. The 200 MHz clock to MIG core is provided through the on-board oscillator.

Reset Scheme

This section outlines the reset scheme of the design. An overview of the reset connection is
shown in the Figure 3-9.

The system reset for PCI Express (PERST#N) driven by the downstream port through the
edge connector is the only hard reset available to the entire design. This reset is provided as
an output by the Endpoint core which is connected to the various blocks used.

X-Ref Target - Figure 3-9

Figure 3-9: Clocking and Reset Strategy

UG392_c3_09_060210

x1 PCIe Edge
Connector

External PLL

GT DCM

LL
Datapath

Virtual
FIFO

SP605 Board Components

Design on FPGA

62.5 MHz

125 MHz

200 MHz

Hard Reset

Soft Reset

667 MHz

MIG
Spartan-6

FPGA
Memory

Controller
Block

XPS_LL_TEMAC

MARVEL
PHY

DDR3

PLBv46_Slave

REFCLK
PHY MDIO CLK

GMII_TX_CLK

PHY RESET

GTX_CLK_0
LL_CLK

GMII_RX_CLK

Target
Control
Bridge

Port 0

Port 1

Target
Interface

DMA

Spartan-6
FPGA

Endpoint
Block

PERST#N

100 MHz SSC

200 MHz REFCLK

200 MHz
Clock

125 MHz GTX CLK
62.5 MHz LL CLK

62.5 MHz

125 MHz GMII CLK

200 MHz

667 MHz Clock

125 MHz

X-Ref Target - Figure 3-10

Figure 3-10: Clocking Strategy with a PCS-PMA Core

UG392_c3_10_120609

PCS
PMA
Core

BUFIO2
DCM

BUFG

PHY MDIO Clk

SP605 Board Components Design on FPGA 125 MHz 62.5 MHz

XPS_LL_TEMAC
SFP

PLBv46_Slave

GMII_RX_CLK

GTX_CLK

REFCLK

GT

125MHz userclk2
62.5 MHz
LL CLK

125 MHz

62 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 3: Functional Description

In addition, a software driver programmed reset, also called a soft reset, is provided by the
DMA. This reset is per DMA channel and used to drive the user logic blocks connected to
the specific port being reset. The soft reset feature is used when the software driver is
loading and unloading to flush out all pending transactions and prevent any stale
transactions from interrupting the CPU when the hardware is not in use.

Software Design Description
The software component of the TRD framework is comprised of one or more Linux
kernel-space driver modules with one user-space application, which controls the design
operation.

Note: For details on available user APIs, refer to the documentation supplied with the driver
sources.

The software is designed using building blocks for scalability. Additional user-space
applications can be designed with the existing blocks.

The software is designed to meet the following requirements:

• Generate adequate data to showcase the high-performance capabilities of the
hardware design with specific focus on throughput on the PCI Express and Ethernet
links.

• Hardware design must demonstrate the use of PCI Express compliant DMA,
1 Gb/s Ethernet, and DDR3, while achieving best possible data throughputs in
the process.

• Effectively showcase the use of the multichannel DMA transfers

• Provide an easy to use and intuitive user interface

• Provide an extensible, reusable, and customizable modular design.

The feature list of the User Application and Linux kernel-space drivers that enables these
requirements is described in User-Space Application Features.

User-Space Application Features

The user-space application (which is a graphical user interface or GUI) provides the
following features:

• GUI management of the driver and device for configuration control, and for status
display

• GUI front-end for a graphical display of performance statistics collected at the PCI
Express transaction interface and DMA engine

Standard Linux tools should be used as described in Ethernet Specific Features in
Chapter 2 for control of Ethernet specific features.

Kernel-Space Driver Features

The kernel-space application provides these features:

• Configuration of the DMA engine to achieve data transfer between the hardware and
main system memory

• Transfer of Ethernet packets from a Linux TCP/IP stack to the network path in
hardware for transmission into the LAN, and from the network path in hardware to
the Linux TCP/IP stack for handling by networking applications. This is the Ethernet
data flow.

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 63
UG392 (v1.5) October 5, 2010

Software Design Description

• Transfer of a block data stream from the driver to the memory path in hardware for
storing in DDR3, and loopback into system. This is the memory data flow.

Data Flow Model
This section provides an overview of the datapath flows in both software and hardware.

Ethernet Data Flow

Figure 3-11 illustrates the Ethernet data flow. On the transmit path, data from the
networking application (for example, an internet browser) is packetized in the TCP/IP
stack, converted into Ethernet frames, and handed over to the driver for transmission. The
Ethernet driver then queues up the packet for the packet DMA. The DMA fetches the
packet through the Endpoint for PCI Express and transfers it to the XPS-LL-TEMAC where
it is transmitted through the Ethernet link into the LAN.

On the receive side, packets arriving on the XPS-LL-TEMAC are collected by the packet
DMA. The DMA pushes the packet to the driver through the Endpoint for PCI Express.
The driver hands off the packet to the upper layers for further processing.

In a typical use scenario, the user runs an application, such as a web browser, and packets
are transmitted to and received from the network.

X-Ref Target - Figure 3-11

Figure 3-11: Ethernet Data Flow

Descriptor Allocation
For Packet DMA

Packet DMA
To Hardware Packet DMA To

System MemoryChecksum
Calculation

Checksum
Calculation
& Insertion

Frame Check
Sequence
Insertion

Packet Handover To
TCP Stack Based

On Descriptor Status

Ethernet

TEMAC

Internet Browser

Packet Formation
By Header Inclusion

Payload Extraction
By Stripping Headers

PayloadPayload

PayloadPayload

Internet Browser

DMA Port

Ethernet Handler

TCP/IP Stack

Networking
Applications

UG392_c3_11_121709

64 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 3: Functional Description

Memory Data Flow

Figure 3-12 illustrates the memory data flow. A streaming block data flow is implemented
on the DDR3 side.

On the transmit side, data buffers are generated in the block data handler and queued up
for transmission. The packet DMA fetches the packets through the Endpoint for PCI
Express and transfers them to the Virtual FIFO which writes them into the DDR3 memory.
The data written to the DDR3 is read and transferred back to the DMA creating a loopback
scenario. On the receive side, the DMA pushes the packets to the software driver through
the Endpoint for PCI Express. The driver receives the packets in its data buffers, verifies
the data, and discards the buffers.

The driver also reads the performance statistics collected by the hardware, and makes
these available to the xpmon GUI.

In a typical use scenario, the user starts the test through the GUI. The GUI displays the
performance statistics collected during the test until the user stops the test.

Software Architecture
The software architecture has two basic data flow paths. One is the Ethernet flow and the
other is the streaming block data flow. The Ethernet flow carries typical networking
packets into and out of the system through a DMA port, destined for the XPS-LL-TEMAC.
The block data flow carries blocks of raw data into and out of the system through another
DMA port, destined for the DDR3.

Figure 3-13 shows the architecture overview. The standard software blocks already exist
and the driver designed interacts with them. No modifications are done to the standard
blocks; they are used as is.

X-Ref Target - Figure 3-12

Figure 3-12: DDR3 Memory Data Flow

Block Data
Handler

DMA Port

DDR3

ug392_c3_12_120609

Block Data
Handler

DMA Port

DDR3

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 65
UG392 (v1.5) October 5, 2010

Software Design Description

Applications

Control and Monitor GUI (xpmon)

A graphical user interface tool (xpmon) monitors device status, runs performance tests,
and displays statistics. It conveys the user-configured test parameters to the block data
handler in the driver, which then starts an appropriate test. Performance statistics gathered
during the test are periodically conveyed to the GUI, where they are displayed in one or
more graphs.

Networking Tools

Unlike the block data driver, the Ethernet functionality in the driver does not require the
control and monitor GUI to be operational. Ethernet comes up with the prior configured
settings. Standard Linux networking tools (for example, ifconfig and ethtool) can be used

X-Ref Target - Figure 3-13

Figure 3-13: Software Architecture Overview

Packet DMA Engine Interface and
Interrupt Management Interfaces

Packet DMA Channels

ug392_c3_13_120609

Software

Legend

TEMAC &
PHY Control

Hardware

User-space

Kernel-space

User
Interface

Hardware Blocks Standard Software Blocks Designed

Driver Entry
Point

User
Hooks

Handler Routine, e.g., Bottom
Half or Timer Routine

ISR

Northwest Logic DMA EngineXPS_LL_TEMAC
and PHY

Interrupt Operations

 Packet DMA Operations
Init

ISR

Networking Tools
ethtool, ifconfig

TCP/IP Stack Components

Ethernet Packet
Handler

Init

Ethernet
Packets

Ethernet
Configuration

Base DMA
Driver

User Drivers

Control GUI
xpmon

Driver: open,
close, ioctl, read

Block Data
Handler

Performance
Monitor

Networking
Applicatons

Statistics of link for PCI Express,
DMA Engine, and XPS_LL_TEMAC

66 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 3: Functional Description

by the system administrator when the configuration needs to be changed. The driver
provides the necessary hooks which enable standard tools to communicate with it.

Networking Applications

Standard networking applications such as web browser, telnet, or Netperf can be used to
initiate traffic in the Ethernet flow. The driver fits under the TCP/IP stack software, using
the standard hooks provided.

Kernel Components

Driver Entry Points

The driver has several entry points, a few are described in this section. The probe() function
is invoked by the system when a hardware match is detected after driver insertion (when
the PCIe device probed by the driver is found). After reading the device's configuration
space, various initialization actions are performed; initialization of the DMA engine(s),
XPS-LL-TEMAC, and PHY; setting up of the receive and transmit buffer descriptor rings;
and initialization of interrupts.

The other driver entry points are mainly used in the block data flow: when the GUI starts
up and shuts down; when a new performance test is started or stopped; and to convey
periodic performance statistics results to the GUI.

Some driver entry points are specific to Ethernet configuration, and these are invoked by
the system if the user attempts to change any configuration using standard tools.

DMA Operations

For each DMA channel, the driver sets up a buffer descriptor ring. At initialization, the
receive ring (associated with a C2S channel) is fully populated with buffers meant to store
incoming packets, and the full receive ring is submitted for DMA. The transmit ring
(associated with S2C channel) is empty. As packets arrive for transmission, they are added
to the buffer descriptor ring, and submitted for DMA.

Ethernet Packet Handler

The driver is informed when a packet is queued for transmission by the upper layer. The
driver adds the packet buffer to the transmit descriptor ring and submits it for DMA.
Subsequently, when the driver is informed that the packet has been successfully
transmitted, it removes the packet buffer from the descriptor ring, frees it, and clears the
descriptor for future use.

On the receive side, the full-receive descriptor ring is submitted to the DMA engine, ready
to accommodate packets on arrival. Subsequently, when the driver is informed that a
packet has arrived, it removes the packet buffer from the descriptor ring, passes it to the
upper layer, and clears the descriptor for future use.

Block Data Handler

The data payload for the block data flow is generated and consumed in the block data
handler. When a test is started, data buffers of random or fixed sizes are generated based
on user selection and then queued for the transmit DMA. The hardware design loops this
data back through the DDR3 and the data buffers arrive in the system as receive DMA. The
handler discards the data and returns the buffer to a free pool for future use.

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 67
UG392 (v1.5) October 5, 2010

Software Design Description

Interrupt Service Routine

The interrupt service routine (ISR) manages interrupts from the DMA engine and other
errors from hardware (if any).

The driver sets up the DMA engine to interrupt after every N descriptors that it processes.
This value of N can be set by a compile-time macro. The ISR invokes the functionality in
the block and Ethernet handler routines pertaining to handling received data, and
housekeeping of completed transmit and receive descriptors.

Performance Monitor

The performance monitor is a handler which reads all the performance-related registers
(link level for PCI Express, DMA engine level). Each of these is read periodically at an
interval of one second.

TCP/IP Stack

The TCP/IP stack code also resides in the Linux kernel. It has well-defined hooks for the
Ethernet driver to attach to, allowing configuration and communication of all standard
networking tools and applications with the driver.

User Hooks

The design and code is developed to allow modification, using compile-time variables and
through adaptable APIs to different applications.

DMA Descriptor Management
This section describes the descriptor management portion of the DMA operation. It also
describes the data alignment requirements of the DMA engine.

The nature of traffic, especially on the Ethernet side of the design, is bursty, and packets are
not of fixed sizes. For example, connect/disconnect establishment and ACK/NAK packets
are small. Therefore, the software is not able to determine, in advance, the number of
packets to be transferred, and accordingly set up a descriptor chain. Packets can fit in a
single descriptor or can span across multiple descriptors. Also, the receive size of the actual
packet can be smaller than the original buffer provided to accommodate the packet.

For proper descriptor management:

• The software and hardware must be able to independently work on a set of buffer
descriptors in a supplier-consumer model

• The software must be informed of packets being received and transmitted as data
flow happens. On the receive side, the software needs to know the size of the actual
received packet

The rest of this section describes the driver design using the features provided by third
party packet DMA IP to achieve the design objectives.

The status fields in descriptor help define the completion status, start and end-of-packet to
the software driver.

Dynamic DMA Updates

This section describes how the descriptor ring is managed in the transmit or
system-to-card (S2C) and receive or card-to-system (C2S) directions. It does not give
details on the driver's interactions with upper software layers.

68 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 3: Functional Description

Table 3-6 presents a summary of the terminology used in this section.

Initially, the driver prepares descriptor rings for each DMA channel. In the reference
design, the driver prepares four rings.

Transmit Initialization Phase

1. Driver initializes the HW_Next and SW_Next registers to start of ring

2. Driver resets the HW_Completed register

3. Driver initializes and enables the DMA engine

Transmit (S2C) Descriptor Management

In Figure 3-14, the darkened blocks indicate the descriptors under hardware control and
the white blocks indicate the descriptors under software control.

Packet Transmission

1. The packet arrives in the Ethernet packet handler

2. The packet is attached to one or more descriptors in the ring

3. The driver marks the SOP, EOP, and IRQ_on_completion in the descriptors

4. The driver adds any user-control information (for example, checksum-related) to the
descriptors

5. The driver updates the SW_Next register

Table 3-6: Terminology Summary

Term Description

HW_Completed The register containing the address of the last descriptor that the DMA has
completed processing. This corresponds to the
Reg_Completed_Desc_Ptr register in DMA.

HW_Next The register containing the address of the next descriptor that the DMA
processes. This corresponds to the Reg_Next_Desc_Ptr register in
DMA.

SW_Next The register containing the address of the next descriptor that software
submits for DMA processing. This corresponds to the Reg_SW_Desc_Ptr
register in the DMA.

X-Ref Target - Figure 3-14

Figure 3-14: Transmit Descriptor Ring Management

1 2 3

SW_Next SW_NextHW_Next

ug392_c3_14_120609

HW_Next

SW_Next HW_Next

HW_Completed

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 69
UG392 (v1.5) October 5, 2010

Software Design Description

Post-Processing

1. The driver checks for completion status in the descriptor

2. The driver frees the packet buffer

This process continues as the driver keeps adding packets for transmission and the DMA
engine keeps consuming packets. Since the descriptors are already arranged in a ring, the
post-processing of descriptors is minimal and dynamic allocation of the descriptors is not
required.

Receive (C2S) Descriptor Management

In Figure 3-15, the darkened blocks indicate the descriptors under hardware control and
the white blocks indicate the descriptors under software control.

Receive Initialization Phase

1. The driver initializes the receive descriptor with an appropriate Ethernet or block data
buffer.

2. The driver initializes the HW_Next register to the start of the ring and the SW_Next
register to the end of the ring

3. The driver resets the HW_Completed register

4. The driver initializes and enables the DMA engine

Post-Processing after Packet Reception

1. The driver checks for completion status in the descriptor

2. The driver checks for SOP, EOP, and user status information

3. The driver forwards the completed packet buffer(s) to the upper layer

4. The driver allocates the new packet buffer for the descriptor

5. The driver updates the SW_Next register

This process continues as the DMA engine keeps adding received packets in the ring, and
the driver keeps consuming packets. Since the descriptors are already arranged in a ring,
post-processing of descriptors is minimal and dynamic allocation of descriptors is not
required.

X-Ref Target - Figure 3-15

Figure 3-15: Receive Descriptor Ring Management

1 2 3

HW_Next SW_Next

SW_Next

SW_Next

ug392_c3_15_120609

HW_Next HW_Completed
HW_Completed

HW_Next

70 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 3: Functional Description

User Interface—Control and Monitor GUI
The control and monitor GUI is the main application tool for the configuration, status, and
statistics display. When installed, the driver appears as a device table entry in Linux. The
GUI uses the typical file-handling functions (open, close, read, write, ioctl) on this device to
communicate with the driver. These calls result in the invocation of the appropriate driver
entry points. The I/O control function ioctl() is used as a driver entry point by the
application GUI.

Figure 3-16 shows a screen capture of the GUI status. An explanation of the various fields
referenced by numbers follows.

1. Test start/stop control for memory application

2. Min. Packet Size: Minimum packet size selection in bytes

3. Max. Packet Size: Maximum packet size selection in bytes

4. Payload Statistics: Shows the payload statistics graphs based on DMA engine
performance monitor

5. PCIe statistics: Plots the PCIe transaction interface utilization

6. Throughput: DMA payload throughput in Gb/s for each engine.

7. DMA Active Time: The time (in nanosecond) the DMA engine has been active in the
last one second.

8. DMA Wait Time: The time (in nanosecond) the DMA was waiting for the software to
provide more descriptors.

9. BD Errors: Indicates a count of descriptors which caused a DMA error – indicated by
the error status field in descriptor update

10. BD Short Errors: Indicates short error in descriptors in the transmit direction when the
entire buffer specified by length in the descriptor could not be fetched. This field is not
applicable for receive direction.

X-Ref Target - Figure 3-16

Figure 3-16: Software Application Screen Capture

1

6
7
8
9

10

12
13

16

15
14

4

17

11

5

2 3

UG392_c3_16_121709

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 71
UG392 (v1.5) October 5, 2010

Software Design Description

11. # SW BDs: Indicates count of total descriptors set up in the descriptor ring

12. # SW Buffers: Indicates count of total data buffers associated with the ring

13. Interrupts Enabled: Indicates interrupt enable status for that DMA engine

14. PCIe Transmit: Reports the TRN transmit utilization as obtained from the transaction
monitor in hardware

15. PCIe Receive: Reports the TRN receive utilization as obtained from the transaction
monitor in hardware

16. PCIe Status: Reports the status of various PCIe fields as reported in the endpoint’s
configuration space

17. Text pane at the bottom shows up informational messages, warnings or errors.

The GUI has individual tabs for the following:

Status

• Link status for PCI Express

• DMA Engine status

The driver always maintains information on the status of the hardware. The GUI invokes
ioctl() to read this status information and updates it every few seconds.

Statistics

• Link statistics for PCI Express provided by hardware

• Graphic display of all statistics

The driver maintains a set of arrays to hold per-second sampling points of these statistics.
These statistics are periodically collected by the performance monitor handler. The arrays
are managed in a circular fashion. The GUI periodically invokes an ioctl() to read these
statistics and then displays them.

A separate test button is provided to run user tests. The test button is applicable only to the
memory path in the design as the traffic for Ethernet is generated by upper layers (that is,
TCP/IP) and by standard applications.

Test

• Test setup

• Start/Stop of test

When the user starts a test, the GUI informs the driver the parameters of the test:

• Minimum and maximum packet size. If these are different, the driver generates
packets of random sizes within these bounds.

The driver entry point sets up the test parameters and informs the block data handler,
which then starts setting up the block data buffers for transmission, reception, or both.
Similarly, if the user were to abort a test, the GUI informs the driver, which sets up the
abort mechanism. The test is aborted by stopping the transmit side flow and then allowing
the receive side flow to drain.

The GUI programming environment is GTK+.

72 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 3: Functional Description

System Logging
The drivers also generate system messages which can be viewed via
/var/log/messages files or the dmesg tool or the System Logs tool. The level of logging
can be controlled by setting macros in the Makefiles, as described in Log Verbosity Level in
Chapter 5. Increasing the log verbosity level affects the driver and, therefore, the system
throughput.

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 73
UG392 (v1.5) October 5, 2010

Chapter 4

Performance Estimation

This chapter presents a theoretical estimation of performance on the interface for PCI
Express, Ethernet interface, and the memory interface. It also presents a method to
measure performance.

PCI Express Performance
PCI Express is a serialized, high bandwidth and scalable point-to-point protocol that
provides highly reliable data transfer operations. The maximum transfer rate of a protocol
specification v1.1 compliant core is 2.5 Gb/s. This rate is the raw bit rate per-lane
per-direction and not the actual data-transfer rate. The effective data-transfer rate is lower
due to protocol overheads and other system design trade-offs.

The link performance of PCI Express together with packet DMA is estimated under the
following assumptions:

• Each buffer descriptor points to a 1 KB data buffer space

• Maximum Payload Size (MPS) = 128B

• Maximum Read Request Size (MRRS) = 128B

• Read Completion Boundary (RCB) = 64B

• TLPs of 3DW considered without extended CRC (ECRC): Total overhead of 20B

• One ACK assumed per TLP: DLLP overhead of 8B

• Update FC DLLPs are not accounted for but they do affect the final throughput
slightly

Performance is projected by estimating the overheads and then calculating the effective
throughput by deducting these overheads. Descriptor fetch/update as required for data
movement through DMA is also considered as an overhead.

Independent calculations are made for each direction of a C2S or a S2C DMA engine.

74 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 4: Performance Estimation

The notes in Table 4-1 describe the abbreviated conventions.

Once all overheads for each DMA engine are estimated, effective throughput is calculated.
The throughput calculation for application data (packets available at the DMA streaming
interface) for a x1 link is tabulated in Table 4-2.

The S2C engine (data transmission, that is, reading data from system memory) issues read
requests and receives data through completions. This engine exercises data (actual frame)
traffic on the PCIe receive link giving a performance of ~1.38 Gb/s. This is the PCIe
memory read performance.

The C2S engine (data reception, that is, writing data to system memory) issues write
requests. This engine exercises data (actual frame) traffic on the PCIe transmit link giving
a performance ~1.64 Gb/s. This is PCIe memory write performance.

PCIe receive on C2S implies a descriptor fetch and ACK-NAK, resulting in a low overhead.
PCIe transmit on S2C is made up of descriptor and buffer fetch requests. Read requests do
not contribute towards data throughput as they are only headers.

Table 4-1: PCI Express Performance Estimation with DMA

Transaction Overhead ACK Overhead Comment

MRD:
C2S Descriptor = 20/1024 = 2.5/128

 8/1024 = 1/128
One descriptor fetch in a C2S engine for 1 KB data
(TRN-TX); 20B of TLP overhead and 8 bytes of DLLP
overhead

CPLD:
C2S Descriptor = (20+32)/1024 = 6.5/128 8/1024 = 1/128 Descriptor reception C2S engine (TRN-RX)

MWR:
C2S Descriptor = (20+12)/1024 = 4/128 8/1024 = 1/128 Descriptor update C2S engine (TRN-TX)

MWR: C2S Buffer = 20/128 8/128 MPS = 128B; Buffer write C2S engine (TRN-TX)

MRD:
S2C Descriptor = 20/1024 = 2.5/128

 8/1024 = 1/128 Descriptor fetch in S2C engine (TRN-TX)

CPLD:
S2C Descriptor = (20+32)/1024 = 6.5/128

8/1024 = 1/128 Descriptor reception S2C engine (TRN-RX)

MWR:
S2C Descriptor = (20+4)/1024 = 3/128

8/1024 = 1/128 Descriptor update S2C engine (TRN-TX)

MRD: S2C Buffer = 20/128 8/128 MRRS = 128B; Buffer fetch S2C engine (TRN-TX)

CPLD: S2C Buffer = 20/64 = 40/128 8/64 = 16/128 RCB = 64B; Buffer reception S2C engine (TRN-RX)

Notes:
1. Nomenclature for table: Memory Read transaction (MRD); Memory Write transaction (MWR); Completion with data (CPLD);

Card-to-system (C2S) for receive direction DMA; System-to-card (S2C) for transmit direction DMA.

Table 4-2: PCI Express Throughput Estimate

Direction Overhead Effective Throughput (Gb/s)

PCIe transmit (C2S only) 100 × 27.5/(128 + 27.5) = 17.68% 1.64

PCIe receive (C2S only) 100 × 16.5/(128 + 16.5) = 11.41% 1.77

PCIe transmit (S2C only) 100 × 42.5/(128 + 42.5) = 24.9% 1.5

PCIe receive (S2C only) 100 × 56.5/(128 + 56.5) = 30.6% 1.38

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 75
UG392 (v1.5) October 5, 2010

Ethernet Performance

Ethernet Performance
The raw line rate of the Ethernet link is 1.25 Gb/s, which is commonly referred to as gigabit
Ethernet after accounting for 8B/10B encoding overheads.

The performance, as seen by various Ethernet applications at different layers, is lesser than
the throughput seen at the driver and the Ethernet interface. This is due to the various
headers and trailers inserted in each packet by all the layers of the networking stack.
Ethernet is used as a medium to carry traffic and various protocols, including TCP/UDP,
to implement protocol specific header/trailer formats.

Consider transmission control protocol (TCP) as an example. The protocol header includes
the following:

• TCP/IP Overhead: 20 bytes TCP header + 20 bytes IP header

• Ethernet Overhead: 14 bytes Ethernet header + 4 bytes trailer

Based on this overhead, the theoretical TCP throughput is as shown in Equation 4-1, where
D is the application message size in bytes.

Equation 4-1

More precisely, for application message sizes greater than 1460 bytes, the formula is shown
in Equation 4-2, where M is the MTU size configured on the system.

Equation 4-2

The calculation of theoretical throughput is tabulated in Table 4-3. The TCP/IP protocol
overhead has a significant impact when the send message sizes are smaller than ~1200
bytes.

Memory Controller Performance
The Spartan-6 FPGA memory controller block, as used in this design, has a total of 16 I/Os
interfacing to external DDR3 memory.

Table 4-3: Theoretical Throughput Estimate for TCP

Message Size in Bytes Effectiveness (%) Theoretical Throughput (Mb/s)

64 52.46 524.59

128 68.82 688.17

256 81.53 815.29

512 89.82 898.25

1024 94.64 946.40

1442 96.15 961.47

2048 96.92 969.21

4096 97.86 978.59

TCP throughput
D

D 40 18+ +
------------------------------⎝ ⎠

⎛ ⎞ 1000 Mb/s×=

TCP throughput
D

D 40+
-----------------⎝ ⎠

⎛ ⎞ M
M 14+()

-----------------------⎝ ⎠
⎛ ⎞× 1000 Mb/s×=

76 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 4: Performance Estimation

Theoretical Calculation

Equation 4-3

Equation 4-4

Equation 4-5

Equation 4-4 calculates the theoretical maximum bandwidth of the memory controller. An
estimate of memory controller performance is as calculated in Equation 4-9:

With larger burst lengths, high efficiency is achievable. With a 32-bit port using a burst
length of 32, a total of 1024 bits are transferred.

Number of bits transferred per cycle is:

Equation 4-6

Total cycles used for 1024 bits:

Equation 4-7

Assuming 10 cycles read to write overhead:

Equation 4-8

Assuming 5% efficiency overhead for refresh:

Equation 4-9

The final estimated bandwidth available to the Virtual FIFO is 7.577 Gb/s.

In the current design, with x1 PCIe at 2.5 Gb/s line rate, the theoretical maximum rate at
which the virtual FIFO can read and write to memory controller is calculated as
32 bits × 62.5 MHz = 2 Gb/s. The average data throughput provided by the PCIe and
DMA is ~1.6 Gb/s in each direction.

Measuring Performance
This section describes methods to measure performance and presents an analysis of what
to expect when different parameters are varied.

PCI Express performance is dependent on factors like maximum payload size, maximum
read request size, and read completion boundary which depend on the systems chosen.
With higher MPS values, performance improves as packet size increases.

Table 4-4 lists the registers provided by the hardware to aid in the software performance
measurement.

Maximum I/O Rate double data rate() 333.5 MHz 2× 667 Mb/s= =

Maximum Bandwidth Maximum I/O rate() Number of I/Os()× =

 667 Mb/s 16× 10.627 Gb/s= =

16 bit width() 2 double data rate()× 32 bits/cycle=

1024 32⁄ 32 cycles/transfer=

32 42⁄ 76% efficiency=

71% efficiency at 667 Mb/s for 16-bit DDR3 7577 Mb/s 7.577 Gb/s= =

Table 4-4: Performance Registers in Hardware

Register Description

DMA Completed Byte Count DMA implements a completed byte-count register per engine, which counts the
payload bytes delivered to the user on the streaming interface.

TRN-TX Utilization This register counts traffic on TRN-TX interface including TLP headers for all
transactions.

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 77
UG392 (v1.5) October 5, 2010

Measuring Performance

These registers are updated once every second by hardware. Software reads them
periodically at a one second interval. The value read directly gives the throughput in bytes
per second.

The TRN monitor registers can be read to understand PCIe transaction layer utilization.
The DMA registers provide throughput measurement for the actual payload transferred.

These registers only estimate hardware performance. A software application is required to
measure application performance of both the hardware and software impact on overall
throughput.

Ethernet Performance Measurement
Ethernet performance can be measured in a private LAN environment using a standard
benchmarking tool like Netperf.

Netperf 2.4 can be used as the testbench for measuring outbound and inbound
throughput. This is a data transfer application running on top of the TCP/IP stack. The
client can be configured for different message sizes and to open a TCP connection or a UDP
connection. The two systems are connected in a private LAN connection, which avoids
other external LAN traffic. To measure the CPU utilization as accurately as possible, no
other applications (other than the standard ones) should be run during the test.

Throughput Estimate and Analysis

It is possible, based on the theoretical estimates to obtain a throughput of up to 935 Mb/s
in both inbound and outbound directions.

For jumbo frames, a higher performance is expected. Frames greater than 1514 bytes are
categorized as jumbo frames. The XPS-LL-TEMAC IP used in this TRD supports jumbo
frames up to 9K bytes.

Higher performance is expected with an increase in MTU size. A higher value of MTU
implies that a packet has more payload and less header content.

CPU Utilization Analysis

Improved CPU utilization for larger packets is expected with checksum offload enabled.
By offloading an expensive operation to hardware, such as a checksum calculation, the
CPU time can be efficiently utilized elsewhere. With small packets, little improvement can
be seen in CPU utilization with checksum offload as checksum computation does not
contribute greatly to CPU utilization overhead, as does the protocol overhead of using
small packets.

Refer to Appendix C, Setting Up a Private LAN for steps on setting up a private LAN
connection.

TRN-RX Utilization This register counts traffic on TRN-RX interface including TLP headers for all
transactions.

TRN-TX Payload This register counts payload for memory write transactions upstream, which
includes buffer write and descriptor updates.

TRN-RX payload This register counts payload for completion transactions downstream, which
includes descriptor or data buffer fetch completions.

Table 4-4: Performance Registers in Hardware (Cont’d)

Register Description

78 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 4: Performance Estimation

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 79
UG392 (v1.5) October 5, 2010

Chapter 5

Designing with the TRD Platform

The Targeted Reference Design (TRD) platform is intended to be a framework for system
designers to derive extensions or modify designs.

This chapter outlines various ways for a designers to evaluate, modify and re-run the TRD
for the connectivity platform.

The suggested modifications are grouped under these categories:

• Software-only modifications: Only changes required to the software driver are
covered. The same bitstream provided with the TRD works. Only driver
recompilation is required.

• Design (top-level only) modifications: Changes to parameters in the top-level file of
the design (design/source/s6_pcie_dma_ddr3_gbe.v). No other files require
modifications. The design must be re-implemented. See Implementing the Design,
page 35 for instructions on design implementation. Depending on the modification,
the software driver might require changes.

• Design Changes: This modification shows the plug-n-play feature of the TRD
platform. The design must be re-implemented after making the changes. The process
requires licenses for additional IP cores being used (if any). The software driver must
be modified accordingly.

Any change to the software driver or macros in Makefiles require re-compilation and
re-building of the kernel objects. All paths for various files mentioned in this chapter are
under the s6_pcie_dma_ddr3_gbe directory.

While describing the modifications, each section also describes the implication of the
corresponding modification on the overall functionality or performance.

Software-Only Modifications
This section describes modifications to the platform done directly in the software driver.
The same hardware design (bitstream) works.

Macro-Based Modifications
This section describes the modifications that result when compiling the software driver
with various macro options, either in the Makefile or in the driver source code.

Descriptor Ring Size

The number of descriptors to setup in the descriptor ring are defined as a compile-time
option.

80 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 5: Designing with the TRD Platform

Modify the DMA_BD_CNT in driver/xdma/xdma_base.c macro to change the size of
the buffer descriptor ring used for DMA operations. Smaller rings can adversely affect
throughput, which is observed by running the performance tests.

A larger descriptor ring size uses additional memory but improves performance because
more descriptors can be queued to hardware.

Log Verbosity Level

Log verbosity level can be controlled by:

• Adding DEBUG_VERBOSE in the Makefiles, which causes the drivers to generate
verbose logs.

• Adding DEBUG_NORMAL in the Makefiles, which causes the drivers to generate
informational logs.

• Removing both these macros from the Makefiles, which causes the drivers to only
generate error logs.

Changes in the log verbosity are observed when examining the system logs. Increasing the
logging level also causes a drop in throughput.

Driver Mode of Operation

The base DMA driver is configured to run in either interrupt mode with MSI or Legacy
interrupts, or in polled mode. Only one mode can be selected. The driver is controlled by:

• Adding TH_BH_ISR in the driver/xdma/Makefile, which causes the base DMA
driver to run in interrupt mode.

By default, polled mode of operation is enabled.

Size of Block Data

The default amount of data being transmitted and received in the block data driver, which
changes the throughput observed with this driver, is modified by:

• Modifying NUM_BUFS in driver/xblockdata/user.c to change the number of
buffers in the free pool available to the driver.

Do not exceed the available system memory when changing these defaults.

Checksum Offload

By default, the hardware supports checksum offload as defined by the
C_TEMAC0_TXCSUM and C_TEMAC0_RXCSUM parameters in
s6_pcie_dma_ddr3_gbe.v. To inform the TCP/IP stack layers of checksum offload
capability in hardware, the driver needs to be compiled with an additional flag. Navigate
to the driver/xgbeth folder and modify the Makefile to include -DENABLE_CSO in the
EXTRA_CFLAGS option.

Recompiling the Ethernet driver with this option enables the checksum offload feature.
Checksum offload reduces CPU utilization.

Software Driver Code Modifications
This section describes modifications to the software driver code to change design behavior
or performance by modifying the block data handler (driver/xblockdata/user.c).

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 81
UG392 (v1.5) October 5, 2010

Design Top-Level Modifications

Data is written into DDR3 memory in a flat, unstructured manner, with known patterns. It
is possible to create a packet format, with some form of CRC, which can be verified on the
receive path. Packets are generated and verified within the driver and are not conveyed to
or from any real user application as data. Transferring this data between the driver and a
user application requires significant changes in the driver entry points and in the driver's
PutPkt() and GetPkt() routines. The data is transmitted (written) into DDR3 memory, and
is looped back and received (read) from DDR3 memory.

Design Top-Level Modifications
This section describes changes to parameters in the top-level design file which can change
the design behavior. Modifications to the software driver might be required based on the
parameters being changed.

Hardware-Only Modifications
This section outlines the changes that only require parameter changes in the design
top-level file (source/s6_pcie_dma_ddr3_gbe.v). No change to software is required.

PCIe High-Performance Mode

The Endpoint block for PCI Express provides an optional high-performance mode
utilizing extra block RAMs which increases the credits as more packet buffering space is
available. This mode can be enabled by defining PCIE_HIGH_PERF during design
implementation. Enabling this option shows a change in performance.

Hardware and Software Modifications
This section outlines changes to the top-level design file (s6_pcie_dma_ddr3_gbe.v)
which also requires software driver modifications.

Jumbo Frames

To enable jumbo frames, transmit and receive FIFO size in XPS-LL-TEMAC is varied by
varying the following parameters in the top-level file:

• C_TEMAC0_TXFIFO in design/source/s6_pcie_dma_ddr3_gbe.v modifies
the transmit FIFO depth

• C_TEMAC0_RXFIFO in design/source/s6_pcie_dma_ddr3_gbe.v modifies
the receive FIFO depth

The corresponding change in software requires jumbo frames to be enabled in the Ethernet
handler:

• Add ENABLE_JUMBO in the driver/xgbeth/Makefile

Larger storage for packets implies a smaller number of packets being dropped at the
Ethernet receive interface which reduces retransmissions from upper layers in the TCP
stack.

PCIe Vendor and Device ID

The vendor and device ID for PCI Express are changed by changing parameters in the top
level file:

82 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 5: Designing with the TRD Platform

• CFG_VEN_ID in the file design/source/s6_pcie_dma_ddr3_gbe.v changes
the vendor ID

• CFG_DEV_ID in the file design/source/s6_pcie_dma_ddr3_gbe.v changes the
device ID

The corresponding change in software:

• PCI_VENDOR_ID_DMA: Change this macro in driver/xdma/xdma_base.c

• PCI_DEVICE_ID_DMA: Change this macro in driver/xdma/xdma_base.c

Architectural Modifications
This section describes architecture level changes to the functionality of the platform. These
include removing and inserting a delivered application.

Aurora IP Integration
The LogiCORE IP Aurora 8B/10B implements the Aurora 8B/10B protocol using the
high-speed GTP transceivers. The core is a scalable, lightweight link-layer protocol for
high-speed serial communication. It is used to transfer data between two devices using
transceivers. It provides an easy-to-use LocalLink compliant framing interface. This core is
generated from the CORE Generator software.

A 1-lane Aurora design with 4-byte user interface data width can be connected in place of
XPS-LL-TEMAC, as shown in Figure 5-1.

X-Ref Target - Figure 5-1

Figure 5-1: Integrating Aurora

Packet
DMA

(32-bit)

C
2S

S
2C

C
2S

S
2C

x1
 L

in
k

to
 P

C
I E

xp
re

ss

3rd party IP FPGA Logic

32
-b

it
T

R
N

DMA Register
Interface

Virtual
FIFO
Layer

MIG
User

Interface

User Space Registers

LocalLink
FIFO

1.25Gb/s
Serial
Interface

NFC I/F

TX_LL

RX_LL

32-bit
Streaming
Interface

fifo_status

32-bit
Streaming
Interface

G
T

P
 T

ra
ns

ce
iv

er

 x
1

E
nd

po
in

t B
lo

ck
 fo

r
v1

.1
 P

C
I E

xp
re

ss

W
ra

pp
er

 fo
r

P
C

I E
xp

re
ss

Xilinx IPIntegrated Blocks On SP605

Memory
Controller

Block

M
IG

 W
ra

pp
er

G
T

P
Tr

an
sc

ei
ve

r

A
ur

or
a

IP

S
D

R
A

M

ug392_c5_01_120609

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 83
UG392 (v1.5) October 5, 2010

Architectural Modifications

The Aurora core does not support throttling in the receive direction as the core has internal
buffers.

The suggested approach is to use a FIFO between the DMA and Aurora and to use the
native flow control (NFC) in Aurora to prevent FIFO overflow. FIFO overflow control
through NFC is a widely used option.

A LocalLink FIFO can be used for this purpose. A FIFO output indicating percentage of
FIFO being occupied can be used to drive NFC.

The round trip delay through the Aurora interfaces between the NFC request and the first
pause arriving at the originating channel partner must not exceed 256 symbol times.

For a 1.25 Gb/s rate, 1 symbol = 10 × 800 ps = 8 ns. With a 256 symbol time, the result is
256 × 8 ns = 2048 ns

With a 62.5 MHz clock (16 ns period), this is 128 clock cycles (which is the worst-case
delay). If a LL-FIFO of depth 512 is used, then the NFC should be asserted once it is
half-full.

Instead of the network driver, the same block data driver code provided is used to drive
traffic over Aurora. The Aurora serial interface can be looped back externally or connected
to another Aurora link partner.

Using Multiple Virtual FIFO Instances
The current design uses one virtual FIFO, which utilizes one 32-bit bidirectional port on
the Spartan-6 FPGA memory controller block. As additional memory bandwidth is
available, the same SDRAM can be partitioned to implement multiple FIFOs. This can be
achieved by multiple instantiations of the virtual FIFO logic. The example in Figure 5-2
shows three memory controller ports. Each virtual FIFO interface has a dedicated address
range within DDR3. This address range is defined by start and end address ranges for each
virtual FIFO instance. Inline processing (as shown) can be added between the virtual FIFO
interfaces.

84 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Chapter 5: Designing with the TRD Platform

Accordingly, a software application can be developed as detailed in Software Driver Code
Modifications, page 80.

If the application developed is for image manipulation or processing, certain image
processing operations (for example: image rendering or color inversion) can be offloaded
to hardware as inline processing operations (shown in the blocks in Figure 5-2). Other
examples of inline processing include an operation on chunks of data (CRC calculation) or
some signal processing transformations (FFT or digital filtering).

X-Ref Target - Figure 5-2

Figure 5-2: DDR3 as Multiple Virtual FIFO

VFIFO Write
Control

MCB
Write Port

Control

CoreGen
FIFO

DMA S2C
Interface

MIG User Interface

Memory
Controller

32-bit
Bidirectional

PortDMA C2S
Interface

MIG Data
Write

Interface

MIG
Command
Interface

MIG Data
Read

Interface

MCB
Read Port

Control

MCB
Command

Port
Control

VFIFO-Read
Control

Virtual FIFO - 1

CoreGen
FIFO

VFIFO Write
Control

MCB
Write Port

Control

CoreGen
FIFO

DMA S2C
Interface

DMA C2S
Interface

MIG Data
Write

Interface

MIG
Command
Interface

MIG Data
Read

Interface

MCB
Read Port

Control

MCB
Command

Port
Control

VFIFO-Read
Control

Virtual FIFO - 2

CoreGen
FIFO

VFIFO Write
Control

MCB
Write Port

Control

CoreGen
FIFO

DMA S2C
Interface

DMA C2S
Interface

MIG Data
Write

Interface

MIG
Command
Interface

MIG Data
Read

Interface

MCB
Read Port

Control

MCB
Command

Port
Control

VFIFO-Read
Control

Virtual FIFO - 3

CoreGen
FIFO

UG392_c5_02_120509

32-bit
Bidirectional

Port

DMA C2S
Interface

DMA S2C
Interface

Inline
Processing

Blocks

32-bit
Bidirectional

Port

DDR3
SDRAM

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 85
UG392 (v1.5) October 5, 2010

Appendix A

Register Description

This appendix is a quick reference to describe the registers programmed by the software
driver. For all registers and further details, refer to the specific user guides.

This appendix also describes the hardware registers and mapping of these registers with
respect to the base address register (BAR) in PCI Express.

All DMA engine registers are mapped to BAR0. Table A-1 describes the mapping of
multiple channel registers.

Registers for interrupt handling in the DMA are grouped under a category called common
registers. These registers are offset from BAR0 by 0x4000.

Table A-1: DMA Channel Register Address

DMA Channel Offset from BAR0

Channel-0 S2C 0x0

Channel-1 S2C 0x100

Channel-0 C2S 0x2000

Channel-1 C2S 0x2100

86 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Appendix A: Register Description

Figure A-1 shows the layout of registers.

The user logic registers are mapped as described in Table A-2. XPS-LL-TEMAC and
external PHY registers are mapped to BAR1.

DMA Registers
This section describes the prominent DMA registers frequently used by the software
driver. For a detailed description of all registers available, please refer to the Northwest
Logic Packet DMA Backend Core User Guide, page 10.

Channel Specific Registers
The registers described in Table A-3 through Table A-6 are present in all channels. The
address of the register is the channel address offset from BAR0 plus the register offset.

X-Ref Target - Figure A-1

Figure A-1: Register Map

PCI Express NWL Packet DMA
USER REGISTERS

XPS-LL-TEMAC

Register
Interface

TRN Utilization-TX

TRN Utilization-RX

User Interrupt

RAF

UAW1

UAW0

AFM

RCW1

TC

Ethernet Statistics

MDIO Interface

PHY Specific
Status Register

PHY Control Register

MARVELL_PHY

Virtual FIFO Start Address

Virtual FIFO End Address

Memory Packet Size

UserApp0

DMA Engine Control

Reg_Next_Desc_Ptr

Reg_SW_Desc_Ptr

DMA Completed
Byte Count

DMA Common
Control_Status

Target
Interface

Engine Registers

BAR0 + 0x4000
B

A
R

1
+

 0
x

0

BAR0

BAR1

UG392_c6_01_120209

Table A-2: User Register Address Offsets

User Logic Register Group Range (Offset from BAR0)

User Application Advertisement Registers 0x8000—0x80FF

User Interrupt Registers 0x8100—0x81FF

TRN Utilization Registers 0x8200—0x82FF

User App0 Registers 0x9000—0x90FF

User App1 Registers 0x9100—0x91FF

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 87
UG392 (v1.5) October 5, 2010

DMA Registers

DMA Engine Control (0x0004)

Next Descriptor Pointer (0x0008)

Software Descriptor Pointer (0x000C)

Table A-3: DMA Engine Control Register (0x0004)

Bit Field Mode Default Value Description

0 Interrupt enable RW 0 Enables interrupt generation.

1 Interrupt active RW1C 0
Interrupt active is set whenever an interrupt event
occurs. Write a 1 to clear.

2 Descriptor complete RW1C 0
Asserted when an interrupt on completion bit is set in
the descriptor.

3
Descriptor alignment
error RW1C 0

Asserted when the descriptor address is unaligned and
that DMA operation is aborted.

4 Descriptor fetch error RW1C 0
Asserted when the descriptor fetch errors out. That is,
the completion status is not successful.

5 SW_Abort_Error RW1C 0
Asserted when the DMA operation is aborted by
software.

8 DMA Enable RW 0
Enables the DMA engine and once enabled, the engine
compares the next descriptor pointer and software
descriptor pointer to begin execution.

10 DMA_Running RO 0 Indicates DMA in operation.

11 DMA_Waiting RO 0
Indicates DMA waiting on software to provide more
descriptors.

14 DMA_Reset_Request RW 0
Issues a request to user logic connected to DMA to abort
outstanding operation and prepare for reset. This is
cleared when user acknowledges the reset request

15 DMA_Reset RW 0
Asserting this bit resets the DMA engine and issues a
reset to the user logic

Table A-4: DMA Next Descriptor Pointer Register

Bit Field Mode Default Value Description

[31:5] Reg_Next_Desc_Ptr RW 0
Next Descriptor Pointer: Writable when DMA is not
enabled. It is read only when DMA is enabled. This should
be written to initialize the start of a new DMA chain.

[4:0] Reserved RO 5'b00000 Required for 32-byte alignment

Table A-5: DMA Software Descriptor Pointer Register

Bit Field Mode Default Value Description

[31:5] Reg_SW_Desc_Ptr RW 0
Software Descriptor Pointer: The location of the first
descriptor in the chain, which is still owned by the
software

[4:0] Reserved RO 5'b00000 Required for 32-byte alignment

88 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Appendix A: Register Description

Completed Byte Count (0x001C)

Common Registers
The registers described in this section are common to all engines and are located at the
given offsets from BAR0.

Common Control and Status (0x4000)

Network Path IP Registers
This section defines the commonly used XPS-LL-TEMAC and PHY registers. For a detailed
explanation of all registers, please refer to the respective user guides.

XPS-LL-TEMAC Registers
The XPS-LL-TEMAC contains memory and addressable registers for read/write
operations. It is assumed that only TEMAC0 is used. The memory map is divided into
three types:

• Soft Registers: Registers in the XPS-LL-TEMAC wrapper; for example, the reset and
statistics registers.

Table A-6: DMA Completed Byte Count Register

Bit Field Mode Default Value Description

[31:2] DMA_Completed_Byte_Count RO 0
Completed Byte Count: Records the number of
bytes that transferred in the previous second. It
has a resolution of four bytes.

[1:0] Sample Count RO 0
Sample Count: Incremented every time a
sample is taken at a one second interval.

Table A-7: DMA Common Control and Status Register

Bit Field Mode Default Value Description

0 Global Interrupt Enable RW 0
Globally enables or disables interrupts for all DMA
engines.

1 Interrupt Active RO 0
Reflects the state of the DMA interrupt hardware output
considering the state of the global interrupt enable.

2 Interrupt Pending RO 0
Reflects the state of the DM A interrupt output without
considering the state of the global interrupt enable.

3 Interrupt Mode RO 0
0: MSI mode

1: Legacy interrupt mode

4 User Interrupt Enable RW 0 Enables generation of user interrupts.

5 User Interrupt Active RW1C 0 Indicates an active user interrupt.

23:16 S2C Interrupt Status RO 0
Bit[i] indicates interrupt status of S2C DMA engine[i]. If
S2C engine is not present, then this bit is read as zero.

31:24 C2S Interrupt Status RO 0
Bit[i] indicates interrupt status of C2S DMA engine[i]. If
C2S engine is not present, then this bit is read as zero.

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 89
UG392 (v1.5) October 5, 2010

Network Path IP Registers

• Direct Registers: Registers in the soft TEMAC core

• Indirect Registers: Registers in the soft TEMAC core which are indirectly addressable
or external PHY registers. These registers are accessed through directly accessible
registers as detailed in the XPS-LL-TEMAC data sheet.

The register offsets are mentioned from BAR1 for directly addressable registers.

Reset and Address Filter Register (0x0)

Statistics Registers

Only certain statistics registers which indicate errors are read in the design.

Receive Configuration Word Register (Indirect, 0x240)

This register sets the behavior of the receive TEMAC interface.

Table A-8: Reset and Address Filter Register

Bit Field Mode Default Value Description

31 HtRst RW 0

TEMAC Reset: This bit provides a means for resetting the soft
TEMAC core. This bit is self clearing.

0: Normal operation, TEMAC core not reset

1: Initiate a reset of the TEMAC core

18 StatsRst RW 0

Statistics Counters Reset: This bit provides a means for resetting the
statistics counters if present. This bit is self clearing.

0: Normal operation, statistics counters not reset

1: Initiate a reset of the statistics counters

Table A-9: Statistics Register

Offset Register Description

0x298 FCS Errors (lower 32 bits) A count of received frames that failed the CRC check and were at
least 64 bytes in length.

0x2B8
Length/Type out of range
(lower 32 bits)

A count of frames received that had length/type field not
matching the number of data bytes received.

0x2F0 Underrun Errors (lower 32 bits) A count of frames that would otherwise be transmitted but could
not be completed due to FIFO underrun.

Table A-10: Receive Configuration Word Register

Bit Field Mode Default Value Description

31 RST RW 0

Reset: When this bit is 1, the receiver is reset. The bit automatically resets
to 0. The reset also sets all of the receiver configuration registers to default
values.

0: No reset

1: Initiates a receiver reset

30 JUM RW 1

Jumbo Frame Enable: When this bit is 1, the receiver accepts frames over
the maximum length specified in the IEEE 802.3 specification.

0: Receive jumbo frames disabled

1: Receive jumbo frames enabled

90 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Appendix A: Register Description

Transmit Configuration Word Register (Indirect, 0x280)

This register sets the behavior of the transmit path of the TEMAC.

Management Configuration Register (Indirect, 0x340)

This register programs the MDIO clock divider and successful programming of this
register generates the MDIO clock used to program the PHY.

29 FCS RW 1

In-Band FCS Enable: When this bit is 1, the receiver provides the FCS field
with the rest of the frame data. When this bit is 0 the FCS field is stripped
from the receive frame data. In either case the FCS field is verified.

0: Strip the FCS field from the receive frame data

1: Provide the FCS field with the receive frame data

28 RX RW 1

Receive Enable: When this bit is 1, the receiver logic is enabled to operate.
When this bit is 0, the receiver ignores activity on the receive interface.

0: Receive disabled

1: Receive enabled

25 LT_DIS RW 0

Length/Type Field Valid Check Disable: When this bit is 1, it disables the
Length/Type field check on the receive frame.

0: Perform Length/Type field check

1: Do not perform Length/Type field check

Table A-10: Receive Configuration Word Register (Cont’d)

Bit Field Mode Default Value Description

Table A-11: Transmit Configuration Word Register

Bit Field Mode
Default
Value

Description

31 RST RW 0

Reset. When this bit is 1, the transmitter is reset. The bit automatically resets to 0.
The reset also sets all of the transmitter configuration registers to their default
values.

0: no reset

1: initiates a transmitter reset

30 JUM RW 1

Jumbo Frame Enable When this bit is 1, the transmitter sends frames over the
maximum length specified in IEEE 802.3 specification.

0: send jumbo frames disabled

1: send jumbo frames enabled

29 FCS RW 0

In-Band FCS Enable. When this bit is 1, the transmitter accepts the FCS field with
the rest of the frame data. When this bit is 0 the FCS field is calculated and
supplied by the transmitter.

0: transmitter calculates and sends FCS field

1: FCS field is provided with transmit frame data

28 TX RW 1

Transmit Enable. When this bit is 1, the transmit logic is enabled to operate.

0: transmit disabled

1: transmit enabled

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 91
UG392 (v1.5) October 5, 2010

User Application Registers

Address Filter Mode Register (Indirect, 0x390)

User Application Registers
The various user registers are described in this section. All registers are 32 bits wide. Bit
fields not defined are considered reserved with a read always returning a value of zero.

Design Version Register (0x8000)
This register tracks the design version so that code maintenance is easily traceable. The
software driver uses this register to associate the correct version with the hardware design.

Table A-12: Management Configuration Register

Bit Field Mode
Default
Value

Description

6 MDIO_EN RW 0

MDIO Enable: When this bit is 1, the MDIO (MII Management)
interface is used to access the PHY.

0: MDIO disabled

1: MDIO enabled

5:0 CLK_DIVIDE RW 0
Clock Divide: This value is used to derive the MDC (MII
Management interface clock) signal. The maximum permitted
frequency is 2.5 MHz.

Table A-13: Address Filter Mode Register

Bit Field Mode
Default
Value

Description

31 PM RW 0

Promiscuous Receive Address Mode Enable: When this bit is 1, the
receive address filtering is disabled and all destination addresses are
accepted. When this bit 0, the receive address filtering is enabled.

0: address filtering enabled

1: address filtering disabled (all addresses accepted)

Table A-14: Design Version Register

Bit
Location

Field Mode Default Value Description

31:28 Device RO 0000
• 0000: Spartan-6
• 0001: Virtex-6

11:4 Version RO 0001_0000 Defines TRD version; updated based on release versions.

3:0 Sub-version RO 0000 Non-AXI version of design.

92 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Appendix A: Register Description

User Application Advertisement Registers

UserApp Advertisement Register (0x8004)

This register advertises which user application is connected to which DMA engine. This
enables the software to associate appropriate descriptors with relevant DMA engines in
case Ethernet path and memory path are swapped in hardware.

The following bits in the register are engine indicators:

• [31:28]: S2C Engine 0

• [27:24]: S2C Engine 1

• [15:12]: C2S Engine 0

• [11:8]: C2S Engine 1

User Interrupt Registers
These registers handle the various interruptible conditions in the user application. For an
interruptible condition, if the interrupt is enabled, an user interrupt is signaled to the DMA
which gets converted to either MSI or a legacy interrupt message upstream depending on
the interrupt mode enabled by the software driver in the configuration space for PCI
Express.

User Interrupt Enable Register (0x8100)

This is the user interrupt enable register which enables/disables specific user interrupts.

Table A-15: UserApp Advertisement Register

Bit
Location

Field Mode Default Value Description

31:28 S2C_0 RO 0001
A value of 0001 indicates network path connected to S2C
engine-0.

27:24 S2C_1 RO 0010
A value of 0010 indicates memory path connected to S2C
engine-1.

15:12 C2S_0 RO 1001
A value of 1001 indicates network path connected to C2S
engine-0.

11:8 C2S_1 RO 1010
A value of 1010 indicates memory path connected to C2S
engine-1.

Table A-16: User Interrupt Enable Register

Bit
Location

Field Mode
Default
Value

Description

31 PLB Error Enable RW 0
Setting this bit enables PLB error conditions to generate
interrupts over PCIe.

30
TEMAC
Interrupt Enable

RW 0
Setting this bit enables TEMAC interrupt conditions to
generate interrupts over PCIe.

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 93
UG392 (v1.5) October 5, 2010

User Application Registers

The enable fields described in Table A-16 are set in combination with interruptible
conditions generates a user interrupt into DMA which translates to interrupts on a PCIe
link.

User Interrupt Status Register (0x8104)

This is the user interrupt status register which indicates what caused the user interrupt.
Relevant bits get set on corresponding errors. Software is required to write a 1 to clear the
set bits which acknowledge the user interrupt.

TRN Monitor Registers
This defines the registers implemented for measuring TRN utilization.

These registers are updated once every second by hardware. These registers have a
resolution of four bytes and provide a 2-bit sample count which increments every second.
The sample count provides a mechanism for software to keep track of distinct reads and
also to synchronize register values across the same one second interval.

Transmit Utilization Byte Count (0x8200)

This register counts the utilization of the transmit interface of the PCIe core. It increments
every clock cycle when both trn_tx_src_rdy_n and trn_tx_dst_rdy_n are asserted.

29
MCB TX Error
Enable

RW 0
Setting this enables MCB specific TX error conditions to
generate interrupts to the system.

28
MCB RX Error
Enable

RW 0
Setting this enables MCB specific RX error conditions to
generate interrupts to the system.

Table A-16: User Interrupt Enable Register (Cont’d)

Bit
Location

Field Mode
Default
Value

Description

Table A-17: User Interrupt Status Register

Bit Location Field Mode
Default
Value

Description

31 PLBError RW 0
Indicates PLB error as cause of user interrupt. Write 1 to
clear.

30 TEMAC Interrupt RW 0
Indicates TEMAC error as the cause of user interrupt. Write
1 to clear.

29 MCB_TxErr RW 0
Memory controller error on transmit interface (MCB TX
FIFO overflow). Write 1 to clear.

28 MCB_RxErr RW 0
Memory controller error on receive interface (MCB RX FIFO
underflow). Write 1 to clear.

94 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Appendix A: Register Description

Receive Utilization Byte Count (0x8204)

This register counts the utilization of the receive interface of the Endpoint for PCI Express.
It increments every clock cycle when both trn_rx_src_rdy_n and
trn_rx_dst_rdy_n are asserted.

Upstream Memory Write Byte Count (0x8208)

This register counts the payload of memory write transactions sent upstream on the
transmit interface of the PCIe core.

Downstream Completion Payload Byte Count (0x820C)

This register counts the payload of completion transactions received at the Endpoint on the
receive interface for PCI Express.

Table A-18: Transmit Utilization Byte Count Register

Bit
Location

Field Mode
Default
Value

Description

31:2 Transmit
Utilization Count

RO 0
Gives the count when TRN-TX interface was active. This
register has a resolution of four bytes. Multiply the value
obtained by four to get the byte count.

1:0 Sample Count RO 0 A 2-bit sample count which increments once every second.

Table A-19: Receive Utilization Byte Count

Bit Location Field Mode
Default
Value

Description

31:2
Receive
Utilization
Count

RO 0
This gives the count when TRN-RX interface was active. This
register has a resolution of four bytes. Multiply the value
obtained by four to get the byte count.

1:0 Sample Count RO 0 2-bit sample count which increments once every second.

Table A-20: Upstream Memory Write Byte Count

Bit Location Field Mode
Default
Value

Description

31:2
MWR Payload
Count

RO 0
This gives the count of MWR payload bytes sent across
TRN-TX. This register has a resolution of four bytes.
Multiply the value obtained by four to get the byte count.

1:0 Sample Count RO 0 2-bit sample count which increments once every second

Table A-21: Downstream Completion Payload Byte Count

Bit Location Field Mode
Default
Value

Description

31:2
CplD Payload
Count

RO 0
Gives the count of the CplD payload bytes received across
TRN-RX. This register has a resolution of four bytes.
Multiply the value obtained by four to get the byte count.

1:0 Sample Count RO 0 2-bit sample count which increments once every second

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 95
UG392 (v1.5) October 5, 2010

User Application Registers

TRN Monitor Control (0x8210)

This is the monitor control registers which defines a software controlled reset. When
asserted, this clears the counters.

User App1 Registers
This group defines the registers specific to user application connected to DMA channel-1,
which is the memory application for this design.

Virtual FIFO Status Register (0x9100)

This register indicates the status of DDR3 calibration to the software driver. It enables
software to determine if the hardware is ready for operation.

Virtual FIFO Receive Packet Length Register (0x9104)

This register indicates the size of the packet in bytes to be built in the receive direction. It
initializes with a default value of 1 KB.

Virtual FIFO Start Address Register (0x9108)

This register indicates the start address for DDR3 partition. It initializes with the default
value of zero on reset. Software programming of this register is optional.

Table A-22: TRN Monitor Control Register

Bit Location Field Mode
Default
Value

Description

0 Monitor Reset RW 0
Monitor Soft Reset: When 1, resets the TRN monitor
counters.

Table A-23: Virtual FIFO Status Register

Bit Location Field Mode
Default
Value

Description

0 Calibration Status RO 0
Calibration Done: This bit indicates calibration done
status from memory controller.

Table A-24: Virtual FIFO Receive Packet Length Register

Bit Location Field Mode Default Value Description

31:0 Packet Length RW 32'h0000_0400
DDR3 Receive Packet Length: Indicates the size of
the packet (in bytes) to be built in the receive
direction.

Table A-25: Virtual FIFO Start Address Register

Bit Location Field Mode
Default
Value

Description

31:0 Start Address RW 0x0
DDR3 Start Address: Indicates the start address in DDR3 from
where virtual FIFO starts.

96 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Appendix A: Register Description

Virtual FIFO End Address Register (0x910C)

This register indicates the end address for DDR3 partition. It initializes with the default
value of 32'h07FF_FFFF on reset. Software programming of this register is optional.

Virtual FIFO Error Statistics Register (0x9110)

This register is the DDR3 error statistics register which records an error count on DDR3.
This register accumulates the DDR3 error count and is cleared on reset.

Table A-26: Virtual FIFO End Address Register

Bit Location Field Mode Default Value Description

31:0 End Address RW 32'h07FF_FFFF
DDR3 End Address: Indicates the end address in
DDR3 where the virtual FIFO wraps around to the start
address.

Table A-27: Virtual FIFO Error Statistics Register

Bit Location Field Mode
Default
Value

Description

31:0 Error Stats RW 0 DDR3 Error Statistics.

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 97
UG392 (v1.5) October 5, 2010

Appendix B

Directory Structure

Introduction
This section describes the directory structure and explains the organization of various
files/folders.

Design

The design folder contains all the hardware design deliverables.

• implement: Contains the implementation scripts for the design for both windows
and Linux operating systems supporting both command line mode and the
ProjNav flow.

• ip_cores: Contains the third-party DMA IP related files and Xilinx IP files
modified for this TRD.

• sim: Contains the simulation scripts for supported simulators for both windows
and Linux operating systems

• source: Contains the source code deliverable files

• tb: Contains the testbench related files for simulation

• reference: Bit files and MCS files for golden reference and XCO files generated by
Xilinx cores. Also includes scripts for the ProjNav flow.

X-Ref Target - Figure B-1

Figure B-1: Directory Structure

s6_pcie_dma_ddr3_gbe

design

implement

ip_cores

sim

source

tb

reference

coregen_ip

license

driver

xblockdata

xdma

xgbeth

html

Makefile

readme

s6_trd_driver_build

s6_trd_driver_insert

s6_trd_driver_remove

s6_trd_app_gui

ug392_aB_01_032610

doc

xpmon

98 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Appendix B: Directory Structure

• coregen_ip: Includes the CORE Generator IP and netlists used in the design

• license: Includes hardware evaluation license for Xilinx IPs

Driver

The driver folder contains all the software driver and application deliverables.

• xblockdata: Contains the source code for the block data driver

• xdma: Contains the source code for the packet DMA driver

• xgbeth: Contains the source code for the Ethernet driver

• html: Contains the software driver documentation files generated by Doxygen.

• Makefile: Contains the Makefile for the software driver and application compilation

xpmon

Contains source code for the application GUI.

doc

Contains the TRD user guide.

readme

Details the use of various simulation and implementation scripts.

s6_trd_driver_build

Contains the script to build the driver and GUI modules.

s6_trd_driver_insert

Contains the script to insert the driver modules.

s6_trd_driver_remove

Contains the script to remove the driver modules.

s6_trd_app_gui

Contains the script to invoke the XPMON application GUI

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 99
UG392 (v1.5) October 5, 2010

Appendix C

Setting Up a Private LAN

Introduction
This section describes the steps used to set up a private LAN connection between two
machines for Ethernet performance measurement.

Figure C-1 shows a private LAN connection between two machines.

To set up a private LAN connection:

1. Connect the Ethernet cable between the two machines; connect as a private LAN
setup. One of them is a standard machine which has a commercial NIC and the other
has SP605 NIC. The machine with SP605 NIC is referred to as the unit-under-test
(UUT) and the other machine, with a commercial NIC, is referred to as the standard
machine.

2. Assign an IP address statically on both machines. Make sure that they have the same
netmask. This can be done on a terminal in command line mode:

$ ifconfig ethX up 172.16.64.7

For this example, it is assumed that the standard machine is assigned an IP address of
172.16.64.9 and the UUT is assigned an IP address of 172.16.64.7.

3. After the interface is activated and after assignment of a static IP address, try a ping
between the machines.

4. Install Netperf v2.4 on both machines. Netperf works with a client server model. In
this setup, UUT is programmed as the client and the other standard machine as the
server. On a terminal on the standard machine, invoke netserver:

$ netserver

5. Open a terminal on the UUT and try running Netperf

$ netperf -H <IP-address-standard machine>

This command runs a ten second TCP_STREAM test by default and reports outbound
performance. Refer to the Netperf manual for the various test options available.

X-Ref Target - Figure C-1

Figure C-1: Private LAN Setup

ug392_aC_01_120609

Private LAN

Standard PC With a
Commercial NIC

PC With
SP605 NIC

100 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Appendix C: Setting Up a Private LAN

Spartan-6 FPGA Connectivity TRD User Guide www.xilinx.com 101
UG392 (v1.5) October 5, 2010

Appendix D

Troubleshooting

Introduction
This section includes some troubleshooting tips (Table D-1). It is not meant as an
exhaustive troubleshooting guide. It is based on the following assumptions:

• User has followed instructions as explained in Chapter 2, Getting Started.

• User has made sure that the PCI Express link is up and the Endpoint device is
discovered by the host and can be seen with lspci.

• Visual indicators (LEDs) as listed on page 18 are functioning and have been checked.

Table D-1: Troubleshooting Tips

Issue Possible Resolution

Activation of Ethernet
interface fails with network
configuration GUI

1. Check the MAC address to make sure the MAC address is
programmed as provided with the SP605 Connectivity Kit.

2. If assigning an IP address statically, make sure that it does
not clash with any other IP address on the network. Contact
the network administrator regarding specific IP address
allocation.

3. In the network configuration GUI, under the Devices tab,
for the device, uncheck the bind to MAC address option in
device properties. Device properties are invoked by
double-clicking on the device.

Network is connected but
webpage does not load in the
browser

1. Check the browser's network proxy settings suitable for
your network with your network administrator

2. Make sure that the browser is not in work-offline mode

1000BASE-X Design not
working.

1. Make sure that the additional required hardware is
connected as explained in Testing 1000BASE-X Mode,
page 38. Make sure the Ethernet connection is 1 Gb/s.

2. Make sure that the correct design is downloaded to
hardware (sp605_use_1000basex)

3. Make sure that driver/xgbeth/Makefile has
DUSE_1000BASEX defined under EXTRA_CFLAGS

102 www.xilinx.com Spartan-6 FPGA Connectivity TRD User Guide
UG392 (v1.5) October 5, 2010

Appendix D: Troubleshooting

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Programmable Logic IC Development Tools category:

Click to view products by Xilinx manufacturer:

Other Similar products are found below :

DK-DEV-5SGXEA7N SLG4DVKADV 88980182 DEV-17526 DEV-17514 LCMXO3L-SMA-EVN 471-014 80-001005 iCE40UP5K-

MDP-EVN ALTHYDRAC5GX ALTNITROC5GX 471-015 Hinj SnoMakrR10 DK-DEV-1SDX-P-A DK-DEV-1SDX-P-0ES DK-DEV-

1SMC-H-A DK-DEV-1SMX-H-0ES DK-DEV-1SMX-H-A DK-DEV-4CGX150N DK-DEV-5CGTD9N DK-DEV-5CSXC6N DK-DEV-

5M570ZN DK-MAXII-1270N DK-SI-1SGX-H-A DK-SI-1STX-E-0ES DK-SI-1STX-E-A DK-SI-5SGXEA7N ATF15XX-DK3-U

SLG46824V-DIP SLG46826V-DIP 240-114-1 6003-410-017 ICE40UP5K-B-EVN ICE5LP4K-WDEV-EVN L-ASC-BRIDGE-EVN

LC4256ZE-B-EVN LCMXO2-7000HE-B-EVN LCMXO3D-9400HC-B-EVN LCMXO3L-6900C-S-EVN LF-81AGG-EVN LFE3-MEZZ-

EVN LPTM-ASC-B-EVN M2S-HELLO-FPGA-KIT VIDEO-DC-USXGMII 12GSDIFMCCD SFP+X4FMCCD NAE-CW305-04-7A100-

0.10-X NOVPEK CVLite RXCS10S0000F43-FHP00A

https://www.x-on.com.au/category/embedded-solutions/engineering-tools/embedded-development-tools/programmable-logic-ic-development-tools
https://www.x-on.com.au/manufacturer/xilinx
https://www.x-on.com.au/mpn/intel/dkdev5sgxea7n
https://www.x-on.com.au/mpn/dialogsemiconductor/slg4dvkadv
https://www.x-on.com.au/mpn/crouzet/88980182
https://www.x-on.com.au/mpn/sparkfun/dev17526
https://www.x-on.com.au/mpn/sparkfun/dev17514
https://www.x-on.com.au/mpn/lattice/lcmxo3lsmaevn
https://www.x-on.com.au/mpn/digilent/471014
https://www.x-on.com.au/mpn/criticallink/80001005
https://www.x-on.com.au/mpn/lattice/ice40up5kmdpevn
https://www.x-on.com.au/mpn/lattice/ice40up5kmdpevn
https://www.x-on.com.au/mpn/mpression/althydrac5gx
https://www.x-on.com.au/mpn/mpression/altnitroc5gx
https://www.x-on.com.au/mpn/digilent/471015
https://www.x-on.com.au/mpn/alorium/hinj
https://www.x-on.com.au/mpn/alorium/snomakrr10
https://www.x-on.com.au/mpn/intel/dkdev1sdxpa
https://www.x-on.com.au/mpn/intel/dkdev1sdxp0es
https://www.x-on.com.au/mpn/intel/dkdev1smcha
https://www.x-on.com.au/mpn/intel/dkdev1smcha
https://www.x-on.com.au/mpn/intel/dkdev1smxh0es
https://www.x-on.com.au/mpn/intel/dkdev1smxha
https://www.x-on.com.au/mpn/intel/dkdev4cgx150n
https://www.x-on.com.au/mpn/intel/dkdev5cgtd9n
https://www.x-on.com.au/mpn/intel/dkdev5csxc6n
https://www.x-on.com.au/mpn/intel/dkdev5m570zn
https://www.x-on.com.au/mpn/intel/dkdev5m570zn
https://www.x-on.com.au/mpn/intel/dkmaxii1270n
https://www.x-on.com.au/mpn/intel/dksi1sgxha
https://www.x-on.com.au/mpn/intel/dksi1stxe0es
https://www.x-on.com.au/mpn/intel/dksi1stxea
https://www.x-on.com.au/mpn/intel/dksi5sgxea7n
https://www.x-on.com.au/mpn/microchip/atf15xxdk3u
https://www.x-on.com.au/mpn/dialogsemiconductor/slg46824vdip
https://www.x-on.com.au/mpn/dialogsemiconductor/slg46826vdip
https://www.x-on.com.au/mpn/digilent/2401141
https://www.x-on.com.au/mpn/digilent/6003410017
https://www.x-on.com.au/mpn/lattice/ice40up5kbevn
https://www.x-on.com.au/mpn/lattice/ice5lp4kwdevevn
https://www.x-on.com.au/mpn/lattice/lascbridgeevn
https://www.x-on.com.au/mpn/lattice/lc4256zebevn
https://www.x-on.com.au/mpn/lattice/lcmxo27000hebevn
https://www.x-on.com.au/mpn/lattice/lcmxo3d9400hcbevn
https://www.x-on.com.au/mpn/lattice/lcmxo3l6900csevn
https://www.x-on.com.au/mpn/lattice/lf81aggevn
https://www.x-on.com.au/mpn/lattice/lfe3mezzevn
https://www.x-on.com.au/mpn/lattice/lfe3mezzevn
https://www.x-on.com.au/mpn/lattice/lptmascbevn
https://www.x-on.com.au/mpn/microchip/m2shellofpgakit
https://www.x-on.com.au/mpn/microchip/videodcusxgmii
https://www.x-on.com.au/mpn/mpression/12gsdifmccd
https://www.x-on.com.au/mpn/mpression/sfpx4fmccd
https://www.x-on.com.au/mpn/newae/naecw305047a100010x
https://www.x-on.com.au/mpn/newae/naecw305047a100010x
https://www.x-on.com.au/mpn/novtech/novpekcvlite
https://www.x-on.com.au/mpn/reflexces/rxcs10s0000f43fhp00a

