
LogiCORE IP
Ethernet AVB
Endpoint v3.1
User Guide

UG492 March 1, 2011

Ethernet AVB Endpoint User Guide www.xilinx.com UG492 March 1, 2011

Xilinx is providing this product documentation, hereinafter “Information,” to you “AS IS” with no warranty of any kind, express or implied.
Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You
are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to
change without notice.

XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR
ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT
THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or
transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written consent of Xilinx.

© Copyright 2008-2011 Xilinx, Inc. XILINX, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, and other designated brands included herein
are trademarks of Xilinx in the United States and other countries. The PowerPC name and logo are registered trademarks of IBM Corp. and
used under license.All other trademarks are the property of their respective owners.

Revision History
This table shows the revision history for this document.

Date Version Revision

9/18/08 v1.1 Initial Xilinx release; ISE® 10.1, Update 3.

4/24/09 v1.2 Updated to version 1.2 of the core; Xilinx tools 11.1.

6/24/09 v2.1 Updated to version 2.1 of the core; Xilinx tools 11.2.

9/16/09 v2.2 Updated to version 2.2 of the core; Xilinx tools 11.3.

4/19/10 v2.3 Updated to version 2.3 of the core; Xilinx tools 12.1.

7/23/10 v2.4 Updated to version 2.4 of the core; Xilinx tools 12.2.

Added four chapters from the Getting Started Guide to this User Guide:

• Licensing the Core
• Quick Start Example Design
• Detailed Example Design (Standard Format)
• Detailed Example Design (EDK format)

The Getting Started Guide is being discontinued in this release.

3/01/11 v3.1 Updated to version 3.1 of the core; Xilinx tools 13.1. Removed pcore generation support.
Updated RX Splitter to optionally also use the VLAN VID value to identify AV stream
data.

Ethernet AVB Endpoint User Guide www.xilinx.com 3
UG492 March 1, 2011

Revision History . 2

Schedule of Figures . 7

Schedule of Tables . 9

Preface: About This Guide
Guide Contents . 11
Additional Resources . 12
Conventions . 12

Typographical . 12
Online Document . 13
List of Abbreviations . 14

Chapter 1: Introduction
System Requirements . 17
About the Core . 17
Recommended Design Experience . 18
Additional Core Resources . 18
Technical Support. 18
Feedback. 18

Ethernet AVB Endpoint Core . 18
Document . 19

Chapter 2: Licensing the Core
Before you Begin . 21
License Options . 21

Simulation Only . 21
Full System Hardware Evaluation . 22
Full . 22

Obtaining Your License Key. 22
Simulation License . 22
Full System Hardware Evaluation License . 22
Obtaining a Full License Key . 22

Installing the License File . 23

Chapter 3: Overview of Ethernet Audio Video Bridging
AVB Specifications . 26

P802.1AS . 26
IEEE802.1Qav-2009 . 27
IEEE802.1Qat-2010 . 28

Typical Implementation . 28

Table of Contents

4 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 4: Generating the Core
Ethernet AVB GUI Page 1 . 31

Component Name . 32
Core Delivery Format . 32

Ethernet AVB GUI Page 2 . 32
Number of PLB Masters . 32
PLB Base Address . 33

Parameter Values in the XCO File . 33
Output Generation . 33

Chapter 5: Core Architecture
Core Overview . 35
Functional Block Description . 37

PLB Interface . 37
AV Traffic Interface . 37
Legacy Traffic Interface . 37
Tx Arbiter . 37
Rx Splitter . 38
MAC Header Filters . 38
Precise Timing Protocol Blocks . 38
Software Drivers . 40
Tri-Mode Ethernet MACs . 41

Core Interfaces . 41
Clocks and Reset . 41
Legacy Traffic Interface . 42
AV Traffic Interface . 44
Tri-Mode Ethernet MAC Client Interface . 44
Processor Local Bus (PLB) Interface . 47
Interrupt Signals . 49
PTP Signals . 50

Chapter 6: Ethernet AVB Endpoint Transmission
Tx Legacy Traffic I/F . 51

Error Free Legacy Frame Transmission . 52
Errored Legacy Frame Transmission . 53

Tx AV Traffic I/F . 53
Tx Arbiter. 55

Chapter 7: Ethernet AVB Endpoint Reception
Rx Splitter . 59
Rx Legacy Traffic I/F . 59

Error Free Legacy Frame Reception . 60
Errored Legacy Frame Reception . 61
Legacy MAC Header Filters . 61

Rx AV Traffic I/F . 67
Error Free AV Traffic Reception . 67
Errored AV Traffic Reception. 68

Ethernet AVB Endpoint User Guide www.xilinx.com 5
UG492 March 1, 2011

Chapter 8: Real Time Clock and Time Stamping
Real Time Clock . 69

RTC Implementation . 71
Clock Outputs Based on the Synchronized RTC Nanoseconds Field 73

Time Stamping Logic . 73
Time Stamp Sampling Position of MAC Frames. 74

IEEE1722 Real Time Clock Format . 75

Chapter 9: Precise Timing Protocol Packet Buffers
Tx PTP Packet Buffer . 77
Rx PTP Packet Buffer. 79

Chapter 10: Configuration and Status
Processor Local Bus Interface . 81

Single Read Transaction . 81
Single Write Transaction . 83

PLB Address Map and Register Definitions. 84
Ethernet AVB Endpoint Address Space . 86
Tri-Mode Ethernet MAC Address Space . 95

Chapter 11: Constraining the Core
Required Constraints. 97

Device, Package, and Speed Grade Selection . 97
I/O Location Constraints . 97
Placement Constraints . 97
Timing Constraints . 97

Chapter 12: System Integration
LogiCORE IP Tri-Mode Ethernet MAC (Soft Core) . 105
LogiCORE IP Embedded Tri-Mode Ethernet MACs . 109
Connection of the PLB to the EDK for LogiCORE IP Ethernet MACs 112

Chapter 13: Software Drivers
Clock Master . 117
Clock Slave . 118
Software System Integration . 118

Driver Instantiation . 118
Interrupt Service Routine Connections . 119
Core Initialization . 120
Ethernet AVB Endpoint Setup . 120
Starting and Stopping the AVB Drivers . 122

6 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 14: Quick Start Example Design
Overview . 123
Generating the Core . 125
Implementing the Example Design . 126
Simulating the Example Design . 127

Setting up for Simulation . 127
Functional Simulation . 127
Timing Simulation . 127

What’s Next? . 128

Chapter 15: Detailed Example Design
Directory and File Contents . 130

<project directory> . 130
<project directory>/<component name> . 131
<component name>/doc . 131
<component name>/example design . 131
<component name>/implement . 132
implement/results . 133
<component name>/simulation . 133
simulation/functional . 133
simulation/timing . 134
<component_name>/drivers/v3_01_a . 134
drivers/avb_v3_01_a/data. 135
drivers/avb_v3_01_a/examples . 135
drivers/avb_v3_01_a/src . 136

Implementation Scripts . 137
Simulation Scripts . 137

Functional Simulation . 137
Timing Simulation . 138

Example Design . 138
Top-Level Example Design HDL. 139
Ethernet Frame Stimulus . 139
Ethernet Frame Checker . 140
Loopback Module . 140
PLB Module . 141
Demonstration Test Bench . 142
Customizing the Test Bench . 143

Appendix A: RTC Time Stamp Accuracy
Time Stamp Accuracy . 145

RTC Real Time Instantaneous Error . 145
RTC Sampling Error . 147
Accuracy Resulting from the Combined Errors . 149

Ethernet AVB Endpoint User Guide www.xilinx.com 7
UG492 March 1, 2011

Chapter 1: Introduction

Chapter 2: Licensing the Core

Chapter 3: Overview of Ethernet Audio Video Bridging
Figure 3-1: Example AVB Home Network. 25
Figure 3-2: Example Ethernet AVB Endpoint System . 28

Chapter 4: Generating the Core
Figure 4-1: GUI Page 1 . 31
Figure 4-2: GUI Page 2 . 32

Chapter 5: Core Architecture
Figure 5-1: Ethernet AVB Endpoint Core Block Diagram for Connection to

LogiCORE IP Tri-Mode Ethernet MAC . 36

Chapter 6: Ethernet AVB Endpoint Transmission
Figure 6-1: Normal Frame Transmission across the Legacy Traffic Interface 52
Figure 6-2: Legacy Frame Transmission with Underrun . 53
Figure 6-3: Normal Frame Transmission across the AV Traffic Interface. 54
Figure 6-4: Credit-based Shaper Operation. 56

Chapter 7: Ethernet AVB Endpoint Reception
Figure 7-1: Normal Frame Reception across the Legacy Traffic Interface. 60
Figure 7-2: Errored Frame Reception across the Legacy Traffic Interface 61
Figure 7-3: Normal Frame Reception: Address Filter Match . 62
Figure 7-4: Filtering of Frames with a Full DA Match . 64
Figure 7-5: Filtering of Frames with a Partial DA Match . 65
Figure 7-6: Filtering of VLAN Frames with a Specific Priority Value 66
Figure 7-7: Normal Frame Reception across the AV Traffic Interface 67
Figure 7-8: Errored Frame Reception across the AV Traffic Interface 68

Chapter 8: Real Time Clock and Time Stamping
Figure 8-1: Real Time Counter (RTC) . 69
Figure 8-2: Increment of Sub-nanoseconds and Nanoseconds Field 71
Figure 8-3: Time Stamping Position . 74

Schedule of Figures

8 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 9: Precise Timing Protocol Packet Buffers
Figure 9-1: Tx PTP Packet Buffer Structure. 78
Figure 9-2: Rx PTP Packet Buffer . 80

Chapter 10: Configuration and Status
Figure 10-1: Single Read Transaction . 82
Figure 10-2: Single Write Transaction . 83
Figure 10-3: PLB Address Space of the Ethernet AVB Endpoint Core and

Connected Tri-Mode Ethernet MAC . 85

Chapter 11: Constraining the Core

Chapter 12: System Integration
Figure 12-1: Connection to the Tri-Mode Ethernet MAC Core

(without Ethernet Statistics) . 106
Figure 12-2: Connection to the Tri-Mode Ethernet MAC and Ethernet Statistic Cores 108
Figure 12-3: Connection to the Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC

(without Ethernet Statistics) . 110
Figure 12-4: Connection to the Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC

and Ethernet Statistic Core. 111
Figure 12-5: Connection of the Ethernet AVB Endpoint Core into an

Embedded Processor Sub-system . 113
Figure 12-6: Connection into an Embedded Processor Sub-system with an

EDK Top-level Project . 114
Figure 12-7: Connection into an Embedded Processor Sub-system with an

ISE Software Top-Level Project . 115

Chapter 13: Software Drivers

Chapter 14: Quick Start Example Design
Figure 14-1: Ethernet AVB Endpoint Example Design and Test Bench 124
Figure 14-2: Ethernet AVB Endpoint Core Customization Screen 125

Chapter 15: Detailed Example Design
Figure 15-1: Example Design HDL for the Ethernet AVB Endpoint 138
Figure 15-2: Ethernet AVB Endpoint Demonstration Test Bench 142
Figure 15-3: Simulator Wave Window Contents . 144

Appendix A: RTC Time Stamp Accuracy
Figure A-1: RTC Periodic Error . 146
Figure A-2: RTC Sampling Logic. 147
Figure A-3: Sampling Position Uncertainty . 148
Figure A-4: Overall Time Stamp Accuracy . 149

Ethernet AVB Endpoint User Guide www.xilinx.com 9
UG492 March 1, 2011

Chapter 1: Introduction

Chapter 2: Licensing the Core

Chapter 3: Overview of Ethernet Audio Video Bridging

Chapter 4: Generating the Core
Table 4-1: XCO File Values and Default Values. 33

Chapter 5: Core Architecture
Table 5-1: Clocks and Resets. 41
Table 5-2: Legacy Traffic Signals: Transmitter Path . 42
Table 5-3: Legacy Traffic Signals: Receiver Path . 43
Table 5-4: AV Traffic Signals: Transmitter Path. 44
Table 5-5: AV Traffic Signals: Receiver Path . 44
Table 5-6: Tri-Mode Ethernet MAC Transmitter Interface. 45
Table 5-7: Tri-Mode Ethernet MAC Receiver Interface . 45
Table 5-8: Tri-Mode Ethernet MAC Host Interface (Configuration/Status) 46
Table 5-9: PLB Signals . 47
Table 5-10: Interrupt Signals . 49
Table 5-11: PTP Signals . 50

Chapter 6: Ethernet AVB Endpoint Transmission

Chapter 7: Ethernet AVB Endpoint Reception

Chapter 8: Real Time Clock and Time Stamping

Chapter 9: Precise Timing Protocol Packet Buffers

Chapter 10: Configuration and Status
Table 10-1: Tx PTP Packet Buffer Control Register (PLB_base_address + 0x2000) 86
Table 10-2: Rx PTP Packet Buffer Control Register (PLB_base_address + 0x2004) 87
Table 10-3: Rx Filtering Control Register (PLB_base_address + 0x2008) 87
Table 10-4: Tx Arbiter Send Slope Control Register (PLB_base_address + 0x200C) 88
Table 10-5: Tx Arbiter Idle Slope Control Register (PLB_base_address + 0x2010) 88
Table 10-6: RTC Nanoseconds Field Offset (PLB_base_address + 0x2800) 89

Schedule of Tables

10 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Table 10-7: Seconds Field Offset bits [31:0] (PLB_base_address + 0x2808) 89
Table 10-8: Seconds Field Offset bits [47:32] (PLB_base_address + 0x280C) 89
Table 10-9: RTC Increment Value Control Register (PLB_base_address + 0x2810). 90
Table 10-10: Current RTC Nanoseconds Value (PLB_base_address + 0x2814). 90
Table 10-11: Current RTC Seconds Field Value bits [31:0] (PLB_base_address + 0x2818) 90
Table 10-12: Current RTC Seconds Field Value bits [47:32] (PLB_base_address + 0x281C) 91
Table 10-13: RTC Interrupt Clear Register (PLB_base_address + 0x2820). 91
Table 10-14: RTC Phase Adjustment Register (PLB_base_address + 0x2824). 91
Table 10-15: Software Reset Register (Address at PLB_base_address + 0x2828) 92
Table 10-16: MAC Header Filter Configuration Registers . 93
Table 10-17: Tri-Mode Ethernet MAC and Ethernet Statistics

Configuration Registers . 95

Chapter 11: Constraining the Core

Chapter 12: System Integration

Chapter 13: Software Drivers

Chapter 14: Quick Start Example Design

Chapter 15: Detailed Example Design
Table 15-1: Project Directory. 130
Table 15-2: Component Name Directory . 131
Table 15-3: Doc Directory . 131
Table 15-4: Example Design Directory . 131
Table 15-5: Implement Directory . 132
Table 15-6: Results Directory . 133
Table 15-7: Simulation Directory . 133
Table 15-8: Functional Directory . 133
Table 15-9: Timing Directory . 134
Table 15-10: Driver Data Directory . 135
Table 15-11: Driver Example Directory . 135
Table 15-12: Driver Source Directory . 136

Appendix A: RTC Time Stamp Accuracy

Ethernet AVB Endpoint User Guide www.xilinx.com 11
UG492 March 1, 2011

Preface

About This Guide

The LogiCORE™ IP Ethernet AVB User Guide provides information about the Ethernet
Audio Video Bridging (AVB) Endpoint core, including how to customize, generate, and
implement the core in supported Xilinx® FPGA families.

Guide Contents
• Preface, About this Guide introduces the organization and purpose of this guide and

the conventions used in this document.

• Chapter 1, Introduction introduces the core and provides related information
including additional core resources, technical support, and how to submit feedback to
Xilinx.

• Chapter 2, Licensing the Core describes the available license options for the core and
how to obtain them.

• Chapter 3, Overview of Ethernet Audio Video Bridging provides an overview of
Ethernet Audio Video Bridging, including relevant specifications and a typical
implementation.

• Chapter 4, Generating the Core provides information about generating and
customizing the core using the CORE Generator™ software.

• Chapter 5, Core Architecture describes the major functional blocks of the Ethernet
AVB Endpoint core.

• Chapter 6, Ethernet AVB Endpoint Transmission describes data transmission over an
AVB network.

• Chapter 7, Ethernet AVB Endpoint Reception describes data reception over an AVB
network.

• Chapter 8, Real Time Clock and Time Stamping describes two components that are
partially responsible for the AVB timing synchronization protocol.

• Chapter 9, Precise Timing Protocol Packet Buffers describes two components that are
partially responsible for the transmission and reception of Ethernet Precise Timing
Protocol frames; these frames contain the AVB timing synchronization data.

• Chapter 10, Configuration and Status defines general guidelines for configuring and
monitoring the Ethernet AVB Endpoint core, including an introduction to the PLB
configuration bus and a description of the core management registers.

• Chapter 11, Constraining the Core defines the Ethernet AVB core constraints.

• Chapter 12, System Integration describes the integration of the Ethernet AVB
Endpoint core into a system, including connection of the core to the Xilinx Tri-Mode
Ethernet MAC and Ethernet Statistic cores.

12 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Preface: About This Guide

• Chapter 13, Software Drivers describes the function of the software drivers delivered
with the core.

• Chapter 14, Quick Start Example Design provides instructions to quickly generate the
core and run the example design through implementation and simulation using the
default settings.

• Chapter 15, Detailed Example Design provides detailed information about the core
when generated in the standard CORE Generator software format, including a
description of files and the directory structure generated

• Appendix A, RTC Time Stamp Accuracy describe the necessity of accurate time
stamps, essential to the Precise Timing Protocol across the network link, and provides
some of the ways inaccuracies are introduced.

Additional Resources
To find additional documentation, see the Xilinx website at:

www.xilinx.com/support/documentation/index.htm.

To search the Answer Database of silicon, software, and IP questions and answers, or to
create a technical support WebCase, see the Xilinx website at:

www.xilinx.com/support.

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Convention Meaning or Use Example

Courier font

Messages, prompts, and
program files that the system
displays. Signal names in text
also.

speed grade: - 100

Courier bold
Literal commands that you enter
in a syntactical statement

ngdbuild design_name

Helvetica bold

Commands that you select from
a menu

File → Open

Keyboard shortcuts Ctrl+C

Italic font

Variables in a syntax statement
for which you must supply
values

ngdbuild design_name

References to other manuals See the User Guide.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol, the
two nets are not connected.

Ethernet AVB Endpoint User Guide www.xilinx.com 13
UG492 March 1, 2011

Conventions

Online Document
The following conventions are used in this document:

Dark Shading
Items that are not supported or
reserved

This feature is not supported

Square brackets []

An optional entry or parameter.
However, in bus specifications,
such as bus[7:0], they are
required.

ngdbuild [option_name]
design_name

Braces { }
A list of items from which you
must choose one or more

lowpwr ={on|off}

Vertical bar |
Separates items in a list of
choices

lowpwr ={on|off}

Angle brackets < >
User-defined variable or in code
samples

<directory name>

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . . Repetitive material that has
been omitted

allow block block_name loc1
loc2 ... locn;

Notations

The prefix ‘0x’ or the suffix ‘h’
indicate hexadecimal notation

A read of address 0x00112975
returned 45524943h.

An ‘_n’ means the signal is
active low

usr_teof_n is active low.

Convention Meaning or Use Example

Convention Meaning or Use Example

Blue text Cross-reference link to a location
in the current document

See the section Guide Contents
for details.

See “Title Formats” in Chapter 1
for details.

Blue, underlined text Hyperlink to a website (URL)
Go to www.xilinx.com for the
latest speed files.

14 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Preface: About This Guide

List of Abbreviations
.

Acronym Spelled Out

AV Audio Video

AVB Audio Video Bridging

BMCA Best Master Clock Algorithm

CRC Cyclic Redundancy Check

DA Destination Address

DMA Direct Memory Access

DSP Digital Signal Processor

EDK Embedded Development Kit

EMAC Ethernet MAC

FCS Frame Check Sequence

FIFO First In First Out

FPGA Field Programmable Gate Array.

Gb/s Gigabits per second

GMII Gigabit Media Independent Interface

GUI Graphical User Interface

HDL Hardware Description Language

IES Incisive Unified Simulator

I/F Interface

IO Input/Output

IP Intellectual Property

ISE® Integrated Software Environment

KHz Kilo Hertz

LLDP Link Layer Discovery Protocol

MAC Media Access Controller

Mb/s Megabits per second

MDIO Management Data Input/Output

MHS Microprocessor Hardware Description: a proprietary file format,
using the .mhs file extension, for an XPS project

MHz Mega Hertz

ms milliseconds

MPMC Multi-Port Memory Controller

ns nanoseconds

PHY physical-side interface

Ethernet AVB Endpoint User Guide www.xilinx.com 15
UG492 March 1, 2011

Conventions

PHYAD Physical Address

PLB Processor Local Bus

PTP Precise Timing Protocol

REGAD Register Address

RTC Real Time Clock

RO Read Only

R/W Read/Write

Rx Receive

SFD Start of Frame Delimiter

SRP Stream Reservation Protocol

TEMAC Tri-Mode Ethernet MAC

TCP/IP Transmission Control Protocol / Internet Protocol.

TOE TCP/IP Offload Engine

Tx Transmitter

UCF User Constraints File

us microseconds

VHDL VHSIC Hardware Description Language
(VHSIC an acronym for Very High-Speed Integrated Circuits)

VLAN Virtual LAN (Local Area Network)

WO Write Only

XCO Xilinx CORE Generator core source file

XPS Xilinx Platform Studio (part of the EDK software)

XPS_LL_TEMAC XPS LocalLink Tri-Mode Ethernet MAC

Acronym Spelled Out

16 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Preface: About This Guide

Ethernet AVB Endpoint User Guide www.xilinx.com 17
UG492 March 1, 2011

Chapter 1

Introduction

This chapter introduces the core and provides related information including
recommended design experience, additional resources, technical support, and how to
submit feedback to Xilinx.

The Ethernet AVB Endpoint core is a fully verified solution that supports Verilog-HDL and
VHDL. In addition, the example design in this guide is provided in both Verilog and
VHDL formats.

System Requirements

Windows

• Windows XP Professional 32-bit/64-bit

• Windows Vista Business 32-bit/64-bit Linux

Linux

• Red Hat Enterprise Linux WS v4.0 32-bit/64-bit

• Red Hat Enterprise Desktop v5.0 32-bit/64-bit (with Workstation Option)

• SUSE Linux Enterprise (SLE) desktop and server v10.1 32-bit/64-bit

Software

• ISE® software v13.1

About the Core
The Ethernet AVB Endpoint core is available through the Xilinx® CORE Generator™
software included in the latest IP Update on the Xilinx IP Center. For detailed information
about the core, see the Ethernet AVB Endpoint product page. For information about
licensing options, see Chapter 2, Licensing the Core.

18 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 1: Introduction

Recommended Design Experience
Although the Ethernet AVB Endpoint core is a fully verified solution, the challenge
associated with implementing a complete design varies depending on the configuration
and functionality of the application. For best results, previous experience building high-
performance, pipelined FPGA designs using Xilinx implementation software and user
constraint files (UCFs) is recommended. In addition, previous experience using the
Embedded Development Kit (EDK) and developing embedded software applications is
recommended. Contact your local Xilinx representative for a closer review and estimation
for your specific requirements.

Additional Core Resources
For detailed information and updates about the Ethernet AVB Endpoint core, see the
following documents, available from the product page.

• Ethernet AVB Endpoint Data Sheet

• Ethernet AVB Endpoint User Guide

From the document directory after generating the core:

• Ethernet AVB Endpoint Release Notes

Technical Support
For technical support, see www.support.xilinx.com/. Questions are routed to a team of
engineers with expertise using the Ethernet AVB Endpoint core.

Xilinx provides technical support for use of this product as described in this guide. Xilinx
cannot guarantee timing, functionality, or support of this product for designs that do not
follow these guidelines.

Feedback
Xilinx welcomes comments and suggestions about the Ethernet AVB Endpoint core and
the documentation supplied with the core.

Ethernet AVB Endpoint Core
For comments or suggestions about the Ethernet AVB Endpoint core, submit a WebCase
from www.xilinx.com/support/clearexpress/websupport.htm/

Be sure to include the following information:

• Product name

• Core version number

• Explanation of your comments

Ethernet AVB Endpoint User Guide www.xilinx.com 19
UG492 March 1, 2011

Feedback

Document
For comments or suggestions about this document, submit a WebCase from
www.xilinx.com/support/clearexpress/websupport.htm/

Be sure to include the following information:

• Document title

• Document number

• Page number(s) to which your comments refer

• Explanation of your comments

20 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 1: Introduction

Ethernet AVB Endpoint User Guide www.xilinx.com 21
UG492 March 1, 2011

Chapter 2

Licensing the Core

This chapter provides instructions for obtaining a license key for the Ethernet AVB
Endpoint core, which you must do before using the core in your designs. The Ethernet AVB
Endpoint core is provided under the terms of the Xilinx Core Site License Agreement.

Before you Begin
This chapter assumes that you have installed the required Xilinx® ISE® Design Suite
version following the instructions provided by the Xilinx ISE Installation, Licensing and
Release Notes Guide, www.xilinx.com/support/documentation/dt_ise.htm. Detailed
software requirements can be found on the product web page for this core,
www.xilinx.com/products/ipcenter/DO-DI-EAVB-EPT.htm.

License Options
The Ethernet AVB Endpoint core provides three licensing options. After installing the
required ISE Design Suite version, choose a license option.

Simulation Only
The Simulation Only Evaluation license key is provided with the ISE CORE Generator™
tool. This key lets you assess core functionality with either the example design provided
with the Ethernet AVB Endpoint core, or alongside your own design and allows you to
demonstrate the various interfaces to the core in simulation. (Functional simulation is
supported by a dynamically generated HDL structural model.)

22 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 2: Licensing the Core

Full System Hardware Evaluation
The Full System Hardware Evaluation license key is available at no cost and lets you fully
integrate the core into an FPGA design, place and route the design, evaluate timing, and
perform back-annotated gate-level simulation of the core using the demonstration test
bench provided with the core.

In addition, the license key lets you generate a bitstream from the placed and routed
design, which can then be downloaded to a supported device and tested in hardware. The
core can be tested in the target device for a limited time before timing out (ceasing to
function), at which time it can be reactivated by reconfiguring the device.

Full
The Full license key is available when you purchase a license for the core and provides full
access to all core functionality both in simulation and in hardware, including:

• Functional simulation support

• Back annotated gate-level simulation support

• Full implementation support including place and route and bitstream generation

• Full functionality in the programmed device with no time outs

Obtaining Your License Key
This section contains information about obtaining a simulation, full system hardware, and
full license keys.

Simulation License
No action is required to obtain the Simulation Only Evaluation license key; it is provided
by default with the Xilinx CORE Generator software.

Full System Hardware Evaluation License
To obtain a Full System Hardware Evaluation license, do the following:

1. Navigate to the product page for this core.

2. Click Evaluate.

3. Follow the instructions to install the required Xilinx ISE software and IP Service Packs.

Obtaining a Full License Key
To obtain a Full license key, follow these instructions:

1. Purchase the license through your local sales office. After the order has been entered,
an email will be sent to your Account Administrator with instructions on how to
access the account.

2. Navigate to the product page for this core:
www.xilinx.com/products/ipcenter/DO-DI-EAVB-EPT.htm

3. Click Order.

4. Follow the instructions to generate the required license key on the Xilinx Product
Licensing Site, www.xilinx.com/getproduct.

Further details can be found at www.xilinx.com/products/ipcenter/ipaccess_fee.htm.

Ethernet AVB Endpoint User Guide www.xilinx.com 23
UG492 March 1, 2011

Installing the License File

Installing the License File
The Simulation Only Evaluation license key is provided with the ISE software CORE
Generator system and does not require installation of an additional license file. For the Full
System Hardware Evaluation license and the Full license, an email will be sent to you
containing instructions for installing your license file. Additional details about IP license
key installation can be found in the ISE Design Suite Installation, Licensing and Release
Notes document.

24 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 2: Licensing the Core

Ethernet AVB Endpoint User Guide www.xilinx.com 25
UG492 March 1, 2011

Chapter 3

Overview of Ethernet Audio Video
Bridging

Figure 3-1 illustrates a potential home network, consisting of wired (ethernet) and wireless
components, which utilize the technology being defined by the IEEE802.1 Audio Video
Bridging Task Group. This figure illustrates potential audio/video talkers (for example, a
Cable or Satellite Content Provider, or home MP3 player) and a number of potential
listeners (for example TV sets which exist in several rooms). In addition, users of the
various household PCs who are surfing the internet. It is important to note that all of this
data is being transferred across the single home network backbone.
X-Ref Target - Figure 3-1

Figure 3-1: Example AVB Home Network

Home Network
Home Network (wired)

Home Network
(wireless)

DVD player
Broadband

Satellite

Terrestrial
Broadcast

26 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 3: Overview of Ethernet Audio Video Bridging

To understand the requirements of this network, we must differentiate between certain
types of data:

• Audio and Video streaming data, referred to in this document as AV traffic. Requires
a good quality of service to avoid, for example, TV picture breakup, and must be
transferred reliably and with guaranteed low latency.

• Other data, referred to in this document as legacy traffic. Does not have the strict
requirement of AV traffic: data can be started, stopped and delayed without serious
consequence for example, a PC surfing the internet.

For these reasons, an important aspect of the AVB technology is therefore to prioritize the
audio/video streaming data (AV traffic) over that of standard data transfer (legacy traffic).

AVB Specifications
The IEEE802.1 Audio Video Task Group is currently working on new specifications which
combine to define this technology:

P802.1AS
This specification defines how to synchronize a common time base across an entire AVB
network, utilizing functionality from IEEE1588 (version 2), and known as Precise Timing
Protocol (PTP). This common time base is in the form of a Real Time Clock (RTC),
effectively a large counter which consists of a 32-bit nanoseconds field and a 48-bit seconds
field. A single device on the network is designated as the clock master (by automatic
resolution) using a Best Master Clock Algorithm (BMCA). All other devices resolve to be
slaves. Using the P802.1AS PTP, all slave devices will regularly update their own RTC to
match that of the network clock master.

This common time base has various applications:

• It can be used to synchronize media clocks (audio clocks or video pixel clocks) across
the entire network to match audio and video data rates between talkers and listeners.

• It can be used by an Ethernet AVB Endpoint System, that is, configured as a "talker",
to time a class measurement interval for an SR stream. (The class measurement
interval for a stream depends upon the SR class associated with the stream: SR class A
corresponds to a class measurement interval of 125 microseconds; SR class B
corresponds to a class measurement interval of 250 microseconds). The class
measurement interval for a stream is used to limit the number of data frames that are
placed into the stream's queue per class measurement interval.

• It can be used by higher layer applications (for example IEEE1722) to provide
presentation time stamps for audio and video data. This is used, for example, to
synchronize the lip sync on a TV set so a viewer hears the words at the same time as
they see the lips move.

The P802.1AS specification is implemented in the Ethernet AVB Endpoint using a
combination of hardware and software. The hardware components are incorporated into
the core, and the software component is provided with the core in the form of drivers.
These drivers should be run on an embedded processor (MicroBlaze™ or PowerPC®).

Ethernet AVB Endpoint User Guide www.xilinx.com 27
UG492 March 1, 2011

AVB Specifications

IEEE802.1Qav-2009
This specification defines the mechanism for queuing and forwarding AV traffic from a
talker to a listener across the network. This can involve several network hops (network
bridge devices that the data must pass through).

IEEE802.1Qav-2009 is also responsible for enforcing the 75% maximum bandwidth
restriction across each link of the network that can be reserved for the AV traffic.

Only a subset of the IEEE802.1Qav-2009 requirements for an Endpoint is implemented in
the Ethernet AVB Endpoint core, with the following assumptions for talkers and listeners:

Talker Assumptions

• AV traffic Ethernet frames that are input to the Ethernet AVB Endpoint use the VLAN
PCP and VID values that the Bridges in the network recognize as being associated
with SR classes for transmitting stream data.

• Legacy traffic Ethernet frames that are input to the Ethernet AVB Endpoint do not use
the VLAN PCP and VID values and DA value combination that is associated with a
stream being transmitted from the Talker as AV traffic.

• The credit shaping algorithm operates on the AV traffic port; so to comply with the
transmission selection rules for IEEE802.1Qav-2009, all Ethernet frames input on the
AV traffic port are assumed to be of the same SR Class. However, the Ethernet AVB
Endpoint does not enforce this rule and it is acceptable to send a mix of SR Class A
and SR Class B Ethernet frames on the AV traffic port. In this case the Ethernet AVB
Endpoint does not prioritize SR Class A Ethernet frames over SR Class B Ethernet
frames; instead it applies the credit-based shaper algorithm to all of the Ethernet
frames that are input on the AV traffic port.

• The Ethernet AVB Endpoint assumes that any per-stream traffic management has
been done prior to AV traffic being input on the AV traffic port. To comply with the
transmission selection rules for IEEE802.1Qav-2009, it is assumed that if multiple
streams are input to the Ethernet AVB Endpoint via the AV traffic port, that the credit-
based shaper algorithm has been used per stream as the transmission selection
mechanism, prior to the AV traffic being input on the AV traffic port.

• If multiple AV streams are input to the Ethernet AVB Endpoint via the AV traffic port,
it is assumed that the IdleSlope/SendSlope control registers (See Tx Arbiter Send
Slope Control Register and Tx Arbiter Idle Slope Control Register) are programmed
correctly to be the sum of the IdleSlope /SendSlope values for all the streams that are
input on the AV traffic port. The credit-based shaper algorithm used on the AV traffic
port enforces a hiLimit/loLimit on the credits to ensure that this interface is not
misused.

Listener Assumptions

• The Ethernet AVB Endpoint provides a mechanism for identifying received AV traffic
for either one or two SR classes (see Rx Filtering Control Register); however, it does
not provide any buffering for AV traffic Ethernet frames. Buffering is expected to be
done outside the Ethernet AVB Endpoint, after it has separated out the AV traffic
Ethernet frames, as the buffering requirements are expected to be application-specific.

28 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 3: Overview of Ethernet Audio Video Bridging

IEEE802.1Qat-2010
This specification defines a Stream Reservation Protocol (SRP) which must be used over
the AVB network. Every listener that intends to receive audio/video AV traffic from a
talker must make a request to reserve that bandwidth. Both the talker and every bridge
device that exists between the talker and the listener has the right to decline this request.
Only if each device is capable of routing the new AV traffic stream without violating the
75% total bandwidth restriction (when taking into account previously granted bandwidth
commitments), will the bandwidth request be successful. However, after granted, this
audio / video stream is reliably routed across the network until the reservation is removed.

To listen to an AV traffic stream, the Ethernet AVB Endpoint needs to know what the
VLAN PCP and VID values are for that stream. These values are set up in the configuration
register, Rx Filtering Control Register, so that two combinations of VLAN PCP and VID
values will be filtered out by the RX Splitter.

Note: This software is not provided by the Ethernet AVB Endpoint core.

Typical Implementation

Figure 3-2 illustrates a typical implementation for the Ethernet AVB Endpoint core.
Endpoint refers to a talker or listener device from the example network shown in
Figure 3-1, as opposed to an intermediate bridge function, which is not supported.

In the implementation, the Ethernet AVB Endpoint core is shown connected to a Xilinx®
Tri-Mode Ethernet MAC core, which in turn is connected to an AVB capable network. All
devices attached to this network should be AVB capable to obtain the full Quality of
Service advantages for the AV traffic. This AVB network can be a professional or consumer
network (as illustrated in Figure 3-1).

X-Ref Target - Figure 3-2

Figure 3-2: Example Ethernet AVB Endpoint System

Xilinx Device

Tri-Mode
Ethernet

MAC
LogiCORE

Ethernet
AVB

Endpoint
LogiCORE

legacy
traffic

Embedded
Processor

System
with TCP/IP

stack

AV
traffic

IEEE 1722
Packet

Manager

AVB
network

Audio /
Video

Sources /
Sinks

PLB management

Ethernet
PHY

Ethernet AVB Endpoint User Guide www.xilinx.com 29
UG492 March 1, 2011

Typical Implementation

Figure 3-2 illustrates that the Ethernet AVB Endpoint core supports the two main types of
data interfaces at the client side:

1. The AV traffic interface is intended for the Quality of Service audio/video data.
Illustrated are a number of audio/video sources (for example, a DVD player), and a
number of audio/video sinks (for example, a TV set). The Ethernet AVB Endpoint
gives priority to the AV traffic interface over the legacy traffic interface, as dictated by
IEEE802.1Qav-2009 75% bandwidth restrictions.

2. The legacy traffic interface is maintained for best effort ethernet data: Ethernet as we
know it today (for example, the PC surfing the internet in Figure 3-1). Wherever
possible, priority is given to the AV traffic interface (as dictated by IEEE802.1Qav-2009
bandwidth restrictions) but a minimum of 25% of the total Ethernet bandwidth is
always available for legacy ethernet applications.

The AV traffic interface in Figure 3-2 is shown as interfacing to a 1722 Packet Manager
block. The IEEE1722 is also an evolving standard which specifies the embedding of
audio/video data streams into Ethernet Packets. The 1722 headers within these packets
can optionally include presentation time stamp information. Contact Xilinx for further
system-level information.

30 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 3: Overview of Ethernet Audio Video Bridging

Ethernet AVB Endpoint User Guide www.xilinx.com 31
UG492 March 1, 2011

Chapter 4

Generating the Core

The Ethernet AVB Endpoint core is fully configurable using the CORE Generator™
software, which provides a Graphical User Interface (GUI) for defining parameters and
options. For help starting and using the CORE Generator software, see the documentation
supplied with the ISE® software, including the CORE Generator User Guide, available from
www.xilinx.com/support/software_manuals.htm.

Ethernet AVB GUI Page 1
Figure 4-1 shows page 1 of the Ethernet AVB Endpoint GUI customization screen.

X-Ref Target - Figure 4-1

Figure 4-1: GUI Page 1

32 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 4: Generating the Core

Component Name
The component name is used as the base name of the output files generated for the core.
Names must begin with a letter and must be composed from the following characters: a
through z, 0 through 9 and “_”.

Core Delivery Format
The Ethernet AVB Endpoint core is designed to interface to the LogiCORE IP Tri-Mode
Ethernet MAC (v4.5 or v4.4)or the LogiCORE™ IP Embedded Tri-Mode Ethernet MAC
wrappers (available in selected Virtex® devices). See Chapter 12, System Integration.

The Ethernet AVB GUI Page 2 is available for customization of the PLB Interface.

For directory and file definitions, see Chapter 15, Detailed Example Design.

Ethernet AVB GUI Page 2
Figure 4-2 shows page 2 of the Ethernet AVB Endpoint GUI customization screen. This
page provides options for configuring the PLB Interface of the core.

Number of PLB Masters
The Ethernet AVB Endpoint core is a PLB slave. On the connected PLB, there can be several
PLB Masters. Each slave must uniquely acknowledge individual masters using unique
PLB signals during transactions. For this reason, set this integer value to match the number
of PLB masters that will be present on the PLB.

X-Ref Target - Figure 4-2

Figure 4-2: GUI Page 2

Ethernet AVB Endpoint User Guide www.xilinx.com 33
UG492 March 1, 2011

Parameter Values in the XCO File

PLB Base Address
The Ethernet AVB Endpoint core is a PLB slave. The base address of the core must be
selected. Valid range is 0x00000000 to 0xFFFF8000. The least significant 15 bits of the base
address must be set to 0 (bits 17 to 31 of the PLB Base Address).

Parameter Values in the XCO File
XCO file parameter names and their values are identical to the names and values shown in
the GUI.

Table 4-1 shows the XCO file parameters and values and summarizes the GUI defaults.
Following is an example of the CSET parameters in an XCO file:

CSET component_name=eth_avb_endpoint_v3_1
CSET number_of_plb_masters=2
CSET plb_base_address=00000000

Output Generation
The output files generated by the CORE Generator software are placed in the project
directory. The list of output files includes the following items.

• The netlist file for the core

• Supporting CORE Generator software files

• Release notes and documentation

• Subdirectories containing an HDL example design

• Scripts to run the core through the back-end tools and to simulate the core using
Mentor Graphics ModelSim v6.6d, Cadence Incisive Enterprise Simulator (IES) v10.2,
and Synopsys VCS and VCS MX 2010.06

See the following chapters for a complete description of the CORE Generator software
output files and for detailed information about the HDL example design.

• Chapter 14, Quick Start Example Design

• Chapter 15, Detailed Example Design

Table 4-1: XCO File Values and Default Values

Parameter XCO File Values Default GUI Setting

component_name ASCII text starting with a letter and
based on the following character
set: a..z, 0..9 and _

eth_avb_endpoint_v3_1

number_of_plb_masters Select from the range: 1 to 16 2

plb_base_address Select from the range: 0x00000000
to 0xFFFF8000

0x00000000

34 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 4: Generating the Core

Ethernet AVB Endpoint User Guide www.xilinx.com 35
UG492 March 1, 2011

Chapter 5

Core Architecture

The functionality is described in this chapter. The core is designed to interface to the Tri-
Mode Ethernet MAC (v4.5 or v4.4) or the LogiCORE™ IP Embedded Tri-Mode Ethernet
MAC wrappers (available in selected Virtex® devices). See Figure 5-1.

Core Overview
Figure 5-1 illustrates the functional blocks of the Ethernet AVB Endpoint core. As
illustrated, this is intended to be connected to the LogiCORE IP Tri-Mode Ethernet MAC
(or to the LogiCORE IP Embedded Ethernet Wrappers available in certain Virtex devices).

Each of the functional blocks illustrated are introduced in the following sections of this
chapter. However, observe from the figure that:

• The Host I/F (management interface) of the Tri-Mode Ethernet MAC is connected
directly to the Ethernet AVB Endpoint LogiCORE IP. This enables the MAC to be fully
configured via the PLB Interface of the Ethernet AVB Endpoint core.

• The core provides two independent full-duplex interfaces for customer logic: the AV
Traffic Interface and the Legacy Traffic Interface.

• The Legacy Traffic Interface contains MAC Header Filters; these are provided to
replace the Address Filter functionality of the LogiCORE IP Tri-Mode Ethernet MACs
(which must be disabled)

36 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 5: Core Architecture

X-Ref Target - Figure 5-1

Figure 5-1: Ethernet AVB Endpoint Core Block Diagram for Connection to LogiCORE IP Tri-Mode Ethernet
MAC

Tx

Rx

PLB

Tx Arbiter

Rx Splitter

PLB I/FPLB I/F

MAC Header Filters

.c, .h
software
drivers

Ethernet AVB Endpoint

AV
Traffic

Tx

Rx

AV Traffic I/F

Tx Time Stamp

Rx Time Stamp

Real Time Counter

 Tx PTP Packet Buffer

Rx PTP Packet Buffer

Precise Timing Protocol (PTP)

Legacy Traffic I/F

Tri-Mode
Ethernet

MAC

Tx Client Tx PHY

Rx PHYRx Client

Embedded
Micro

Processor

Legacy
Traffic

Host I/F

Ethernet AVB Endpoint User Guide www.xilinx.com 37
UG492 March 1, 2011

Functional Block Description

Functional Block Description
The functional blocks described in the following sections are illustrated in Figure 5-1.

PLB Interface
The core provides a PLB version 4.6 interface as its configuration port to provide easy
integration with the Xilinx Embedded Development Kit and access to an embedded
processor (MicroBlaze™ or PowerPC®), which is required to run the Software Drivers. All
the configuration and status register address space of the Ethernet AVB Endpoint core can
be accessed through the PLB.

Additionally, the PLB logic provides a logic shim which is connected to the Host I/F of the
supported Xilinx® Tri-Mode MAC core; this enables all configuration and status registers
of the MAC to also be available via the PLB. See Chapter 10, Configuration and Status.

AV Traffic Interface
The AV traffic interface provides a dedicated full duplex port for the high priority AV data.
See Chapter 6, Ethernet AVB Endpoint Transmission and Chapter 7, Ethernet AVB
Endpoint Reception for further information.

Legacy Traffic Interface
The legacy traffic interface provides a dedicated full-duplex port for the legacy data, as
described in Chapter 6, Ethernet AVB Endpoint Transmission and Chapter 7, Ethernet AVB
Endpoint Reception.

The Legacy MAC Header Filters provided on the receiver path have a greater flexibility
than the address filter provided in the LogiCORE IP Tri-Mode Ethernet MACs (which
must be disabled).

Tx Arbiter
Data for transmission over an AVB network can be obtained from three types of sources:

1. AV Traffic. For transmission from the AV Traffic I/F of the core.

2. Precise Timing Protocol (PTP) Packets. Initiated by the software drivers using the
dedicated hardware Tx PTP Packet Buffers.

3. Legacy Traffic. For transmission from the Legacy Traffic I/F of the core.

The transmitter (Tx) arbiter must prioritize these packets. To aid with this, the arbiter
contains configuration registers that can be used to set the percentage of available Ethernet
bandwidth reserved for AV traffic. To comply with the specifications, this should not be
configured to exceed 75%. The arbiter then polices this bandwidth restriction for the AV
traffic and ensures that on average, it is never exceeded. Consequently, despite the AV
traffic having a higher priority than the legacy traffic, there is always remaining bandwidth
available to schedule legacy traffic. The output of the arbiter should be connected directly
to the client Tx interface of the connected Ethernet MAC, as illustrated. See Chapter 6,
Ethernet AVB Endpoint Transmission for further information.

38 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 5: Core Architecture

Rx Splitter
The input to the splitter is connected directly to the client Receive (Rx) interface of the
connected Ethernet MAC. Received data from an AVB network can be of three types:

• Precise Timing Protocol (PTP) Packets. Routed to the dedicated hardware Rx PTP
Packet Buffers which can be accessed by the Software Drivers. PTP packets are
identified by searching for a specific value in the MAC Length/Type field.

• AV Traffic. Routed to the AV Traffic I/F of the core. These packets are identified by
searching for MAC packets containing a MAC VLAN field with one of two possible
configurable VLAN PCP and VID combinations.

• Legacy Traffic:. Routed to the Legacy Traffic I/F of the core. All packet types which
are not identified as PTP or AV Traffic are considered legacy traffic.

See Chapter 7 for further information.

MAC Header Filters
The MAC Header Filters provided on the receiver legacy traffic path provide a greater
flexibility than the standard address filter provided in the LogiCORE IP Tri-Mode Ethernet
MACs (which must be disabled). The MAC Header Filters include the ability to filter
across any of the initial 16-bytes of an Ethernet frame, including the ability to filter only on
the Destination Address, Length/Type Field, VLAN tag (if present), or any bitwise match
combination of the preceding. Eight individual MAC Header Filters are provided, each of
which is separately configured. See Chapter 7, Ethernet AVB Endpoint Reception for
further information.

Precise Timing Protocol Blocks
The various hardware Precise Timing Protocol (PTP) blocks within the core provide the
dedicated hardware to implement the IEEE P802.1AS specification. However, the full
functionality is only achieved using a combination of these hardware blocks coupled with
functions provided by the Software Drivers (run on an embedded processor).
Consequently the following hardware block descriptions also give some insight into the
software driver functionality.

Note: The following definitions provide only a simplistic concept of PTP protocol operation. For
detailed information about the PTP protocol, see the IEEE P802.1AS specification.

Tx PTP Packet Buffers

The PTP packet buffer contains pre-initialized templates for seven different PTP packets
defined by the P802.1AS specification. The buffer contents are read/writable through the
PLB and a separate configuration register within the core requests to the Tx Arbiter which
of these seven packets is to be transmitted. A dedicated interrupt signal is generated by the
core whenever a PTP packet has been transmitted.

The software drivers provided with the core, using the PLB and dedicated interrupts, uses
this interface to periodically update specific fields within the PTP packets, and request
transmission of these packets. See Chapter 9, Precise Timing Protocol Packet Buffers for
further information.

Ethernet AVB Endpoint User Guide www.xilinx.com 39
UG492 March 1, 2011

Functional Block Description

Tx Time Stamp

Whenever a PTP packet is transmitted, a sample of the current nanosecond value of the
local RTC is taken. This timestamp value is written into a dedicated field within the Tx PTP
Packet Buffer, where it is accessible along side the content of the PTP frame that was just
transmitted. By the time the Tx PTP buffer raises its dedicated interrupt, this time stamp is
available for the microprocessor to read. This sampling of the RTC is performed in
hardware for accuracy. See Chapter 9, Precise Timing Protocol Packet Buffers for further
information.

Rx PTP Packet Buffers

Received PTP Packets are written to the Rx PTP Packet Buffer by the Rx Splitter. This buffer
is capable of storing up to 16 separate PTP frames. Whenever a PTP packet is received, a
dedicated interrupt is generated. The contents of the stored packets can be read via the
PLB. The oldest stored frame is always overwritten by a new frame reception and so a
configuration register within the core contains a pointer to the most recently stored packet.

The software drivers provided with the core, using the PLB and dedicated interrupt, uses
this interface to decode, and then act on, the received PTP packet information. See
Chapter 9, Precise Timing Protocol Packet Buffers for further information.

Rx Time Stamp

When a PTP packet is received, a sample of the current nanosecond value of the RTC is
taken. This timestamp value is written into a dedicated field within the Rx PTP Packet
Buffer, where it is accessible along side the PTP frame that was just received. By the time
the Rx PTP buffer raises its dedicated interrupt, this time stamp is available for the
microprocessor to read. This sampling of the RTC is performed in hardware for accuracy.
See Chapter 9, Precise Timing Protocol Packet Buffers for further information.

RTC

A significant component of the PTP network wide timing synchronization mechanism is
the Real Time Counter (RTC), which provides the common time of the network. Every
device on the network maintains its own local version.

The RTC is effectively a large counter which consists of a 32-bit nanosecond field (the unit
of this field is 1 nanosecond and this field will count the duration of exactly one second,
then reset back to zero) and a 48-bit second field (the unit of this field is one second: this
field will increment when the nanosecond field saturates at 1 second). The seconds field
only wraps around when its count fully saturates. The entire RTC is therefore designed
never to wrap around in our lifetime. The RTC counter is implemented as part of the core
in hardware.

Conceptually, this counter is not related to the frequency of the clock used to increment it.
A configuration register within the core provides a configurable increment rate for this
counter; this increment register simply takes the value of the clock period which is being
used to increment the RTC. However, the resolution of this increment register is very fine,
in units of 1/1048576 (1/220) fraction of one nanosecond. For this reason, the RTC
increment rate can be adjusted to a very fine degree of accuracy. This provides these
features:

40 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 5: Core Architecture

• The RTC can be incremented from any available clock frequency that is greater than
the AVB standards defined minimum of 25 MHz. However, the faster the frequency of
the clock, the smaller will be the step increment and the smoother will be the overall
RTC increment rate. Xilinx recommends clocking the RTC logic at 125 MHz because
this is a readily available clock source (obtained from the transmit clock source of the
Ethernet MAC at 1 Gb/s speed). This frequency significantly exceeds the minimum
performance of the P802.1AS specification.

• When acting as a clock slave, the rate adjustment of the RTC can be matched to that of
the network clock master to an exceptional level of accuracy. The software drivers
provided with this core periodically calculate the increment rate error between itself
and the master and update the RTC increment value accordingly.

The core also contains a configuration register which allows a large step change to be made
to the RTC. This can be used to initialize the RTC, after power-up. It is also used to make
periodic corrections, as required, by the software drivers when operating as a clock slave;
if the increment rates are closely matched, these periodic step corrections will be small. See
Chapter 9, Precise Timing Protocol Packet Buffers for further information.

Software Drivers
Software Drivers are delivered with the Ethernet AVB Endpoint core. These drivers
provide functions which utilize the dedicated hardware within the core for the PTP IEEE
P802.1AS specification. Functions include:

• The Best Master Clock Algorithm (BMCA) to determine whether the core should
operate in master clock or slave clock mode

• PTP Clock Master functions

• PTP Clock Slave functions (which accurately synchronize the local Real Time Clock
(RTC) to match that of the network clock master)

If the core is acting as clock master, then the software drivers delivered with the core
periodically samples the current value of the RTC and transmit this value to every device
on the network using the P802.1 defined PTP packets. The hardware Tx Time Stamp logic,
using the mechanism defined in P802.1AS, ensures the accuracy of this RTC sample
mechanism.

If the core is acting as a clock slave, then the local RTC is closely matched to the value and
frequency of the network clock master. This is achieved, in part, by receiving the PTP
frames transmitted across the network by the clock master (and containing the masters
sampled RTC value). The PTP mechanism also tracks the total routing delay across the
network between the clock master and itself. The software drivers use this data, in
conjunction with recent historical data, to calculate the error between its local RTC counter
and that of the RTC clock master. The software then periodically calculates an RTC
correction value and an updated increment rate, and these values are written to
appropriate RTC configuration registers. See Chapter 13, Software Drivers for further
information.

Ethernet AVB Endpoint User Guide www.xilinx.com 41
UG492 March 1, 2011

Core Interfaces

Tri-Mode Ethernet MACs
Although not part of the Ethernet AVB Endpoint core, a Xilinx Tri-Mode Ethernet MAC
core is a requirement of the system (see Figure 5-1). The IEEE Audio Video Bridging
technology stipulates the following configuration requirements on this MAC:

• The MAC must only operate in full-duplex mode

• The MAC must only operate at 100 Mb/s and/or 1 Gb/s

• VLAN mode must be enabled (the AV traffic always contains VLAN fields)

• Flow Control is not supported on the network and must be disabled

• Jumbo Frames are not supported and must be disabled

• The built-in Address Filter Module of the MAC must be disabled

Core Interfaces
All ports of the core are internal connections in FPGA logic.

All clock signals are inputs and no clock resources are used by the core. This enables clock
circuitry to be implemented externally to the core netlist, providing full flexibility for clock
sharing with other custom logic.

Clocks and Reset
Table 5-1 defines the clock and reset signals which are required by the Ethernet AVB
Endpoint core.

Table 5-1: Clocks and Resets

Signal Direction Description

reset Input Asynchronous reset for the entire core

rtc_clk Input Reference clock used to increment the RTC. The
minimum frequency is 25 MHz. Xilinx recommends a
125 MHz clock source.

tx_clk Input The MAC transmitter clock, provided by the Tri-Mode
Ethernet MAC.

tx_clk_en Input A clock enable signal: this must be used as a qualifier
for tx_clk.

rx_clk Input The MAC receiver clock, provided by the Tri-Mode
Ethernet MAC.

rx_clk_en Input A clock enable signal: this must be used as a qualifier
for rx_clk.

host_clk Input An input clock for the management interface of the
connected Tri-Mode Ethernet MAC. This clock can be
independent, or could be shared with PLB_clk.

This signal is only present when the core is generated in
Core Overview.

42 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 5: Core Architecture

Legacy Traffic Interface

Legacy Traffic Transmitter Path Signals

Table 5-2 defines the core client-side legacy traffic transmitter signals. These signals are
used to transmit data from the legacy client logic into the core. All signals are synchronous
to the MAC transmitter clock, tx_clk, which must be qualified by the corresponding
clock enable, tx_clk_en (see Clocks and Resets).

PLB_clk Input The input clock reference for the PLB bus.

tx_reset Output Output reset signal for logic on the Legacy Traffic and
AV Traffic transmitter paths. This reset signal is
synchronous to tx_clk; the reset is asserted when a
transmitter path reset request is made to the Software
Reset Register.

rx_reset Output Output reset signal for logic on the Legacy Traffic and
AV Traffic receiver paths. This reset signal is
synchronous to rx_clk; the reset is asserted when a
receiver path reset request is made to the Software
Reset Register.

Table 5-1: Clocks and Resets (Cont’d)

Signal Direction Description

Table 5-2: Legacy Traffic Signals: Transmitter Path

Signal Direction Description

legacy_tx_data[7:0] Input Frame data to be transmitted is supplied on
this port

legacy_tx_data_valid Input A data valid control signal for data on the
legacy_tx_data[7:0] port

legacy_tx_underrun Input Asserted by the client to force the MAC to
corrupt the current frame

legacy_tx_ack Output Handshaking signal asserted when the
current data on legacy_tx_data[7:0]
has been accepted.

Ethernet AVB Endpoint User Guide www.xilinx.com 43
UG492 March 1, 2011

Core Interfaces

Legacy Traffic Receiver Path Signals

Table 5-3 defines the core client side legacy traffic receiver signals. These signals are used
by the core to transfer data to the client. All signals are synchronous to the MAC receiver
clock, rx_clk, which must be qualified by the corresponding clock enable, rx_clk_en
(see Clocks and Resets).

Table 5-3: Legacy Traffic Signals: Receiver Path

Signal Direction Description

legacy_rx_data[7:0] Output Legacy frame data received is supplied
on this port.

legacy_rx_data_valid Output Control signal for the
legacy_rx_data[7:0] port

legacy_rx_frame_good Output Asserted at the end of frame reception to
indicate that the frame should be
processed by the MAC client.

legacy_rx_frame_bad Output Asserted at the end of frame reception to
indicate that the frame should be
discarded by the MAC client: either the
frame contained an error, or it was
intended for the PTP or AV traffic
channel.

legacy_rx_filter_match[7:0] Output Each bit in the bus corresponds to one of
the unique Legacy MAC Header Filters.
A bit is asserted, in alignment with
legacy_rx_data_valid signal, if the
corresponding filter number obtained a
match.

44 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 5: Core Architecture

AV Traffic Interface

AV Traffic Transmitter Path Signals

Table 5-4 defines the core client-side AV traffic transmitter signals, used to transmit data
from the AV client logic into the core. All signals are synchronous to the MAC transmitter
clock, tx_clk, which must be qualified by the corresponding clock enable, tx_clk_en
(see Clocks and Resets).

AV Traffic Receiver Path Signals

Table 5-5 defines the core client side AV traffic receiver signals, used by the core to transfer
data to the AV client. All signals are synchronous to the MAC receiver clock, rx_clk,
which must be qualified by the corresponding clock enable, rx_clk_en (see Clocks and
Resets).

Tri-Mode Ethernet MAC Client Interface
Table 5-6, Table 5-7 and Table 5-8 list the ports of the core which connect directly to the port
signals of the Tri-Mode Ethernet MAC core, which are identically named. For detailed
information about the Tri-Mode Ethernet MAC ports, see the Tri-Mode Ethernet MAC
User Guide (UG138).

Table 5-4: AV Traffic Signals: Transmitter Path

Signal Direction Description

av_tx_data[7:0] Input Frame data to be transmitted is supplied on this
port

av_tx_valid Input A data valid control signal for data on the
av_tx_data[7:0] port

av_tx_done Input Asserted by the AV client to indicate that further
frames, following the current frame, are/are not
held in a queue.

av_tx_ack Output Handshaking signal asserted when the current
data on av_tx_data[7:0] has been accepted.

Table 5-5: AV Traffic Signals: Receiver Path

Signal Direction Description

av_rx_data[7:0] Output AV frame data received is supplied on this port.

av_rx_valid Output Control signal for the av_rx_data[7:0] port

av_rx_frame_good Output Asserted at the end of frame reception to indicate
that the frame should be processed by the MAC
client.

av_rx_frame_bad Output Asserted at the end of frame reception to indicate
that the frame should be discarded by the MAC
client: either the frame contained an error, or it was
intended for the PTP or legacy traffic channel.

Ethernet AVB Endpoint User Guide www.xilinx.com 45
UG492 March 1, 2011

Core Interfaces

MAC Transmitter Interface

These signals connect directly to the identically named Tri-Mode Ethernet MAC signals
and are synchronous to tx_clk.

MAC Receiver Interface

These signals connect directly to the identically named Tri-Mode Ethernet MAC signals
and are synchronous to rx_clk

Table 5-6: Tri-Mode Ethernet MAC Transmitter Interface

Signal Direction Description

tx_data[7:0] Output Frame data to be transmitted is supplied on this port

tx_data_valid Output A data valid control signal for data on the
tx_data[7:0] port

tx_underrun Output Asserted to force the MAC to corrupt the current frame

tx_ack Input Handshaking signal asserted when the current data on
tx_data[7:0] has been accepted by the MAC.

Table 5-7: Tri-Mode Ethernet MAC Receiver Interface

Signal Direction Description

rx_data[7:0] Input Frame data received is supplied on this port.

rx_data_valid Input Control signal for the rx_data[7:0] port

rx_frame_good Input Asserted at the end of frame reception to
indicate that the frame should be processed by
the Ethernet AVB Endpoint core.

rx_frame_bad Input Asserted at the end of frame reception to
indicate that the frame should be discarded by
the MAC client.

46 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 5: Core Architecture

MAC Management Interface

These signals connect directly to the identically named LogiCORE IP Tri-Mode Ethernet
MAC signals (except where stated in Table 5-8) and are synchronous to host_clk. All
MAC configuration and MDIO register space is address mapped into the PLB of the
Ethernet AVB Endpoint core. A logic shim automatically drives this interface to access the
MAC when the appropriate PLB address space is accessed.

Table 5-8: Tri-Mode Ethernet MAC Host Interface (Configuration/Status)

Signal Direction Description

host_opcode[1:0] Output Defines the MAC operation
(configuration or MDIO, read or write)

host_addr[9:0] Output Address of the MAC register to access

host_wr_data[31:0] Output Data to be written to the MAC register

host_rd_data_mac[31:0] Input Data read from the MAC register (connect
to the host_rd_data[31:0] signal of the
MAC)

host_rd_data_stats[31:0] Input Data read from the Ethernet Statistics core
(connect to the host_rd_data[31:0] signal
of the Ethernet Statistics core, if present).
If the statistics core is not used, then
connect to logic 0.

host_miim_sel Output When asserted, the MAC accesses the
MDIO port, when not asserted, the MAC
accesses configuration registers

host_req Output Used to initiate a transaction onto the
MDIO

host_miim_rdy Input When high, the MAC has completed its
MDIO transaction

host_stats_lsw_rdy Input Signal provided by the Ethernet Statistics
core to indicate that the lower 32-bits of
the statistic counter value is present on
the host_rd_data_stats[31:0] port. If the
statistics core is not used, then connect to
logic 0.

host_stats_msw_rdy Input Signal provided by the Ethernet Statistics
core to indicate that the upper 32-bits of
the statistic counter value is present on
the host_rd_data_stats[31:0] port. If the
statistics core is not used, then connect to
logic 0.

Ethernet AVB Endpoint User Guide www.xilinx.com 47
UG492 March 1, 2011

Core Interfaces

Processor Local Bus (PLB) Interface
The Processor Local Bus (PLB) on the Ethernet Audio Video core is designed to be
integrated directly in the Xilinx Embedded Development Kit (EDK) where it can be easily
integrated and connected to the supported embedded processors (MicroBlaze or
PowerPC). As a result, the PLB interface does not require in-depth understanding, and the
following information is provided for reference only. See the EDK documentation for
further information.

The PLB interface, defined by IBM, can be complex and support many usage modes (such
as multiple bus masters). It can support single or burst read/writes, and can support
different bus widths and different peripheral bus widths.

The general philosophy of the Ethernet AVB Endpoint core has been to implement a PLB
interface which is as simple as possible. The following features are provided:

• 32-bit data width.

• Implements a simple PLB slave.

• Supports single read/writes only (no burst or page modes).

PLB Interface

Table 5-9 defines the signals on the PLB bus. For detailed information, see the IBM PLB
specification. Shaded rows represent signals not used by this core; inputs are ignored and
outputs are tied to a constant. These signals are synchronous to PLB_clk; see Clocks and
Resets for additional information.

Table 5-9: PLB Signals

PIN Name Direction Description

PLB_clk Input Reference clock for the PLB

PLB_reset Input Reset for the PLB, synchronous to
PLB_clk

PLB_ABus[0:31] input PLB address bus

PLB_UABus[0:31] Input PLB upper address bus

PLB_PAvaild Input PLB primary address valid indicator

PLB_SAValid Input Unused. PLB secondary address valid
indicator.

PLB_rdPrim Input Unused. PLB secondary to primary read
request indicator.

PLB_wrPrim Input Unused. PLB secondary to primary write
request indicator.

PLB_masterID
[0:log2(NUM_MASTERS)]

Input PLB current master identifier

PLB_abort Input PLB abort request indicator

PLB_busLock Input Unused. PLB bus lock.

PLB_RNW Input PLB read not write

PLB_BE[0:3] Input PLB byte enables

48 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 5: Core Architecture

PLB_MSize[0:1] Input PLB master data bus size

PLB_size[0:3] Input PLB transfer size. Only support size 0.

PLB_type[0:2] Input PLB transfer type. Only support type 0.

PLB_TAttribute[0:15] Input Unused. PLB transfer attribute bus.

PLB_lockErr Input Unused. PLB lock error indicator.

PLB_wrDBus[0:31] Input PLB write data bus

PLB_wrBurst Input PLB write burst transfer indicator.

PLB_rdBurst Input PLB read burst transfer indicator.

PLB_rdPendReq Input Unused. PLB pending read request
priority.

PLB_wrPendReq Input Unused. PLB pending write request
priority.

PLB_rdPendPri[0:1] Input Unused. PLB pending read bus request
indicator.

PLB_wrPendPri[0:1] Input Unused. PLB pending read bus request
indicator.

PLB_reqPri[0:1] Input Unused. PLB request priority.

Sl_addrAck Output Slave address acknowledge

Sl_SSize[0:1] Output Slave data bus size.

Sl_wait Output Slave wait indicator.

Sl_rearbitrate Output Slave rearbitrate bus indicator. Not used,
tied to logic 0.

Sl_wrDack Output Slave write data acknowledge

Sl_wrComp Output Slave write transfer complete indicator

Sl_WrBTerm Output Slave terminate write burst transfer.

Sl_rdBus[0:31] Output Slave read data bus

Sl_rdWdAddr[0:3] Output Slave read word address

Sl_rdDAck Output Slave read data acknowledge

Sl_rdComp Output Slave read transfer complete indicator

Sl_rdBTerm Output Slave terminate read burst transfer.

Sl_MBusy[0:NUM_MASTERS-1] Output Slave busy indicator

Sl_MWrErr[0:NUM_MASTERS-1] Output Unused, tied to logic 0. Slave write error
indicator.

Table 5-9: PLB Signals (Cont’d)

PIN Name Direction Description

Ethernet AVB Endpoint User Guide www.xilinx.com 49
UG492 March 1, 2011

Core Interfaces

Interrupt Signals
Table 5-10 defines the interrupt signals asserted by the core. All interrupts are active high
and are automatically asserted. All interrupts, required by the Software Drivers delivered
with the core, are cleared by software access to an associated configuration register. It is
recommended that these interrupts are routed to the input of an EDK Interrupt Controller
module as part of the embedded processor subsystem.

Sl_MRdErr[0:NUM_MASTERS-1] Output Unused, tied to logic 0. Slave read error
indicator.

Sl_MIRQ[0:NUM_MASTERS-1] Output Unused, tied to logic 0. Slave interrupt
indicator.

Table 5-9: PLB Signals (Cont’d)

PIN Name Direction Description

Table 5-10: Interrupt Signals

Signal Direction Description

interrupt_ptp_timer Output This interrupt is asserted every 1/128
second as measured by the RTC. This acts as
a timer for the PTP software algorithms.

interrupt_ptp_tx Output This is asserted following the transmission
of any PTP packet from the Tx PTP Packet
Buffers.

interrupt_ptp_rx Output This is asserted following the reception of
any PTP packet into the Rx PTP Packet
Buffers.

50 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 5: Core Architecture

PTP Signals
Table 5-11 defines the signals which are output from the core by the Precise Timing
Protocol Blocks. These signals are provided for reference only and may be used by an
application. For example, the 1722 Packet Managers, as illustrated in Figure 3-2, require
the following:

• clk8k: this marks the class measurement interval to be used for traffic shaping for SR
class A AV traffic.

• rtc_nanosec_field and rtc_sec_field: used in the 1722 presentation time
stamp logic.

Table 5-11: PTP Signals

Signal Direction Description

rtc_nanosec_field[31:0] Output This is the synchronized nanoseconds field
from the RTC.

rtc_sec_field[47:0] Output This is the synchronized seconds field
from the RTC.

clk8k Output This is an 8KHz clock which is derived
from, and synchronized in frequency, to
the RTC.

rtc_nanosec_field_1722[31:0] Output The IEEE1722 specification contains a
different format for the RTC, provided
here as an extra port. This is derived and is
in sync with the IEEE802.1 AS RTC. If
desired, this port can be used as the RTC
reference for 1722 Packet Manager blocks,
as illustrated in Figure 3-2. See also
IEEE1722 Real Time Clock Format,
page 75.

Ethernet AVB Endpoint User Guide www.xilinx.com 51
UG492 March 1, 2011

Chapter 6

Ethernet AVB Endpoint Transmission

As illustrated in Figure 5-1, data for transmission over an AVB network can be obtained
from three types of sources:

1. AV Traffic. For transmission from the Tx AV Traffic I/F of the core.

2. Precise Timing Protocol (PTP) Packets. Initiated by the software drivers using the
dedicated hardware Tx PTP Packet Buffer.

3. Legacy Traffic. For transmission from the Tx Legacy Traffic I/F of the core.

Tx Legacy Traffic I/F
The signals forming the Tx Legacy Traffic I/F are defined in Table 5-2. All signals are
synchronous to the Tri-Mode Ethernet MAC transmitter clock, tx_clk, which must
always be qualified by the corresponding clock enable, tx_clk_en (see Table 5-1).

This interface is intentionally identical to the client transmitter interface of the supported
Xilinx® Tri-Mode Ethernet MAC core (there is a one-to-one correspondence between
signal names of the block-level wrapper from the Tri-Mode Ethernet MAC example design,
after the legacy_ prefix is removed). This provides backwards compatibility; all existing
MAC client-side designs can connect to the legacy Ethernet port unmodified.

52 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 6: Ethernet AVB Endpoint Transmission

Error Free Legacy Frame Transmission

Figure 6-1 illustrates the timing of a normal frame transfer. When the legacy client initiates
a frame transmission, it places the first column of data onto the legacy_tx_data[7:0]
port and asserts a logic 1 onto legacy_tx_data_valid. After the Ethernet AVB
Endpoint core reads the first byte of data, it asserts the legacy_tx_ack signal. On the
next and subsequent rising clock edges, the client must provide the remainder of the data
for the frame. The end of frame is signalled to the core by taking the
legacy_tx_data_valid to logic 0.

X-Ref Target - Figure 6-1

Figure 6-1: Normal Frame Transmission across the Legacy Traffic Interface

tx_clk

legacy_tx_data[7:0]

legacy_tx_data_valid

legacy_tx_ack

legacy_tx_underrun

DA SA DATAL/T

tx_clk_enable

Ethernet AVB Endpoint User Guide www.xilinx.com 53
UG492 March 1, 2011

Tx AV Traffic I/F

Errored Legacy Frame Transmission

The legacy_tx_underrun is provided to give full backwards compatibility between the
Legacy Traffic I/F and the client interface of the Tri-Mode Ethernet MAC. The
legacy_tx_underrun provides a mechanism to inject an error into a frame before
transmission is completed. This can occur, for example, if a FIFO connected to the Legacy
client empties during transmission.

To error the frame, the legacy_tx_underrun signal may be asserted during the data
transmission or up to 1 valid clock cycle after legacy_tx_data_valid goes low.

Tx AV Traffic I/F
The signals forming the Tx AV Traffic I/F are defined in Table 5-4. All signals are
synchronous to the Tri-Mode Ethernet MAC transmitter clock, tx_clk, which must
always be qualified by the corresponding clock enable, tx_clk_en (see Table 5-1). See
(Talker Assumptions, page 27) for information about the expectations for the AV traffic
input to the Ethernet AVB Endpoint on this interface.

This interface is intentionally very similar to the Tx Legacy Traffic I/F. Note, however, that
the legacy traffic does not contain a signal that is equivalent to av_tx_done. Additionally,
the AV does not contain a signal that is equivalent to legacy_tx_underrun: no
mechanism is currently provided on the AV interface to signal an error in a frame which is
currently undergoing transmission.

X-Ref Target - Figure 6-2

Figure 6-2: Legacy Frame Transmission with Underrun

tx_clk

legacy_tx_data[7:0]

legacy_tx_data_valid

legacy_tx_ack

legacy_tx_underrun

DA SA DATAL/T

tx_clk_enable

54 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 6: Ethernet AVB Endpoint Transmission

Figure 6-3 illustrates the timing of a normal frame transfer. When the AV client initiates a
frame transmission, it places the first column of data onto the av_tx_data[7:0] port
and asserts a logic 1 onto av_tx_valid.

After the Ethernet AVB Endpoint core reads the first byte of data, it asserts the av_tx_ack
signal. On the next and subsequent rising clock edges, the client must provide the
remainder of the data for the frame. The end of frame is signalled to the core by taking the
av_tx_valid to logic 0.

In Figure 6-3, following the end of frame transmission, the av_tx_done signal is held low,
which indicates to the Tx Arbiter that another AV frame is queued. Unless the configurable
bandwidth restrictions have been exceeded, this parks the Tx Arbiter onto the AV traffic
queue. Figure 6-3 then illustrates the client asserting the av_tx_valid signal to request a
subsequent frame, and the frame transmission cycle of Figure 6-3 repeats. However, if no
further AV traffic frames are queued, the av_tx_done signal should be set to logic 1
immediately following the end of frame transmission. This than allows the Tx Arbiter to
schedule legacy traffic transmission (if any legacy frames are queued).

If, following the end of frame reception, the bandwidth allocation for AV traffic has been
exceeded, the Tx Arbiter switches to service the legacy traffic regardless of the state of the
av_tx_done signal.

For this reason, the av_tx_done signal should be considered an aid to the Tx Arbiter to
help make best use of the available network bandwidth. Asserting this signal after all AV
traffic has been serviced immediately allows the Tx Arbiter to service the legacy traffic.
This helps achieve in excess of the 25% minimum allocation for the legacy traffic. However,
holding off the assertion of av_tx_done will not act as cheat mode to exceed the
maximum bandwidth allocation for the AV traffic.

X-Ref Target - Figure 6-3

Figure 6-3: Normal Frame Transmission across the AV Traffic Interface

tx_clk

av_tx_data[7:0]

av_tx_data_valid

av_tx_done

av_tx_ack

DA SA DATAL/T

tx_clk_enable

DA

Ethernet AVB Endpoint User Guide www.xilinx.com 55
UG492 March 1, 2011

Tx Arbiter

Tx Arbiter

Overview

As illustrated in Figure 5-1, data for transmission over an AVB network can be obtained
from three types of sources:

1. AV Traffic. For transmission from the AV Traffic I/F of the core.

2. Precise Timing Protocol (PTP) Packets. Initiated by the software drivers using the
dedicated hardware Tx PTP Packet Buffer.

3. Legacy Traffic. For transmission from the Legacy Traffic I/F of the core.

The transmitter (Tx) arbiter selects from these three sources in the following manner.

• If there is AV packet available and the programmed AV bandwidth limitation is not
exceeded, then the AV packet is transmitted

• otherwise the Tx arbiter checks to see if there are any PTP packets to be transmitted

• otherwise if there is an available legacy packet then this is transmitted.

The Ethernet AVB Endpoint core contains configuration registers to set up the percentage
of available Ethernet bandwidth reserved for AV traffic. To comply with the
IEEE802.1Qav-2009 specification these should not be configured to exceed 75%. The arbiter
then polices this bandwidth restriction for the AV traffic and ensures that on average, it is
never exceeded. Consequently, despite the AV traffic having a higher priority than the
legacy traffic, there is always remaining bandwidth available to schedule legacy traffic.

The relevant configuration registers for programming the bandwidth percentage
dedicated to AV traffic are defined in Chapter 10, Configuration and Status and are:

• Tx Arbiter Send Slope Control Register

• Tx Arbiter Idle Slope Control Register

These registers are defaulted to values which dedicate up to 75% of the overall bandwidth
to the AV traffic. This is the maximum legal percentage that is defined in the IEEE802.1
AVB standards.

In many implementations, it may be unnecessary to change these register values. Correct
use of the av_tx_done signal, as defined in Tx AV Traffic I/F, allows the Tx Arbiter to
share the bandwidth allocation efficiently between the AV and Legacy sources (even in the
situations where the AV traffic requires less than 75% of the overall bandwidth).

However, for the cases that require less than 75% of the overall bandwidth, careful
configuration can result in a smoother (less bursty) transmission of the AV traffic, which
should prevent frame bunching across the AVB network.

Credit Based Traffic Shaping Algorithm

To enforce the bandwidth policing of the AV Traffic, a credit-based shaper algorithm has
been implemented in the Ethernet AVB Endpoint core. Figure 6-4 illustrates the basic
operation of the algorithm and indicates how the Tx Arbiter decides which Ethernet frame
to transmit.

56 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 6: Ethernet AVB Endpoint Transmission

Figure 6-4 illustrates the key features of the credit based algorithm, which are:

• The Tx Arbiter will schedule queued transmission from the Tx AV Traffic I/F if the
algorithm is in credit (greater or equal to 0).

• If there is less than 0 credit (not shown in Figure 6-4, but the credit can sink below 0),
then the Tx Arbiter does not allow AV traffic to be transmitted; legacy traffic, if
queued, will be scheduled instead.

• When no AV traffic is queued, any positive credit is lost and the credit is reset to 0.

• When AV traffic is queued, and until the time at which the Tx Arbiter is able to
schedule it (while waiting for an in-progress legacy frame to complete transmission),
credit can be gained at a rate defined by the idleSlope.

• During AV traffic transmission, credit is removed at a rate defined by the sendSlope.

X-Ref Target - Figure 6-4

Figure 6-4: Credit-based Shaper Operation

hiLimit

loLimit

0 increasing
time

credit=0
when no frames

are waiting

idleSlope sendSlope

credits withdrawn
when no frames

are waiting

increasing
credit

number of AV
queued frames

0

transmitting
AV frame

transmitting
Legacy frame

TRUE

TRUE

FALSE

FALSE

1

conflicting legacy traffic present, so queued AV frame is not
transmitted until conflicting legacy frame has been transmitted

Ethernet AVB Endpoint User Guide www.xilinx.com 57
UG492 March 1, 2011

Tx Arbiter

• The hiLimit and loLimit settings impose a fixed range on the possible values of
credit. If the available credit hits one of these limits, it will not exceed, but saturate at
the magnitude of that limit. These limits are fixed in the netlist to ensure that the
interface is not used incorrectly.

The overall intention of the two settings idleSlope and sendSlope is to spread out the AV
traffic transmission as evenly as possible over time, preventing periods of bursty AV
transmission surrounded by idle AV transmission periods. No further background
information is provided in this document with regard to the credit-based algorithm.

The remainder of this section describes the idleSlope, and sendSlope variables from the
perspective of the Ethernet AVB Endpoint core.

Tx Arbiter Bandwidth Control

The Ethernet AVB Endpoint core contains four configuration registers, used for setting the
cores local definitions of idleSlope and sendSlope.

The configuration register settings are described in general, and then from the point of
view of a single example which describes the calculations made to set the register default
values. This example dedicates up to 75% of the overall bandwidth to be reserved for the
AV traffic (leaving at least 25% for the Legacy Traffic).

The calculations described are independent of Ethernet operating speed (no re-calculation
is required when changing between Ethernet speeds of 1 Gb/s and 100 Mb/s).

idleSlope

The general equation is:

idleSlopeValue=(AV percentage / 100) x 8192

In this example, dedicating up to 75% of the total bandwidth to the AV traffic, we obtain:

idleSlopeValue=(75 / 100) x 8192 = 6144

The calculated value for the idleSlopeValue should be written directly to the Tx Arbiter
Idle Slope Control Register. This provides a per-byte increment value when relating this to
Legacy Ethernet frame transmission.

sendSlope

The general equation is:

sendSlopeValue=((100 - AV percentage) / 100) x 8192

In this example, dedicating up to 75% of the total bandwidth to the AV traffic, we obtain:

sendSlopeValue=((100 - 75) / 100) x 8192 = 2048

The calculated value for the sendSlopeValue should be written directly to the Tx Arbiter
Send Slope Control Register. This provides a per-byte decrement value when relating this
to AV Ethernet frame transmission.

58 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 6: Ethernet AVB Endpoint Transmission

hiLimit

The general equation is:

hiLimitValue = 2000 x idleSlopeValue

In this general equation, the value of 2000 is obtained from the maximum number of bytes
which may be present in legacy frames (an Envelope frame as defined in IEEE802.3 can be
of size 2000 bytes).

In this example, dedicating up to 75% of the total bandwidth to the AV traffic, we obtain:

hiLimitValue = 2000 x 6144 = 12288000

loLimit

The general equation is:

loLimitValue = 1518 x sendSlopeValue

In this general equation, the value of 1518 is obtained from the maximum number of bytes
which may be present in AV frames.

In this example, dedicating up to 75% of the total bandwidth to the AV traffic, we obtain:

loLimitValue = 1518 x 2048 = 3108864

Ethernet AVB Endpoint User Guide www.xilinx.com 59
UG492 March 1, 2011

Chapter 7

Ethernet AVB Endpoint Reception

Rx Splitter
The input to the Rx splitter (see Figure 5-1) is connected directly to the client Receive (Rx)
interface of the connected Ethernet MAC. Received data from an AVB network can be of
three types:

• Precise Timing Protocol (PTP) Packets. Routed to the dedicated hardware Rx PTP
Packet Buffer which can be accessed by the Software Drivers PTP packets are
identified by searching for a specific MAC Destination Address.

• AV Traffic. Routed to the Rx AV Traffic I/Fof the core. These packets are identified by
searching for MAC packets containing a MAC VLAN field with one of two possible
configurable VLAN PCP and VID combinations (see Rx Filtering Control Register).

• Legacy Traffic:. Routed to theRx Legacy Traffic I/F of the core. All packet types which
are not identified as PTP or AV Traffic are considered legacy traffic.

Rx Legacy Traffic I/F
The signals forming the Rx Legacy Traffic I/F are defined in Table 5-3. All signals are
synchronous to the Tri-Mode Ethernet MAC receiver clock, rx_clk, which must always
be qualified by the corresponding clock enable, rx_clk_en (see Table 5-1).

This interface is intentionally identical to the client receiver interface of the supported
Xilinx® Tri-Mode Ethernet MAC core (there is a one-to-one correspondence between
signal names of the block-level wrapper from the Tri-Mode Ethernet MAC example design,
after the legacy_ prefix is removed). This provides backward compatibility; all existing
MAC client-side designs which use the clock enable should be able to connect to the legacy
Ethernet port unmodified.

Operation of the Rx Legacy Traffic Interface is closely connected with the frame header
match results of the Legacy MAC Header Filters.If the filters are enabled and do not obtain
a match, the frame data does not appear on this interface (legacy_rx_data_valid and
legacy_rx_frame_good/legacy_rx_frame_bad are not asserted). When a match is
obtained these signals are asserted as described in the following sections.

60 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 7: Ethernet AVB Endpoint Reception

Error Free Legacy Frame Reception

Figure 7-1 illustrates the timing of a normal inbound error free frame transfer that has been
accepted by the Legacy MAC Header Filters The legacy client must be prepared to accept
data at any time; there is no buffering within the core to allow for latency in the receive
client. After frame reception begins, data is transferred on consecutive clock enabled cycles
to the receive client until the frame is complete. The core asserts the
legacy_rx_frame_good signal to indicate that the frame was intended for the legacy
traffic client and was successfully received without error.

X-Ref Target - Figure 7-1

Figure 7-1: Normal Frame Reception across the Legacy Traffic Interface

rx_clk

legacy_rx_data[7:0]

legacy_rx_data_valid

legacy_rx_frame_good

rx_clk_enable

DA SA DATAL/T

legacy_rx_frame_bad

Ethernet AVB Endpoint User Guide www.xilinx.com 61
UG492 March 1, 2011

Rx Legacy Traffic I/F

Errored Legacy Frame Reception

As illustrated in Figure 7-2, reception of any frame in which the
legacy_rx_frame_bad is asserted (in place of legacy_rx_frame_good) indicates
that this frame must be discarded by the Legacy client; it was either received with errors or
was not intended for the legacy traffic interface.

Legacy MAC Header Filters

Overview of Operation

MAC Header Filters are provided on the receiver legacy traffic path as illustrated in
Figure 5-1. These have a greater flexibility than the standard address filter provided in the
Tri-Mode Ethernet MAC (which must be disabled). The MAC Header Filters include the
ability to filter across any of the initial 16-bytes of an Ethernet frame, including the ability
to filter only on the Destination Address, Length/Type Field, VLAN tag (if present), or any
bitwise match combination of the preceding. Eight individual MAC Header Filters are
provided, numbered from 0 through to 7, each of which is separately configured.

X-Ref Target - Figure 7-2

Figure 7-2: Errored Frame Reception across the Legacy Traffic Interface

rx_clk

legacy_rx_data[7:0]

legacy_rx_data_valid

legacy_rx_frame_good

rx_clk_enable

DA SA VLAN

legacy_rx_frame_bad

62 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 7: Ethernet AVB Endpoint Reception

Figure 7-3 illustrates Legacy frame reception for an error free frame in which at least one of
the eight individual MAC Header Filters obtained a match (filter number 3 is illustrated as
having obtained the match in this example). Note the following:

• Each of the eight individual MAC Header Filters has a corresponding bit within the
legacy_rx_filter_match[7:0] bus. If the corresponding MAC Header Filter
obtains a match, the relevant bit is asserted. This is fully aligned with the
legacy_rx_data_valid signal during frame reception.

• Every bit within the legacy_rx_filter_match[7:0] bus is asserted for frame
reception in which the Frame Destination Address (DA) contained a Broadcast
Address.

• Every bit within the legacy_rx_filter_match[7:0] bus is asserted when the
MAC Header Filter is operating in Promiscuous Mode (see Rx Filtering Control
Register).

X-Ref Target - Figure 7-3

Figure 7-3: Normal Frame Reception: Address Filter Match

rx_clk

legacy_rx_data[7:0]

legacy_rx_data_valid

legacy_rx_frame_good

rx_clk_enable

DA SA DATAL/T

legacy_rx_filter_match[0]

legacy_rx_filter_match[3]

legacy_rx_filter_match[1]

legacy_rx_filter_match[2]

legacy_rx_filter_match[4]

legacy_rx_filter_match[5]

legacy_rx_filter_match[6]

legacy_rx_filter_match[7]

legacy_rx_frame_bad

Ethernet AVB Endpoint User Guide www.xilinx.com 63
UG492 March 1, 2011

Rx Legacy Traffic I/F

MAC Header Filter Configuration

The MAC Header Filters can be enabled or disabled by using the Rx Filtering Control
Register. This contains a Promiscuous Mode bit, which:

• when enabled allows all frames to be received on the Legacy Rx Traffic I/F.

• when disabled only allows frames to be received on the Legacy Rx Traffic I/F that
contain a MAC Header that has matched at least one of the eight individual MAC
Header Filters.

Each of the eight MAC Header Filters can be separately configured (see MAC Header
Filter Configuration). As defined in this section, each of the eight MAC Header Filters
contains two 128-bit wide registers (16-bytes):

• Match Pattern Register. This pattern is compared to the initial 128-bits received in the
Legacy Ethernet frame (bit 0 is the first bit within the frame to be received).

• Match Enable Register. Each bit within this register refers to the same bit number
within the Match Pattern Register. When a bit in the Match Enable Register is set to:

• logic 1, the same bit number within the Match Pattern Register is compared with
the respective bit in the received frame and must match if the overall MAC
Header Filter is to obtain a match.

• logic 0, the same bit number within the Match Pattern Register is not compared.
This effectively turns the respective bit in the Match Pattern Register into a don’t
care bit: the overall MAC Header Filter is capable of obtaining an overall match
even if this bit did not compare.

The overall result of the Match Pattern Register and Match Enable Register is to provide a
highly configurable and flexible MAC Header matching logic as the Single MAC Header
Filter Usage Examples demonstrates.

64 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 7: Ethernet AVB Endpoint Reception

Single MAC Header Filter Usage Examples

Full Destination Address (DA) Match

The example illustrated in Figure 7-4 shows a single MAC Header Filter (one of the eight
provided) configured to filter on a Destination Address. In order for the frame to obtain a
match, the initial 48-bits of the received frame must exactly match the first 48-bits of the
Match Pattern Register.

This example provides backwards compatibility with the Address Filters provided in the
Tri-Mode Ethernet MAC (which must be disabled).

X-Ref Target - Figure 7-4

Figure 7-4: Filtering of Frames with a Full DA Match

rx_clk

legacy_rx_data[7:0]

legacy_rx_data_valid

rx_clk_enable

DA SA DATAL/TVLAN
0x

D
A

0x
01

0x
02

0x
03

0x
04

0x
05

0x
FF

0x
FF

0x
FF

0x
FF

0x
FF

0x
FF

0x
00

0x
00

0x
00

0x
00

0x
00

0x
00

0x
00

0x
00

0x
00

0x
00

Match
against

DA

Don’t-cares

Match Pattern Register

Match Enable Register

Ethernet AVB Endpoint User Guide www.xilinx.com 65
UG492 March 1, 2011

Rx Legacy Traffic I/F

Partial Destination Address (DA) Match

The example illustrated in Figure 7-5 shows a single MAC Header Filter (one of the eight
provided) configured to filter on a partial Destination Address. In order for the frame to
obtain a match, the initial 29-bits (as used in this example) of the received frame must
exactly match the first 29-bits of the Match Pattern Register.

This functionality is useful for filtering across Multicast group Addresses.

X-Ref Target - Figure 7-5

Figure 7-5: Filtering of Frames with a Partial DA Match

rx_clk

legacy_rx_data[7:0]

legacy_rx_data_valid

rx_clk_enable

DA SA DATAL/TVLAN

0x
D

A

0x
01

0x
02

0x
03

0x
FF

0x
FF

0x
FF

0x
1F

0x
00

0x
00

0x
00

0x
00

0x
00

0x
00

0x
00

0x
00

0x
00

0x
00

0x
00

0x
00

Match
against
partial

DA

Don’t-cares

Match Pattern Register

Match Enable Register

66 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 7: Ethernet AVB Endpoint Reception

VLAN Priority Match

The example illustrated in Figure 7-6 shows a single MAC Header Filter (one of the eight
provided) configured to filter on frames containing a VLAN tag with a VLAN Priority
value of 1.

Any Other Combinations

Because the Match Pattern Register and Match Enable Register provide the ability to filter
across any bitwise match/don’t-care pattern of the initial 128-bits of an Ethernet frame,
match combinations of Destination Address, Length/Type Field (when no VLAN tag is
present), VLAN fields (when present) can be selected with complete flexibility.

X-Ref Target - Figure 7-6

Figure 7-6: Filtering of VLAN Frames with a Specific Priority Value

rx_clk

legacy_rx_data[7:0]

legacy_rx_data_valid

rx_clk_enable

DA SA DATAL/TVLAN

0x
00

0x
00

0x
00

0x
00

0x
00

0x
00

0x
00

0x
00

0x
00

0x
00

0x
00

0x
00

0x
FF

0x
FF

0x
E

0

0x
00

Don’t-cares

Match Pattern Register

Match Enable Register

0x
81

0x
00

0x
20

VLAN
priority

filter

Ethernet AVB Endpoint User Guide www.xilinx.com 67
UG492 March 1, 2011

Rx AV Traffic I/F

Rx AV Traffic I/F
The signals forming the Rx AV Traffic I/F are defined in Table 5-5. all signals are
synchronous to the Tri-Mode Ethernet MAC receiver clock, rx_clk, which must always
be qualified by the corresponding clock enable, rx_clk_en (see Table 5-1).

This interface is intentionally identical to the legacy receiver interface (there is a one-to-one
correspondence between signal names when the legacy_ prefix is exchanged for the
av_ prefix).

Error Free AV Traffic Reception

Figure 7-7 illustrates the timing of a normal inbound frame transfer. The AV client must be
prepared to accept data at any time; there is no buffering within the core to allow for
latency in the receive client. After frame reception begins, data is transferred on
consecutive clock enabled cycles to the AV receive client until the frame is complete. The
core asserts the av_rx_frame_good to indicate that the frame was intended for the AV
traffic client, and was successfully received without error.

X-Ref Target - Figure 7-7

Figure 7-7: Normal Frame Reception across the AV Traffic Interface

rx_clk

av_rx_data[7:0]

av_rx_data_valid

av_rx_frame_good

rx_clk_enable

DA SA DATAL/T

av_rx_frame_bad

68 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 7: Ethernet AVB Endpoint Reception

Errored AV Traffic Reception

As illustrated in Figure 7-8, reception of any frame in which the av_rx_frame_bad is
asserted (in place of av_rx_frame_good) indicates that this frame must be discarded by
the AV client; it was either received with errors or was not intended for the AV traffic
interface.

X-Ref Target - Figure 7-8

Figure 7-8: Errored Frame Reception across the AV Traffic Interface

rx_clk

av_rx_data[7:0]

av_rx_valid

av_rx_frame_good

rx_clk_enable

DA SA VLAN

av_rx_frame_bad

Ethernet AVB Endpoint User Guide www.xilinx.com 69
UG492 March 1, 2011

Chapter 8

Real Time Clock and Time Stamping

This chapter considers two of the logical components that are partially responsible for the
AVB timing synchronization protocol.

• Real Time Clock

• Time Stamping Logic

These are both described in this chapter as they are closely related.

Real Time Clock
A significant component of the PTP network wide timing synchronization mechanism is
the Real Time Counter (RTC), which provides the common time of the network. Every
device on the network maintains its own local version.

The RTC is effectively a large counter which consists of a 32-bit nanoseconds field (the unit
of this field is 1 nanosecond and this field will count the duration of exactly one second,
then reset back to zero) and a 48-bit seconds field (the unit of this field is one second: this
field will increment when the nanosecond field saturates at 1 second). The seconds field
only wraps around when its count fully saturates. The entire RTC is therefore designed
never to wrap around in our lifetime. The RTC is summarized in Figure 8-1.

X-Ref Target - Figure 8-1

Figure 8-1: Real Time Counter (RTC)

Seconds field (48 bits unsigned) Nano Seconds field (32 bits unsigned)

counts from 0 until fully saturated,
then wraps around to 0

counts from 0 to 1 x 109 -1,
then resets to 0

IEEE802.1AS Real Time Counter (RTC)

70 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 8: Real Time Clock and Time Stamping

Conceptually, the RTC is not related to the frequency of the clock used to increment it. A
configuration register within the core provides a configurable increment rate for this
counter: this increment register,RTC Increment Value Control Register, is for this reason
programmed with the value of the RTC Reference clock period which is being used to
increment the RTC. The resolution of this increment register is very fine (in units of
1/1048576 (1/220) fraction of one nanosecond). Therefore, the RTC increment rate can be
adjusted to a very fine degree of accuracy which provides the following features:

• The RTC can be incremented from any available clock frequency that is greater than
the AVB standards defined minimum of 25 MHz. However, the faster the frequency of
the clock, the smaller will be the step increment and the smoother will be the overall
RTC increment rate. Xilinx recommends clocking the RTC logic at 125 MHz because
this is a readily available clock source (obtained from the transmit clock source of the
Ethernet MAC at 1 Gb/s speed): this frequency significantly exceeds the minimum
performance of the P802.1AS specification.

• When acting as a clock slave, the rate adjustment of the RTC can be matched to that of
the network clock master to an exceptional level of accuracy (by slightly increasing or
decreasing the value within the RTC Increment Value Control Register). The software
drivers provided with this core will periodically calculate the increment rate error
between itself and the master, and update the RTC increment value accordingly.

The core also contains configuration registers, RTC Offset Control Registers, which allow a
large step change to be made to the RTC. This can be used to initialize the RTC, after
power-up. It is also used to make periodic corrections, as required, by the software drivers
when operating as a clock slave: however, if the increment rates are closely matched, these
periodic step corrections will be small.

Ethernet AVB Endpoint User Guide www.xilinx.com 71
UG492 March 1, 2011

Real Time Clock

RTC Implementation

Increment of Nanoseconds Field

Figure 8-2 illustrates the implementation used to create the RTC nanoseconds field. This is
performed by the use of an implementation specific 20-bit sub-nanoseconds field as
illustrated. The nanoseconds and sub-nanoseconds fields can be considered to be
concatenated together.

All RTC logic within the core is synchronous to the RTC Reference Clock, rtc_clk.
X-Ref Target - Figure 8-2

Figure 8-2: Increment of Sub-nanoseconds and Nanoseconds Field

Nano Seconds (32 bits unsigned) Sub-Nano Seconds
(20 bits unsigned)

RTC Increment Value (26 bits)
(written by processor)

fill with zero’s

RTC Nano Seconds Offset (30 bits)
(written by processor)

Step 1

Step 2

controlled frequency RTC

Synchronised RTC

72 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 8: Real Time Clock and Time Stamping

There are two stages to the implementation:

(Step 1) Controlled Frequency RTC

The RTC Increment Value illustrated in Figure 8-2 is set directly from the RTC Increment
Value Control Register. The upper 6 bits of this register align with the lower 6 bits of the
RTC nanoseconds field. The lower 20-bits of the RTC Increment Value align with the 20-bit
sub-nanoseconds field. It is assumed that the frequency of the RTC reference clock is
known by the processor to enable the increment value to be programmed correctly. For
example, if the RTC is being clocked from a 125 MHz clock source, a nominal increment
value of 8 ns should be programmed (by writing the value 0x800000 into the RTC
Increment Value Control Register). However, if the microprocessor determines that this
clock is drifting with respect to the grand master clock, it can revise this nominal 8 ns up or
down by a very fine degree of accuracy.

The “step 1” addition illustrated in Figure 8-2 (of current counter value plus increment)
will occur on every clock cycle of the RTC reference clock. The result from this addition
forms the new value of the “controlled frequency RTC” nanoseconds field. This controlled
frequency RTC initializes to zero, following reset, and continues to increment smoothly on
every RTC reference clock cycle by the current value contained in the RTC Increment Value
Control Register.

Figure 8-2 illustrates that 26 bits have been reserved for the Increment Value, the upper 6-
bits of which overlap into the nanoseconds field. For this reason, the largest per-cycle
increment = 1ns * 2^6 = 64 ns. The lowest clock period which is expected to increment this
counter is 40 ns (corresponding to the 25 MHz MAC clock used at 100 Mb/s speeds). So
this should satisfy all allowable clock periods.

(Step 2) Synchronized RTC

The value contained in the RTC Offset Control Registers written by the microprocessor, is
then applied to the free running “controlled frequency RTC” counter. This is used by the
microprocessor to:

• Initialize the power-up value of the Synchronized RTC.

• Apply step corrections to the Synchronized RTC (when a slave), based on the timing
PTP packets received from the Grand Master Clock RTC.

The “step 2” addition illustrated in Figure 8-2 (of controlled frequency RTC value plus
offset) will occur on every clock cycle of the RTC reference clock. The result from this
addition forms the new value of the Synchronized RTC nanoseconds field. It is this version
of the RTC nanoseconds field which is made available as an output of the core - the
rtc_nanosec_field[31:0] port.

Increment of the Seconds Field

The RTC seconds field is, conceptually, implemented in a similar way to the nanoseconds
field. The seconds field should be incremented by a value of one whenever the
synchronized RTC nanoseconds field saturates at one-second. The RTC Offset Control
Registers allow the software to make large step corrections to the seconds field in a similar
manner. Again, the step correction capability can be used to either initialize the RTC
counter following reset, or to synchronize the local RTC to that of the Grand Master Clock
(when the local device is acting as a clock slave).

Ethernet AVB Endpoint User Guide www.xilinx.com 73
UG492 March 1, 2011

Time Stamping Logic

Clock Outputs Based on the Synchronized RTC Nanoseconds Field
The clk8k (8 kHz clock) output, derived from the Synchronized RTC, is provided as an
output from the core. The synchronized RTC counter, unlike the controlled frequency
version, has no long-term drift (assuming the provided software drivers are used
correctly). Therefore, the clk8k signal will be synchronized exactly to the network RTC
frequency.

The 8 kHz clock is the period of the shortest class measurement interval for an SR class as
specified in IEEE802.1Qav-2009. This clock could also be useful for external applications
(for example, a 1722 implementation of the AV traffic).

Time Stamping Logic
Whenever a PTP packet, used with the Precise Timing Protocol (PTP), is transmitted or
received (see Precise Timing Protocol Packet Buffers in Chapter 9), a sample of the current
value of the RTC is taken and made available for the software drivers to read. The
hardware makes no distinction between frames carrying event or general PTP messages
(as defined in IEEE P802.1AS); it will always store a timestamp value for ethernet frames
containing the Ethertype specified for PTP messages.

This time stamping of packets is a key element of the tight timing synchronization across
the AVB network wide RTC, and these samples must be performed in hardware for
accuracy. The hardware in this core will therefore sample and capture the local
nanoseconds RTC field for every PTP frame transmitted or received. These captured time
stamps are stored in the Precise Timing Protocol Packet Buffers alongside the relevant PTP
frame, and are read and used by the PTP software drivers.

It is important to realize that is it actually the “controlled frequency RTC” nanoseconds
field which is sampled by the time stamping logic rather than the synchronized RTC (see
Figure 8-2). This is important when operating as a clock slave: the controlled frequency
RTC always acts as a smooth counter whereas the synchronized RTC may suffer from
occasional step changes (whenever a new offset adjustment is periodically applied by the
software drivers). These step changes, avoided by using the controlled frequency RTC,
could otherwise lead to errors in the various PTP calculations which are performed by the
software drivers.

Note: The Software Drivers can themselves obtain (when required) the local synchronized RTC
value by summing the captured time stamp with the current nanoseconds offset value of the RTC
Offset Control Registers (effectively performing the step 2 calculation of Figure 8-2 in software).

74 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 8: Real Time Clock and Time Stamping

Time Stamp Sampling Position of MAC Frames
A time stamp value should be sampled at the beginning of the first symbol following the
Start of Frame Delimiter (SFD) of the Ethernet MAC frame as seen on the PHY. This is
illustrated in Figure 8-3.

Figure 8-3 also illustrates the actual time stamp sampling position that is used by the core.
Time stamps are taken after the MAC frame SFD is seen not on the GMII, but on the MAC
Client I/F. The time stamping logic is deliberately designed this way for the following
reasons:

1. When the Ethernet AVB Endpoint core is to be connected to the Embedded Tri-Mode
Ethernet MAC, the GMII is not always available to the FPGA logic: specifically when
used with a 1000BASE-X or SGMII physical interface, the GMII exists only as an
internal connection within the embedded block. Therefore, by sampling on the client
interface, we enable the Ethernet AVB Endpoint core to be connected to ANY Xilinx®
Tri-Mode MAC used in ANY configuration.

2. Sampling on the MAC Client I/F provides the Ethernet AVB Endpoint core with the
required time stamp exactly when it is needed. Sampling on the GMII would require
the use of sideband Time stamp Value FIFOs (there can be more than a single MAC
frame present in the pipeline stages of the MAC transmitter or receiver). So by
sampling on the MAC Client I/F, we are also able to reduce the need for extra FIFO
logic.

X-Ref Target - Figure 8-3

Figure 8-3: Time Stamping Position

Tri-Mode
Ethernet

MAC
LogiCORE

Ethernet
AVB

Endpoint
LogiCORE

legacy
traffic

AV
traffic

Ethernet
PHYGMIIMAC

Client I/F

Tx Tx

Rx Rx

PHY Media

IEEE defined Tx
sample position

IEEE defined Rx
sample position

Xilinx Rx
sample position

Xilinx Tx
sample position

known fixed
Tx latency

known fixed
Rx latency

 PHY-specific
Tx latency

PHY-specific
Rx latency

Ethernet AVB Endpoint User Guide www.xilinx.com 75
UG492 March 1, 2011

IEEE1722 Real Time Clock Format

Because the Xilinx Tri-Mode Ethernet MACs have a known fixed latency, the time stamps
taken can easily be translated into the equivalent GMII position to comply with the
standard. This is performed in the software drivers where the MAC transmitter and
receiver latencies are held in #defines in a header file. Users should update these #define
latency values to include the known latencies introduced by the PHYs used in the system
(See `System-Specific Defines in xavb.h` for more details).

IEEE1722 Real Time Clock Format
The IEEE1722 specification defines the avbtp_timestamp field. This is derived by sampling
the IEEE802.1 AS Real Time Clock and converting the low order time to nanoseconds.
From version 2.1 onwards, this conversion is now performed in the Ethernet AVB
Endpoint core and an alternative RTC, in the 1722 format, is output on the
rtc_nanosec_field_1722[31:0] port.

This port contains a 32-bit word representing nanosecond values. Unlike the IEEE802.1 AS
nanosecond field (which resets back to zero when it reaches 1 second), the IEEE1722
nanosecond field counts fully to 0xFFFFFFFF before wrapping around. The field therefore
wraps around approximately every 4 seconds.

If the system is using the IEEE1722 functionality, this port can be sampled to create the
avbtp_timestamp field. Otherwise this port can be ignored.

76 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 8: Real Time Clock and Time Stamping

Ethernet AVB Endpoint User Guide www.xilinx.com 77
UG492 March 1, 2011

Chapter 9

Precise Timing Protocol Packet Buffers

This chapter considers two of the logical components which are partly responsible for the
AVB timing synchronization protocol.

• Tx PTP Packet Buffer

• Rx PTP Packet Buffer

These are both described in this chapter as they are closely related.

Tx PTP Packet Buffer
The Tx PTP packet buffer is illustrated in Figure 9-1. This packet buffer provides working
memory to hold the PTP frames which are required for transmission. The software drivers,
via the PLB configuration bus, can read/modify/write the PTP frame contents, and
whenever required, can request transmission of the appropriate PTP frames.

The PTP packet buffer is implemented in dual-port block RAM. Port A of the block RAM
is connected to the PLB configuration bus: all addresses in the buffer are read/writable
through the PLB. Port B of the block RAM is connected to the Tx Arbiter module, allowing
PTP frames to be read out of the block RAM and transmitted through the connected
TEMAC.

The Tx PTP Packet Buffer is divided into eight identical buffer sections as illustrated. Each
section contains 256 bytes, which are formatted as follows:

• the first byte, at address zero, contains a frame length field. This indicates how many
bytes make up the PTP frame that is to be transmitted from this particular PTP buffer.

• The next seven bytes, from address 1 to 7, are reserved for future use.

• The PTP frame data itself is stored from address 8 onwards. The amount of addresses
used is dependent on the indicated frame length field, which is different for each PTP
frame type. Each PTP buffer provides a maximum of 244 bytes (more than that
required for the largest PTP frame). Each PTP frame holds the entire MAC frame
(with the exception of any required MAC padding or CRC - these will automatically
be inserted by the TEMAC) from the Destination Address field onwards.

• The top four addresses of each buffer, from address 0xFC to 0xFF are reserved for a
time stamp field. At the beginning of PTP frame transmission from any of the eight
buffers, the Time Stamping Logic will sample the Real Time Clock. Following the end
of PTP frame transmission, this captured timestamp is automatically written into this
location to accompany the frame for which it was taken.

78 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 9: Precise Timing Protocol Packet Buffers

Despite the logic and formatting of each individual PTP buffer being identical, the block
RAM is pre-initialized at device configuration to hold template copies of each of the PTP
frames, as indicated in Figure 9-1. This shows that the first seven memory segments are in
use. PTP Buffer number 8 is currently unused and could therefore be used by proprietary
applications.

The Tx PTP Packet Control Register is defined for the purpose of requesting which of the
eight Tx PTP Buffers are to be transmitted. It is possible to request more than a single frame
at one time (indeed it is possible to request all 8). When more than one frame is requested,
the Tx PTP Buffer logic gives a priority order to the lowest PTP Buffer Number that has
been requested.

The Tx PTP Packet Control Register also contains a frame waiting field. This can be read by
the software drivers to determine which of the previously requested PTP frames have been
sent, and which are still queued.

Following transmission completion of each requested PTP frame, a dedicated interrupt
signal, interrupt_ptp_tx, is generated by the core. On the assertion of the interrupt,
the captured timestamp will already be available in the upper four bytes of the buffer, and
the tx_packet field of theTx PTP Packet Control Register will indicate the most recently
transmitted Buffer Number.

The Software Drivers provided with the core, using the PLB and dedicated interrupts, will
use this interface to periodically, as defined by the IEEE802.1AS protocol, update specific
fields within the PTP packets, and request transmission of these packets.
X-Ref Target - Figure 9-1

Figure 9-1: Tx PTP Packet Buffer Structure

Tx PTP Packet Buffers

Buffer Number Buffer Base Address

0

1

2

3

4

5

6

7

0x1000

0x1100

0x1200

0x1300

0x1400

0x1500

0x1600

0x1700

Single Tx PTP Packet Buffer

Address (+ Buffer Base Address)

byte-wide data

0xFF

0xFE

0xFD

0xFC

0x00

0x08

0x08 + frame_length_field

frame_length_field

reserved

PTP Frame Data

unused

timestamp[7:0]

timestamp[15:8]

timestamp[23:16]

timestamp[31:24]

Sync Frame

Follow_Up Frame

Pdelay_Req Frame

Pdelay_Resp Frame

Pdelay_Resp_Follow_Up
Frame

Announce Frame

Signaling Frame

Ethernet AVB Endpoint User Guide www.xilinx.com 79
UG492 March 1, 2011

Rx PTP Packet Buffer

Rx PTP Packet Buffer
The Rx PTP packet buffer is illustrated in Figure 9-2. This provides working memory to
hold each received PTP frame. The software drivers, via the PLB configuration bus, can
then read and decode the contents of the received PTP frames.

The PTP packet buffer is implemented in dual-port block RAM. Port A of the block RAM
is connected to the PLB configuration bus: all addresses in the buffer can be read (writes
are not allowed). Port B of the block RAM is connected to the Rx Splitter module, which
routes all received PTP frames into the Rx PTP Packet Buffer.

The Rx PTP Packet Buffer is divided into sixteen identical buffer sections as illustrated.
Each section contains 256 bytes, which are formatted as follows:

• The PTP frame data itself is stored from address 0 onwards: the entire MAC frame
from the Destination Address onwards is written (with the exception of the FCS field
which will have been removed by the TEMAC). The amount of addresses used is
dependent on the particular PTP frame size, which is different for each PTP frame
type. Each PTP buffer provides a maximum of 252 bytes (more than that required for
the largest PTP frame). Should an illegally oversized PTP frame be received, the first
252 bytes is captured and stored - other bytes are lost.

• The top four addresses of each buffer, from address 0xFC to 0xFF are reserved for a
timestamp field. At the beginning of PTP frame reception, the Time Stamping Logic
will sample the Tx PTP Packet Buffer. Following the end of PTP frame reception, this
captured timestamp is automatically written into this location to accompany the
frame for which it was taken.

Following reset, the first received PTP frame is written into Buffer Number 0. The next
subsequent received PTP frame is written into the next available buffer - in this case
number 1. This process continues with buffer number 2, 3, then 4, and so forth, being used.
After receiving the 16th PTP frame (which would have been stored into buffer number 15),
the count is reset, and then buffer number 0 is overwritten with the next received PTP
frame. For this reason, at any one time, the Rx PTP Packet Buffer is capable of storing the
most recently received sixteen PTP frames.

Following the completion of PTP frame reception, a dedicated interrupt signal,
interrupt_ptp_rx, is generated by the core. On the assertion of the interrupt, the
captured timestamp is already available in the upper four bytes of the buffer, and the
rx_packet field of the Rx PTP Packet Control Register will indicate the most recently filled
Buffer Number.

80 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 9: Precise Timing Protocol Packet Buffers

The Software Drivers provided with the core, using the PLB and dedicated interrupt, will
use this interface to decode, and then act on, the received PTP packet information.
X-Ref Target - Figure 9-2

Figure 9-2: Rx PTP Packet Buffer

Rx PTP Packet Buffers

Buffer Number Buffer Base Address

0

1

2

3

4

5

6

7

0x0000

0x0100

0x0200

0x0300

0x0400

0x0500

0x0600

0x0700

Single Rx PTP Packet Buffer

Address (+ Buffer Base Address)

byte-wide data

0xFF

0xFE

0xFD

0xFC

0x00

frame size

PTP Frame Data

unused

timestamp[7:0]

timestamp[15:8]

timestamp[23:16]

timestamp[31:24]

0x0800

0x0900

0x0A00

0x0B00

0x0C00

0x0D00

0x0E00

0x0F00

8

9

10

11

12

13

14

15

Ethernet AVB Endpoint User Guide www.xilinx.com 81
UG492 March 1, 2011

Chapter 10

Configuration and Status

This chapter provides general guidelines for configuring and monitoring the Ethernet AVB
Endpoint core, including an introduction to the PLB configuration bus and a description of
the core management registers.

Processor Local Bus Interface
The Processor Local Bus (PLB) bus on the Ethernet AVB Endpoint core is designed to be
integrated directly in the Xilinx® Embedded Development Kit (EDK) where it can be easily
integrated and connected to the supported embedded processors (MicroBlaze™ or
PowerPC®). As a result, the PLB interface does not require in-depth understanding and
the following information is provided for reference only. See the EDK documentation for
further information.

The PLB interface, defined by IBM, can be complex and support many usage modes (such
as multiple bus masters). It can support single or burst read/writes, and can support
different bus widths and different peripheral bus widths.

The general philosophy of the Ethernet AVB Endpoint core has been to implement a PLB
interface which is as simple as possible. The following features are provided:

• 32-bit data width.

• Implements a simple PLB slave.

• Supports single read/writes only (no burst or page modes).

Single Read Transaction
Figure 10-1 illustrates a single read data transfer on the PLB. Note the following:

• Wait states can be added to the Address cycle by asserting Sl_wait and delaying
Sl_addrAck.

• Wait states can be inserted in the Read fetch by delaying the assertion of Sl_rdDAck.

82 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 10: Configuration and Status

X-Ref Target - Figure 10-1

Figure 10-1: Single Read Transaction

PLB_RNW

PLB_BE[0:7]

PLB_size[0:3]

PLB_type[0:2]

PLB_abort

PLB_ABus[0:31]

PLB_PAValid

SI_wait

SI_addrAck

PLB_wrDBus[0:31]

SI_wrDAck

SI_wrComp

PLB_wrBurst

SI_rdDBus[0:31]

SI_rdWrAddr[0:3]

SI_rdDAck

SI_rdComp

PLB_rdBurst

0000

0000

D(A0)

A0

0000

0000

000

11111111

0000

PLB_clk

Ethernet AVB Endpoint User Guide www.xilinx.com 83
UG492 March 1, 2011

Processor Local Bus Interface

Single Write Transaction
Figure 10-2 illustrates a single write data transfer on the PLB. Note the following:

• Wait states can be added to the Address cycle by asserting Sl_wait and delaying
Sl_addrAck.

• Wait states can be inserted in the Write sample by delaying the assertion of
Sl_wrDAck.

X-Ref Target - Figure 10-2

Figure 10-2: Single Write Transaction

PLB_clk

PLB_RNW

PLB_BE[0:7]

PLB_size[0:3]

PLB_type[0:2]

PLB_abort

PLB_ABus[0:31]

PLB_AValid

SI_wait

SI_addrAck

PLB_wrDBus[0:31]

SI_wrDAck

SI_wrComp

PLB_wrBurst

SI_rdDBus[0:31]

SI_rdWrAddr[0:3]

SI_rdDAck

SI_rdComp

PLB_rdBurst

0000

0000

A0

000

11111111

0000

D(A0)

84 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 10: Configuration and Status

PLB Address Map and Register Definitions
Figure 10-3 displays an overview of the Address Space occupied by the Ethernet AVB
Endpoint core on the PLB. Common across all addressable space, each unique PLB address
value references a single byte of data.

The variable PLB_base_address shown in Figure 10-3 and in the tables that follow
represent the starting (base) address of the AVB core within the entire PLB address.

The PLB_base_address is selected from the CORE Generator™ software Customization
GUI (see PLB Base Address in Chapter 4).

Ethernet AVB Endpoint User Guide www.xilinx.com 85
UG492 March 1, 2011

PLB Address Map and Register Definitions

The entire address space is now described in two sections:

• Ethernet AVB Endpoint Address Space

• Tri-Mode Ethernet MAC Address Space (which can be addressed through the
Ethernet AVB Endpoint core Address Space). This address is only present when the
core is generated in Core Overview.

X-Ref Target - Figure 10-3

Figure 10-3: PLB Address Space of the Ethernet AVB Endpoint Core and
Connected Tri-Mode Ethernet MAC

0x0000

0x1800

0x1000

0x2800

0x2000

0x201C

0x3000

0x2900

0x4000

0x3100

0x6000

0x7FFFAddress

Ethernet AVB Endpoint
Address Space

TEMAC Address Space

Tri-Mode Ethernet MAC
MDIO (PHY Management)

Tri-Mode Ethernet MAC
Configuration and Statistics

RxPTP Packet Buffer

Tx PTP Packet Buffer

Reserved

Reserved

Reserved

Reserved

AVB Tx/Rx Configuration

AVB RTC Configuration

Address Filter Configuration

PLB_base_address +

86 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 10: Configuration and Status

Ethernet AVB Endpoint Address Space

Rx PTP Packet Buffer Address Space

The Address space of the Rx PTP Packet Buffer is 4k bytes, from PLB_base_address to
(PLB_base_address + 0x0FFF). This represents the size of a single Virtex®-5 FPGA block
RAM pair (4k bytes). Every byte of this Block RAM can be read from the PLB. See Rx PTP
Packet Buffer for operation.

Tx PTP Packet Buffer Address Space

The Address space of the Tx PTP Packet Buffer is continuous from (PLB_base_address +
0x1000) to (PLB_base_address + 0x17FF), representing the size of a single Virtex-5 FPGA
Block 18k RAM (2k bytes). Every byte of this Block RAM is read/write accessible via the
PLB. See Tx PTP Packet Buffer for operation.

Ethernet Audio Video End Point Configuration Registers

Tx PTP Packet Control Register

Table 10-1 defines the associated control register of the Tx PTP Packet Buffer, used by the
Software Drivers to request the transmission of the PTP frames.

Table 10-1: Tx PTP Packet Buffer Control Register (PLB_base_address + 0x2000)

Bit no Default Access Description

7-0 0 WO tx_send_frame bits. The Tx PTP Packet Buffer is split into
8 regions of 256 bytes. Each of these can contain a separate
PTP frame. There is 1 tx_send_frame bit for each of the 8
regions.

Each bit, when written to ‘1’, causes a request to be made
to the Tx Arbiter. When access is granted, the frame
contained within the respected region is transmitted.

If read, always returns 0.

15-8 0 RO tx_frame_waiting indication. The Tx PTP Packet Buffer is
split into 8 regions of 256 bytes, each of which can contain
a separate PTP frame. There is 1 tx_frame_waiting bit for
each of the 8 regions.

Each bit, when logic 1, indicates that a request has been
made for frame transmission to the Tx Arbiter, but that a
grant has not yet occurred. When the frame has been
successfully transmitted, the bit is set to logic 0.

This bit allows the microprocessor to run off a polling
implementation as opposed to the Interrupts.

18-16 0 RO tx_packet. indicates the number (block RAM bin position)
of the most recently transmitted PTP packet.

31-19 0 RO Unused

Note: A read or a write to this register clears the interrupt_ptp_tx interrupt (asserted after each
successful PTP packet transmission).

Ethernet AVB Endpoint User Guide www.xilinx.com 87
UG492 March 1, 2011

PLB Address Map and Register Definitions

Rx PTP Packet Control Register

Table 10-2 defines the associated control register of the Rx PTP Packet Buffer, used by the
Software Drivers to monitor the position of the most recently received PTP frame.:

Rx Filtering Control Register

Table 10-3 defines the associated control register of the Rx Splitter. The Rx path is capable
of identifying the AV packets using configurable VLAN PCP and VID fields per SR Class
(A or B). In order for the Ethernet frame to be considered an AV frame both the VLAN PCP
and VID values for a given SR Class (A or B) must match the value programmed in this
register. If the VLAN field does not match either the combined VLAN field value A or the
combined VLAN field value B, then the Ethernet frame is passed to the Legacy I/F.

Table 10-2: Rx PTP Packet Buffer Control Register (PLB_base_address + 0x2004)

Bit no Default Access Description

0 0 WO rx_clear. When written with a ‘1,’ forces the buffer to
empty, in practice moving the write address to the same
value as the read address.

If read, always return 0.

7-1 0 RO Unused

11-8 0 RO rx_packet. Indicates the number (block RAM bin
position) of the most recently received PTP packet.

31-12 0 RO Unused

Note: A read or a write to this register clears the interrupt_ptp_rx interrupt (asserted after each
successful PTP packet reception).

Table 10-3: Rx Filtering Control Register (PLB_base_address + 0x2008)

Bit no Default Access Description

2-0 3 R/W VLAN Priority (PCP) A. If a tagged packet is received
with a VLAN PCP field matching this Priority A value
and matching the VLAN VID A value below, then the
packet is considered an AV frame: it is passed to the AV
I/F.

14-3 2 R/W VLAN VID A. If a tagged packet is received with a
VLAN VID field matching this VID A value and
matching the VLAN PCP A value above, then the packet
is considered an AV frame: it is passed to the AV I/F.

15 1 R/W VLAN Match Mode. When this bit is set to 1, a tagged
packet must match both the PCP and VID values set up
in this register for a given SR Class (A or B). When this
bit is set to 0, tagged packets that match either the PCP
A or the PCP B values in this register are routed to the
AV traffic interface. (This is the behavior for previous
releases of this core).

16-18 2 R/W VLAN Priority (PCP) B. If a tagged packet is received
with a VLAN PCP field matching this Priority B value
and matching the VLAN VID B value below, then the
packet is considered an AV frame: it is passed to the AV
I/F.

88 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 10: Configuration and Status

Tx Arbiter Send Slope Control Register

The sendSlope variable is defined in IEEE802.1Qav-2009 to be the rate of change of credit,
in bits per second, when the value of credit is decreasing (during AV packet transmission).
Together with the Tx Arbiter Idle Slope Control Register, registers define the maximum
limit of the bandwidth that is reserved for AV traffic; this is enforced by the Tx Arbiter. The
default values allow the maximum bandwidth proportion of 75% for the AV traffic. See the
IEEE802.1Qav-2009 specification and Tx Arbiter.

Tx Arbiter Idle Slope Control Register

The idleSlope variable is defined in IEEE802.1Qav-2009 to be the rate of change of credit, in
bits per second, when the value of credit is increasing (whenever there is no AV packet
transmission). Together with the Tx Arbiter Send Slope Control Register, two registers
define the maximum limit of the bandwidth that is reserved for AV traffic; this is enforced
by the Tx Arbiter. The default values allow the maximum bandwidth proportion of 75% for
the AV traffic. See the IEEE802.1Qav-2009 specification and Tx Arbiter.

19-30 2 R/W VLAN VID B. If a tagged packet is received with a
VLAN VID field matching this VID B value and
matching the VLAN PCP B value above, then the packet
is considered an AV frame: it is passed to the AV I/F.

31 1 R/W Promiscuous Mode for the Legacy MAC Header
Filters.

If this bit is set to 1, the MAC Header Filter is set to
operate in promiscuous mode. All frames are passed to
the Rx Legacy Traffic I/F.

If set to 0 then only matching MAC headers are passed
to the Rx Legacy Traffic I/F.

Table 10-4: Tx Arbiter Send Slope Control Register (PLB_base_address + 0x200C)

Bit no Default Access Description

19-0 2048 R/W The value of sendSlope

31-20 0 RO Unused

Table 10-5: Tx Arbiter Idle Slope Control Register (PLB_base_address + 0x2010)

Bit no Default Access Description

31-20 0 RO Unused

19-0 6144 R/W The value of idleSlope

Table 10-3: Rx Filtering Control Register (PLB_base_address + 0x2008)

Bit no Default Access Description

Ethernet AVB Endpoint User Guide www.xilinx.com 89
UG492 March 1, 2011

PLB Address Map and Register Definitions

RTC Offset Control Registers

Table 10-6 describes the offset control register for the nanoseconds field of the Real Time
Clock, used to force step changes into the counter. When in PTP clock master mode, this
can be used to set the initial value following power-up. When in PTP clock slave mode, the
Software Drivers use this register to implement the periodic step corrections.

This register and the registers defined in Table 10-7 and in Table 10-8 are linked. These
three offset values are loaded into the RTC counter logic simultaneously following a write
to this nanosecond offset register.

Table 10-7 describes the offset control register for the lower 32-bits of seconds field of the
Real Time Clock, used to force step changes into the counter. When in PTP clock master
mode, this can be used to set the initial value following power-up. When in PTP clock slave
mode, the Software Drivers use this register to implement the periodic step corrections.

This register and the registers defined in Table 10-6 and in Table 10-8 are linked. These
three offset values are loaded into the RTC counter logic simultaneously following a write
to the nanosecond offset register defined in Table 10-6.

Table 10-8 describes the offset control register for the upper 16-bits of seconds field of the
Real Time Clock, used to force step changes into the counter. When in PTP clock master
mode, this can be used to set the initial value following power-up. When in PTP clock slave
mode, the Software Drivers use this register to implement the periodic step corrections.

This register and the registers defined in Table 10-6 and in Table 10-7 are linked. These
three offset values are loaded into the RTC counter logic simultaneously following a write
to the nanosecond offset register defined in Table 10-6.

Table 10-6: RTC Nanoseconds Field Offset (PLB_base_address + 0x2800)

Bit no Default Access Description

29-0 0 R/W 30-bit offset value for the RTC nanoseconds field. Used
by the microprocessor to initialize the RTC, then
afterwards to perform the regular RTC corrections
(when in slave mode).

31-30 0 RO Unused

Table 10-7: Seconds Field Offset bits [31:0] (PLB_base_address + 0x2808)

Bit no Default Access Description

31-0 0 R/W 32-bit offset value for the RTC seconds field (bits 31-0).
Used by the microprocessor to initialize the RTC, then
afterwards to perform the regular RTC corrections
(when in slave mode).

Table 10-8: Seconds Field Offset bits [47:32] (PLB_base_address + 0x280C)

Bit no Default Access Description

15-0 0 R/W 16-bit offset value for the RTC seconds field (bits 47-32).
Used by the microprocessor to initialize the RTC, then
afterwards to perform the regular RTC corrections
(when in slave mode).

31-16 0 RO Unused

90 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 10: Configuration and Status

RTC Increment Value Control Register

Table 10-9 describes the RTC Increment Value Control Register. This provides configurable
increment rate for the Real Time Clock counter: this increment register should take the
value of the clock period which is being used to increment the RTC. However, the
resolution of this increment register is very fine (in units of 1/1048576 (1/220) fraction of
one nanosecond). Therefore, the RTC increment rate can be adjusted to a very fine degree
of accuracy. This provides these features:

• The RTC can be incremented from any available clock frequency that is greater than
the P802.1AS defined minimum of 25 MHz.

• When acting as a clock slave, the rate adjustment of the RTC can be matched to that of
the network clock master to an exceptional level of accuracy.:

Current RTC Value Registers

Table 10-10 describes the nanoseconds field value register for the nanoseconds field of the
Real Time Clock. When read, this returns the latest value of the counter.

This register and the registers defined in Table 10-11 and in Table 10-12 are linked. When
this nanoseconds value register is read, the entire RTC (including the seconds field) is
sampled.

Table 10-11 describes the lower 32-bits of the seconds value register for the seconds field of
the Real Time Clock. When read, this returns the latest value of the counter.

This register and the registers defined in Table 10-10 and in Table 10-12 are linked. When
the nanoseconds value register is read (see Table 10-10), the entire RTC is sampled.

Table 10-12 describes the upper 16-bits of the seconds value register for the seconds field of
the Real Time Clock. When read, this returns the latest value of the counter.

Table 10-9: RTC Increment Value Control Register (PLB_base_address + 0x2810)

Bit no Default Access Description

25-0 0 R/W Per rtc_clk clock period Increment Value for the RTC.

31-26 0 RO Unused

Table 10-10: Current RTC Nanoseconds Value (PLB_base_address + 0x2814)

Bit no Default Access Description

29-0 0 RO Current Value of the synchronized RTC nanoseconds
field.

Note: A read from this register samples the entire RTC
counter (synchronized) so that the Epoch and Seconds
field are held static for a subsequent read.

31-30 0 RO Unused

Table 10-11: Current RTC Seconds Field Value bits [31:0] (PLB_base_address +
0x2818)

Bit no Default Access Description

31-0 0 RO Sampled Value of the synchronized RTC Seconds field
(bits 31-0).

Ethernet AVB Endpoint User Guide www.xilinx.com 91
UG492 March 1, 2011

PLB Address Map and Register Definitions

This register and the registers defined in Table 10-10 and in Table 10-11 are linked. When
the nanoseconds value register is read (see Table 10-10), the entire RTC is sampled.

RTC Interrupt Clear Register

Table 10-13 describes the control register defined for the interrupt_ptp_timer signal,
the periodic interrupt signal which is raised by the Real Time Clock.

Phase Adjustment Register

Table 10-14 describes the Phase Adjustment Register, which has units of nanoseconds. This
value is used to correct the 8k clock generation circuit when a new nanosecond offset value
is written to the RTC. It additionally could be used to apply a phase offset to the clk8k
signal.

The value written into this register is loaded into the 8k clock generation circuit at the same
instant as the offset is applied to the RTC counter logic, following a write to the
nanosecond offset register defined in Table 10-6.

As an example of applying a phase offset, writing the value of the decimal 62500 (half of an
8 KHz clock period) to this register would invert the clk8k signal with respect to a value of
0. This register can therefore provide fine grained phase alignment of these signals to a 1 ns
resolution.

Table 10-12: Current RTC Seconds Field Value bits [47:32] (PLB_base_address +
0x281C)

Bit no Default Access Description

15-0 0 RO Sampled Value of the synchronized RTC Seconds field
(bits 47-32).

32-16 0 RO Unused

Table 10-13: RTC Interrupt Clear Register (PLB_base_address + 0x2820)

Bit no Default Access Description

0 0 WO Write ANY value to bit 0 of this register to clear the
interrupt_ptp_timer Interrupt signal. This bit always
returns 0 on read.

31-1 0 RO Unused

Table 10-14: RTC Phase Adjustment Register (PLB_base_address + 0x2824)

Bit no Default Access Description

29-0 0 R/W ns value relating to the phase offset for the clk8k RTC
derived timing signal.

31-30 0 RO Unused

92 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 10: Configuration and Status

Software Reset Register

Table 10-15 describes the Software Reset Register. This register contains unique bits which
can be written to in order to request the reset of a particular section of logic from within the
Ethernet AVB Endpoint core. A single bit can be written to in a single CPU transaction in
order to reset just that particular function; several to all bits can be written to in a single
CPU transaction in order to reset several to all of the available reset functions.

MAC Header Filter Configuration

The Legacy MAC Header Filters are provided on the Rx Legacy traffic path, and are
capable of providing match recognition logic against eight unique MAC frame headers.
Each of the eight individual filters require eight memory mapped registers to configure
them, as defined in Table 10-16. Each individual filter contains its own set of these eight
registers. When interpreting Table 10-16, the variable filter# should be replaced with an
integer number between 0 and 7, which represent the eight individual filters.

Table 10-15: Software Reset Register (Address at PLB_base_address + 0x2828)

Bit Number Default Access Description

0 0 WO Transmitter path reset. When written with a '1', forces
the entire transmitter path of the core to be reset. This
also asserts the tx_reset signal of Table 5-1.

This reset does not affect transmitter configuration
settings.

If read, always returns 0.

1 0 WO Receiver path reset. When written with a '1', forces the
entire receiver path of the core to be reset. This also
asserts the rx_reset signal of Table 5-1.

This reset does not affect receiver configuration
settings.

If read, always returns 0.

2 0 WO PTP Transmitter logic reset. When written with a '1',
forces the PTP transmitter logic of the core to be reset.
This is a subset of the full transmitter path reset of bit
0.

This reset does not affect PTP transmitter
configuration settings.

If read, always returns 0.

3 0 WO PTP Receiver logic reset. When written with a '1',
forces the PTP receiver logic of the core to be reset.
This is a subset of the full receiver path reset of bit 1.

This reset does not affect PTP receiver configuration
settings.

If read, always returns 0.

31-4 0 RO Unused

Ethernet AVB Endpoint User Guide www.xilinx.com 93
UG492 March 1, 2011

PLB Address Map and Register Definitions

Table 10-16: MAC Header Filter Configuration Registers

Address Default Access Description

PLB_base_address

+ 0x3000

+ (filter# * 0x20)

+ 0x0

0xFFFFFFFF R/W Match Pattern: Ethernet frame bits 0 to 31

32 bit pattern to match against the Ethernet
frame bits 0 to 31. Specifically, match pattern
bits:

[31:0]: MAC Destination Address Field bits
[31:0]

PLB_base_address

+ 0x3000

+ (filter# * 0x20)

+ 0x4

0x0000FFFF R/W Match Pattern: Ethernet frame bits 32 to 63

32 bit pattern to match against the Ethernet
frame bits 32 to 63. Specifically, match pattern
bits:

[15:0]: MAC Destination Address Field bits
[47:32]

[31:16]: MAC Source Address Field bits [15:0]

PLB_base_address

+ 0x3000

+ (filter# * 0x20)

+ 0x8

0x00000000 R/W Match Pattern: Ethernet frame bits 64 to 95

32 bit pattern to match against the Ethernet
frame bits 64 to 95. Specifically, match pattern
bits:

[31:0]: MAC Source Address bits [47:16]

PLB_base_address

+ 0x3000

+ (filter# * 0x20)

+ 0xC

0x00000000 R/W Match Pattern: Ethernet frame bits 96 to 127

32 bit pattern to match against the Ethernet
frame bits 96 to 127.

For frames with a VLAN tag, match pattern
bits[31:0] can be matched against the full
VLAN field.

For frames without a VLAN, match pattern
bits[15:0] can be matched against the
Length/Type field.

PLB_base_address

+ 0x3000

+ (filter# * 0x20)

+ 0x10

0xFFFFFFFF R/W Match Enable: Ethernet frame bits 0 to 31

There is a 1-to-1 correspondence between all
bits in this register and all bits in the "Match
Pattern: Ethernet frame bits 0 to 31" register.
For each bit:

logic 1 enables the match: the corresponding
bit in the Match Pattern is compared

logic 0 disables the match: the corresponding
bit in the Match Pattern is a don’t-care.

94 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 10: Configuration and Status

PLB_base_address

+ 0x3000

+ (filter# * 0x20)

+ 0x14

0x0000FFFF R/W Match Enable: Ethernet frame bits 32 to 63

There is a 1-to-1 correspondence between all
bits in this register and all bits in the "Match
Pattern: Ethernet frame bits 32 to 63" register.
For each bit:

logic 1 enables the match: the corresponding
bit in the Match Pattern is compared

logic 0 disables the match: the corresponding
bit in the Match Pattern is a don’t-care.

PLB_base_address

+ 0x3000

+ (filter# * 0x20)

+ 0x18

0x00000000 R/W Match Enable: Ethernet frame bits 64 to 95

There is a 1-to-1 correspondence between all
bits in this register and all bits in the "Match
Pattern: Ethernet frame bits 64 to 95" register.
For each bit:

logic 1 enables the match: the corresponding
bit in the Match Pattern is compared

logic 0 disables the match: the corresponding
bit in the Match Pattern is a don’t-care.

PLB_base_address

+ 0x3000

+ (filter# * 0x20)

+ 0x1C

0x00000000 R/W Match Enable: Ethernet frame bits 96 to 127

There is a 1-to-1 correspondence between all
bits in this register and all bits in the "Match
Pattern: Ethernet frame bits 96 to 127" register.
For each bit:

logic 1 enables the match: the corresponding
bit in the Match Pattern is compared

logic 0 disables the match: the corresponding
bit in the Match Pattern is a don’t-care.

Table 10-16: MAC Header Filter Configuration Registers (Cont’d)

Address Default Access Description

Ethernet AVB Endpoint User Guide www.xilinx.com 95
UG492 March 1, 2011

PLB Address Map and Register Definitions

Tri-Mode Ethernet MAC Address Space
The address space of the Ethernet MAC is incorporated into the address space of the
Ethernet AVB Endpoint core as illustrated in Figure 10-3. The Ethernet MAC Address
space is then split into two sections:

• MAC Configuration and Statistics

• MAC MDIO Registers

MAC Configuration and Statistics

Table 10-17 defines the statistic registers and configuration registers of the Tri-Mode
Ethernet MAC core. These are listed with their assigned addresses. See the Tri-Mode
Ethernet MAC User Guide (UG138) and the Ethernet Statistics User Guide (UG170) for
additional descriptions of these registers.

MAC Address Filter Registers

The Address Filter, optionally present in the Tri-Mode Ethernet MAC LogiCORE™ IP
solution, must not used. Instead, newLegacy MAC Header Filters have been added to the
Receiver Legacy Traffic path, which is capable of providing address recognition for eight
unique MAC addresses. See MAC Header Filter Configuration.

Table 10-17: Tri-Mode Ethernet MAC and Ethernet Statistics
Configuration Registers

Address Description

(PLB_base_address
+ 0x4000)

to
(PLB_base_address
+ 0x41FF)

A maximum of 64 configurable Ethernet MAC statistics registers can
be accessed through the PLB interface (let the statistics registers be
numbered by STATISTIC_NUMBER, from 0 to 63). Each statistic
returns a 64-bit counter value. Accordingly:

Address of STATISTIC_NUMBER =

(PLB_base_address + 0x4000 + [STATISTIC_NUMBER * 8])

PLB_base_address +
0x5000

Receiver Configuration (Word 0)

PLB_base_address +
0x5200

Receiver Configuration (Word 1)

PLB_base_address +
0x5400

Transmitter Configuration

PLB_base_address +
0x5600

Flow Control Configuration

PLB_base_address +
0x5800

MAC Speed Configuration

PLB_base_address +
0x5A00

Management Configuration

96 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 10: Configuration and Status

MAC MDIO Registers

The Tri-Mode Ethernet MAC has MDIO master capability. To access an MDIO register via
the Ethernet MAC, construct the address as follows:

MDIO register address = PLB_base_address + 0x6000 + (MDIO_ADDRESS *8)

where MDIO_ADDRESS is a 10-bit binary address, constructed from the 5-bit MDIO
Physical Address (PHYAD) and the 5-bit MDIO Register Address (REGAD) as follows:

MDIO_ADDRESS <= {PHYAD, REGAD}

See the Tri-Mode Ethernet MAC User Guide and IEEE802.3 for further MDIO information.

Ethernet AVB Endpoint User Guide www.xilinx.com 97
UG492 March 1, 2011

Chapter 11

Constraining the Core

This chapter defines the Ethernet AVB Endpoint core constraints. An example user
constraints file (UCF) is provided for the core and the HDL example design.

Required Constraints

Device, Package, and Speed Grade Selection
The Ethernet AVB Endpoint core can be implemented in Spartan®-3, Spartan-3E, Spartan-
3A/3A DSP, Spartan-6, Virtex®-5 and Virtex-6 devices that are large enough to
accommodate the core, and meet these speed grades:

• -1 for Virtex-5 and Virtex-6 devices

• -2 for Spartan-6 devices

• -4 for all Spartan-3 devices

I/O Location Constraints
No specific I/O location constraints are required.

Placement Constraints
No specific placement constraints are required.

Timing Constraints
The core can have up to five separate clock domains:

• plb_clk for the main EDK PLB and processor clock frequency

• host_clk for the management interface logic of the connected Tri-Mode Ethernet
MAC

• tx_clk for the MAC transmitter clock domain

• rx_clk for the MAC receiver clock domain

• rtc_clk for the Real Time Clock reference frequency

These clock nets and the signals within the core that cross these clock domains must be
constrained appropriately in a UCF.

Sections of UCF syntax are used in the following descriptions to provide examples.

98 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 11: Constraining the Core

PERIOD Constraints for Clock Nets

PLB_clk

The clock provided to PLB_clk must be constrained to the appropriate frequency. The
frequency range of the embedded processor to which this bus is connected. For example,
the maximum clock speed of the MicroBlaze™ processor is 100 MHz.

The following UCF syntax shows a 100 MHz period constraint being applied to the
PLB_clk signal:

NET "plb_clk" TNM_NET = "plb_clk";
TIMEGRP "plb_clock" = "plb_clk";
TIMESPEC "TS_plb_clock" = PERIOD "plb_clock" 10000 ps HIGH 50 %;

host_clk

The clock provided to host_clk must be constrained to the desired Management
Interface operating frequency of the Tri-Mode Ethernet MAC. If host_clk is connected to
the same clock source as any other Ethernet AVB Endpoint input clock (for example
PLB_clk or ref_clk), then this constraint is unnecessary and can be removed.

The maximum supported frequency of host_clk, as specified by the Tri-Mode Ethernet
MAC core, is 125 MHz.

The following UCF syntax shows a 125 MHz period constraint being applied to
host_clk:

NET "host_clk" TNM_NET = "host_clk";
TIMEGRP "host_clock" = "host_clk";
TIMESPEC "TS_host_clock" = PERIOD "host_clock" 8000 ps HIGH 50
%;

tx_clk

The interface clock of the Ethernet MACs transmitter must be constrained to the correct
maximum frequency. This is 125 MHz for 1-Gigabit Ethernet rates.

The following UCF syntax shows the necessary constraints being applied to tx_clk:

NET "tx_clk" TNM_NET = "tx_clk";
TIMEGRP "tx_clock" = "tx_clk";
TIMESPEC "TS_tx_clock" = PERIOD "tx_clock" 8000 ps HIGH 50 %;

rx_clk

The interface clock of the Ethernet MACs receiver must be constrained to the correct
maximum frequency. This is 125 MHz for 1-Gigabit Ethernet rates.

The following UCF syntax shows the necessary constraints being applied to rx_clk:

NET "rx_clk" TNM_NET = "rx_clk";
TIMEGRP "rx_clock" = "rx_clk";
TIMESPEC "TS_rx_clock" = PERIOD "rx_clock" 8000 ps HIGH 50 %;

Ethernet AVB Endpoint User Guide www.xilinx.com 99
UG492 March 1, 2011

Required Constraints

rtc_clk

The RTC can be incremented from any available clock frequency that is greater than the
AVB standards defined minimum of 25 MHz. However, the faster the frequency of the
clock, the smaller will be the step increment and the smoother will be the overall RTC
increment rate. Xilinx recommends clocking the RTC logic at 125 MHz because this is a
readily available clock source (obtained from the transmit clock source of the Ethernet
MAC at 1 Gb/s speed). This frequency significantly exceeds the minimum performance of
the P802.1AS specification.

The following UCF syntax shows a 125 MHz period constraint being applied to rtc_clk:

NET "rtc_clk" TNM_NET = "rtc_clk";
TIMEGRP "rtc_clock" = "rtc_clk";
TIMESPEC "TS_rtc_clock" = PERIOD "rtc_clock" 8000 ps HIGH 50 %;

Timespecs for Critical Logic within the Core

Signals must cross clock domains at certain points within the core. To guarantee that these
signals are sampled correctly on the new clock domain, many constraints are required, and
must not be removed. These constraints are also present in the example design UCF
delivered with the core.

##
Clock Domain Crossing Constraints
##

clock domain crossing constraints for Tx timestamp logic
#---

INST "*top/tx_rtc_sample_inst/sample_toggle_req" TNM = FFS
"tx_sample_req";
INST "*top/tx_rtc_sample_inst/resync_sample_toggle_req/data_sync"
TNM = FFS "tx_sample_req_resync";
TIMESPEC "ts_tx_sample_req" = FROM "tx_sample_req" TO
"tx_sample_req_resync" 6.5 ns DATAPATHONLY;

INST "*top/tx_rtc_sample_inst/sample_taken_toggle" TNM = FFS
"tx_sample_taken";
INST "*top/tx_rtc_sample_inst/resync_sample_taken_toggle/data_sync"
TNM = FFS "tx_sample_taken_resync";
TIMESPEC "ts_tx_sample_taken" = FROM "tx_sample_taken" TO
"tx_sample_taken_resync" TIG;

INST "*top/tx_rtc_sample_inst/timestamp*" TNM = FFS "tx_timestamp";
TIMESPEC "ts_tx_timestamp_route" = FROM "tx_timestamp" TO "FFS" 8 ns
DATAPATHONLY;

clock domain crossing constraints for Rx timestamp logic
#---

INST "*top/rx_rtc_sample_inst/sample_toggle_req" TNM = FFS
"rx_sample_req";
INST "*top/rx_rtc_sample_inst/resync_sample_toggle_req/data_sync"
TNM = FFS "rx_sample_req_resync";
TIMESPEC "ts_rx_sample_req" = FROM "rx_sample_req" TO
"rx_sample_req_resync" 6.5 ns DATAPATHONLY;

100 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 11: Constraining the Core

INST "*top/rx_rtc_sample_inst/sample_taken_toggle" TNM = FFS
"rx_sample_taken";
INST "*top/rx_rtc_sample_inst/resync_sample_taken_toggle/data_sync"
TNM = FFS "rx_sample_taken_resync";
TIMESPEC "ts_rx_sample_taken" = FROM "rx_sample_taken" TO
"rx_sample_taken_resync" TIG;

INST "*top/rx_rtc_sample_inst/timestamp*" TNM = FFS "rx_timestamp";
TIMESPEC "ts_rx_timestamp_route" = FROM "rx_timestamp" TO "FFS" 8 ns
DATAPATHONLY;

clock domain crossing constraints for Rx PTP Packet Buffer logic
#---

INST
"*top/ptp_packet_buffer_inst/rx_ptp_packet_buffer_inst/rx_mac_logic_in
st/rx_clear_toggle" TNM = FFS "rx_clear_toggle";
INST
"*top/ptp_packet_buffer_inst/rx_ptp_packet_buffer_inst/rx_mac_logic_in
st/resync_clear_toggle/data_sync" TNM = FFS "rx_clear_toggle_resync";
TIMESPEC "ts_rx_clear_toggle" = FROM "rx_clear_toggle" TO
"rx_clear_toggle_resync" TIG;

INST
"*top/ptp_packet_buffer_inst/rx_ptp_packet_buffer_inst/rx_mac_logic_in
st/address*" TNM = FFS "rx_buf_addr";
INST
"*top/ptp_packet_buffer_inst/rx_ptp_packet_buffer_inst/rx_mac_logic_in
st/rx_packet*" TNM = FFS "rx_buf_addr_sample";
TIMESPEC "ts_rx_buf_addr" = FROM "rx_buf_addr" TO "rx_buf_addr_sample"
64 ns DATAPATHONLY;

clock domain crossing constraints for Tx PTP Packet Buffer logic
#---

INST
"*top/ptp_packet_buffer_inst/tx_ptp_packet_buffer_inst/tx_mac_logic_in
st/tx_valid_reg2" TNM = FFS "tx_valid_reg2";
INST
"*top/ptp_packet_buffer_inst/tx_ptp_packet_buffer_inst/tx_mac_logic_in
st/resync_frame_tx_toggle/data_sync" TNM = FFS "tx_valid_reg2_resync";
TIMESPEC "ts_tx_valid_reg2" = FROM "tx_valid_reg2" TO
"tx_valid_reg2_resync" TIG;

clock domain crossing constraints for Rx Configuration
#---

INST "*top/avb_configuration_inst/promiscuous_mode_int" TNM = FFS
"promiscuous_mode";
INST
"*top/legacy_inst*address_filter_inst/*resync_promiscuous_mode/data_sy
nc" TNM = FFS "promiscuous_mode_resync";
TIMESPEC "ts_promiscuous_mode" = FROM "promiscuous_mode" TO
"promiscuous_mode_resync" TIG;

Ethernet AVB Endpoint User Guide www.xilinx.com 101
UG492 March 1, 2011

Required Constraints

INST "*top/avb_configuration_inst/vlan_priority_a_int*" TNM = FFS
"vlan_priority_a";
INST "*top/rx_splitter_inst/vlan_priority_a_sample*" TNM = FFS
"vlan_priority_a_sample";
TIMESPEC "ts_vlan_priority_a_sample" = FROM "vlan_priority_a" TO
"vlan_priority_a_sample" TIG;

INST "*top/avb_configuration_inst/vlan_priority_b_int*" TNM = FFS
"vlan_priority_b";
INST "*top/rx_splitter_inst/vlan_priority_b_sample*" TNM = FFS
"vlan_priority_b_sample";
TIMESPEC "ts_vlan_priority_b_sample" = FROM "vlan_priority_b" TO
"vlan_priority_b_sample" TIG;

INST "*top/avb_configuration_inst/vlan_vid_a_int*" TNM = FFS
"vlan_vid_a";
INST "*top/rx_splitter_inst/vlan_vid_a_sample*" TNM = FFS
"vlan_vid_a_sample";
TIMESPEC "ts_vlan_vid_a_sample" = FROM "vlan_vid_a" TO
"vlan_vid_a_sample" TIG;

INST "*top/avb_configuration_inst/vlan_vid_b_int*" TNM = FFS
"vlan_vid_b";
INST "*top/rx_splitter_inst/vlan_vid_b_sample*" TNM = FFS
"vlan_vid_b_sample";
TIMESPEC "ts_vlan_vid_b_sample" = FROM "vlan_vid_b" TO
"vlan_vid_b_sample" TIG;

clock domain crossing constraints for Tx Configuration
#---

INST "*top/avb_configuration_inst/tx_cpu_reclock/wr_toggle"
TNM = FFS "tx_wr_toggle";
INST
"*top/avb_configuration_inst/tx_cpu_reclock/resync_write_toggle/data_s
ync" TNM = FFS "resync_tx_write_toggle";
TIMESPEC "ts_tx_wr_toggle" = FROM "tx_wr_toggle" TO
"resync_tx_write_toggle" TIG;

INST "*top/avb_configuration_inst/tx_cpu_reclock/rd_toggle"
TNM = FFS "tx_rd_toggle";
INST
"*top/avb_configuration_inst/tx_cpu_reclock/resync_read_toggle/data_sy
nc" TNM = FFS "resync_tx_read_toggle";
TIMESPEC "ts_tx_rd_toggle" = FROM "tx_rd_toggle" TO
"resync_tx_read_toggle" TIG;

INST "*top/avb_configuration_inst/tx_cpu_reclock/new_rd_toggle" TNM =
FFS "cpu_tx_rd_toggle";
INST
"*top/avb_configuration_inst/tx_cpu_reclock/resync_new_rd_toggle/data_
sync" TNM = FFS "resync_cpu_tx_rd_toggle";
TIMESPEC "ts_cpu_tx_rd_toggle" = FROM "cpu_tx_rd_toggle" TO
"resync_cpu_tx_rd_toggle" TIG;

INST "*top/avb_configuration_inst/tx_cpu_reclock/new_wr_toggle" TNM =
FFS "cpu_tx_wr_toggle";

102 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 11: Constraining the Core

INST
"*top/avb_configuration_inst/tx_cpu_reclock/resync_new_wr_toggle/data_
sync" TNM = FFS "resync_cpu_tx_wr_toggle";
TIMESPEC "ts_cpu_tx_wr_toggle" = FROM "cpu_tx_wr_toggle" TO
"resync_cpu_tx_wr_toggle" TIG;

INST "*top/avb_configuration_inst/tx_cpu_reclock/new_be*" TNM = FFS
"tx_cpu_sample";
INST "*top/avb_configuration_inst/tx_cpu_reclock/new_addr*" TNM = FFS
"tx_cpu_sample";
TIMESPEC "ts_tx_cpu_sample" = FROM "cpu_bus" TO "tx_cpu_sample" 16 ns
DATAPATHONLY;

INST "*top/avb_configuration_inst/clear_tx_int" TNM = FFS
"tx_regs_sample";
INST "*top/avb_configuration_inst/tx_send_frame*" TNM = FFS
"tx_regs_sample";
INST "*top/avb_configuration_inst/tx_sendslope_int*" TNM = FFS
"tx_regs_sample";
INST "*top/avb_configuration_inst/tx_idleslope_int*" TNM = FFS
"tx_regs_sample";
TIMESPEC "ts_tx_regs_sample" = FROM "cpu_bus" TO "tx_regs_sample" 24 ns
DATAPATHONLY;

INST "*top/avb_configuration_inst/rd_data_tx*" TNM = FFS "tx_rd_data";
INST "*top/avb_configuration_inst/cpu_rd_data*" TNM = FFS
"tx_cpu_rd_data";
TIMESPEC "ts_tx_rd_data" = FROM "tx_rd_data" TO "tx_cpu_rd_data" 16 ns
DATAPATHONLY;

clock domain crossing constraints for RTC Configuration Logic
#---

INST "*top/rtc_inst/rtc_configuration_inst/rtc_cpu_reclock/wr_toggle"
TNM = FFS "rtc_wr_toggle";
INST
"*top/rtc_inst/rtc_configuration_inst/rtc_cpu_reclock/resync_write_tog
gle/data_sync" TNM = FFS "resync_rtc_write_toggle";
TIMESPEC "ts_rtc_wr_toggle" = FROM "rtc_wr_toggle" TO
"resync_rtc_write_toggle" TIG;

INST "*top/rtc_inst/rtc_configuration_inst/rtc_cpu_reclock/rd_toggle"
TNM = FFS "rtc_rd_toggle";
INST
"*top/rtc_inst/rtc_configuration_inst/rtc_cpu_reclock/resync_read_togg
le/data_sync" TNM = FFS "resync_rtc_read_toggle";
TIMESPEC "ts_rtc_rd_toggle" = FROM "rtc_rd_toggle" TO
"resync_rtc_read_toggle" TIG;

INST
"*top/rtc_inst/rtc_configuration_inst/rtc_cpu_reclock/new_rd_toggle"
TNM = FFS "cpu_rtc_rd_toggle";
INST
"*top/rtc_inst/rtc_configuration_inst/rtc_cpu_reclock/resync_new_rd_to
ggle/data_sync" TNM = FFS "resync_cpu_rtc_rd_toggle";
TIMESPEC "ts_cpu_rtc_rd_toggle" = FROM "cpu_rtc_rd_toggle" TO
"resync_cpu_rtc_rd_toggle" TIG;

Ethernet AVB Endpoint User Guide www.xilinx.com 103
UG492 March 1, 2011

Required Constraints

INST
"*top/rtc_inst/rtc_configuration_inst/rtc_cpu_reclock/new_wr_toggle"
TNM = FFS "cpu_rtc_wr_toggle";
INST
"*top/rtc_inst/rtc_configuration_inst/rtc_cpu_reclock/resync_new_wr_to
ggle/data_sync" TNM = FFS "resync_cpu_rtc_wr_toggle";
TIMESPEC "ts_cpu_rtc_wr_toggle" = FROM "cpu_rtc_wr_toggle" TO
"resync_cpu_rtc_wr_toggle" TIG;

INST "*top/rtc_inst/rtc_configuration_inst/rtc_cpu_reclock/new_be*"
TNM = FFS "rtc_cpu_sample";
INST "*top/rtc_inst/rtc_configuration_inst/rtc_cpu_reclock/new_addr*"
TNM = FFS "rtc_cpu_sample";
TIMESPEC "ts_rtc_cpu_sample" = FROM "cpu_bus" TO "rtc_cpu_sample" 16 ns
DATAPATHONLY;

INST "*top/rtc_inst/rtc_configuration_inst/reg_nanosec_offset*" TNM =
FFS "rtc_regs_sample";
INST "*top/rtc_inst/rtc_configuration_inst/reg_sec_offset*" TNM = FFS
"rtc_regs_sample";
INST "*top/rtc_inst/rtc_configuration_inst/reg_epoch_offset*" TNM =
FFS "rtc_regs_sample";
INST "*top/rtc_inst/rtc_configuration_inst/reg_rtc_increment*" TNM =
FFS "rtc_regs_sample";
INST "*top/rtc_inst/rtc_configuration_inst/reg_offset_8k*" TNM = FFS
"rtc_regs_sample";
TIMESPEC "ts_rtc_regs_sample" = FROM "cpu_bus" TO "rtc_regs_sample" 24
ns DATAPATHONLY;

INST "*top/rtc_inst/rtc_configuration_inst/rd_data_result*" TNM = FFS
"rtc_rd_data";
INST "*top/rtc_inst/rtc_configuration_inst/cpu_rd_data*" TNM = FFS
"rtc_cpu_rd_data";
TIMESPEC "ts_rtc_rd_data" = FROM "rtc_rd_data" TO "rtc_cpu_rd_data" 16
ns DATAPATHONLY;

INST "*top/rtc_inst/rtc_configuration_inst/pulse1div128sec_toggle" TNM
= FFS "pulse1div128sec_toggle";
INST
"*top/rtc_inst/rtc_configuration_inst/resync_set_toggle/data_sync"
TNM = FFS "resync_set_toggle";
TIMESPEC "ts_pulse1div128sec_toggle" = FROM "pulse1div128sec_toggle" TO
"resync_set_toggle" 8 ns DATAPATHONLY;

clock domain crossing constraints for MAC Host I/F Logic
#---

INST "*top*generic_host_if_inst/wr_toggle" TNM = FFS "wr_toggle";
INST "*top*generic_host_if_inst/resync_write_toggle/data_sync" TNM =
FFS "resync_write_toggle";
TIMESPEC "ts_wr_toggle" = FROM "wr_toggle" TO "resync_write_toggle" 8
ns DATAPATHONLY;

INST "*top*generic_host_if_inst/rd_toggle" TNM = FFS "rd_toggle";
INST "*top*generic_host_if_inst/resync_read_toggle/data_sync" TNM =
FFS "resync_read_toggle";
TIMESPEC "ts_rd_toggle" = FROM "rd_toggle" TO "resync_read_toggle" 8
ns DATAPATHONLY;

104 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 11: Constraining the Core

INST "*top/include_plb.plb_intf_inst/Bus2IP_Addr*" TNM = FFS
"cpu_bus";
INST "*top/include_plb.plb_intf_inst/Bus2IP_Data*" TNM = FFS "cpu_bus";
INST "*top/include_plb.plb_intf_inst/Bus2IP_BE*" TNM = FFS "cpu_bus";
INST "*top*generic_host_if_inst/host_address_bit10" TNM = FFS
"host_sample";
INST "*top*generic_host_if_inst/host_address*" TNM = FFS "host_sample";
INST "*top*generic_host_if_inst/stats_upper_word*" TNM = FFS
"host_sample";
INST "*top*generic_host_if_inst/host_wr_data*" TNM = FFS "host_sample";
INST "*top*generic_host_if_inst/host_be*" TNM = FFS "host_sample";
TIMESPEC "ts_host_sample" = FROM "cpu_bus" TO "host_sample" 8 ns
DATAPATHONLY;

INST "*top*generic_host_if_inst/host_toggle_reg2" TNM = FFS
"host_toggle";
INST "*top*generic_host_if_inst/resync_host_toggle/data_sync" TNM =
FFS "resync_host_toggle";
TIMESPEC "ts_host_toggle" = FROM "host_toggle" TO "resync_host_toggle"
8 ns DATAPATHONLY;

INST "*top*generic_host_if_inst/host_rd_data_result*" TNM = FFS
"host_rd_data";
INST "*top*generic_host_if_inst/cpu_rd_data*" TNM = FFS "cpu_rd_data";
TIMESPEC "ts_cpu_rd_data" = FROM "host_rd_data" TO "cpu_rd_data" 8 ns
DATAPATHONLY;

Ethernet AVB Endpoint User Guide www.xilinx.com 105
UG492 March 1, 2011

Chapter 12

System Integration

The core is designed to interface to the LogiCORE™ IP Tri-Mode Ethernet MAC (v4.5 or
v4.4) or the LogiCORE IP Embedded Tri-Mode Ethernet MAC wrappers.

The Ethernet AVB Endpoint core can be connected to the following Ethernet MACs from
the CORE Generator™ software LogiCORE IP library:

• LogiCORE IP Tri-Mode Ethernet MAC (Soft Core) (v4.5 and v4.4) available for all
Spartan®-3, Spartan-3E, Spartan-3A, Spartan-3A DSP, Spartan-6, Virtex®-5 and
Virtex-6 devices.

• LogiCORE IP Embedded Tri-Mode Ethernet MACs, available in selected Virtex-5
(v1.8 and v1.7) and Virtex-6 (v1.5 and v1.4) devices.

Also see individual product documentation.

LogiCORE IP Tri-Mode Ethernet MAC (Soft Core)

Tri-Mode Ethernet MAC Core Generation

When generating the Tri-Mode Ethernet MAC (TEMAC) core in the CORE Generator
software, be sure that the following options are selected:

• Management Interface. Enabled

• Clock Enables. Enabled

• Address Filter. Disabled

See the Tri-Mode Ethernet MAC User Guide (UG138) for additional information.

106 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 12: System Integration

Connections Without Ethernet Statistics
X-Ref Target - Figure 12-1

Figure 12-1: Connection to the Tri-Mode Ethernet MAC Core (without Ethernet Statistics)

tx_clk
tx_clk_en

tx_data[7:0]

rx_clk
rx_clk_en

rx_data[7:0]
rx_data_valid

rx_frame_good
rx_frame_bad

host_opcode[1:0]
host_addr[9:0]

host_wr_data[31:0]
host_req

host_miim_sel
host_miim_rdy

host_rd_data_mac[31:0]
host_rd_data_stats[31:0]

host_stats_lsw_rdy
host_stats_msw_rdy

host_clk

pause_req

tx_clk
tx_clk_en

tx_data[7:0]

tx_collision
tx_retransmit

rx_clk
rx_clk_en

rx_data[7:0]

rx_frame_good
rx_data_valid

rx_frame_bad

host_opcode[1:0]
host_addr[9:0]
host_wr_data[31:0]
host_req
host_miim_sel
host_miim_rdy
host_rd_data[31:0]

host_clk

host_clk

NC

NC

NC

NC

GND

NC
NC

GND

GND

tx_data_valid
tx_underrun

tx_ack

tx_data_valid
tx_underrun
tx_ack

tx_ifg_delay[7:0]

pause_val[15:0]

rx_statistics_valid

tx_statistics_vector[31:0]

rx_statistics_vector[27:0]

tx_statistics_valid

TEMAC Block-level Wrapper
(from TEMAC Example Design)

Ethernet AVB Endpoint
Core Netlist

Ethernet AVB Endpoint User Guide www.xilinx.com 107
UG492 March 1, 2011

Figure 12-1 illustrates the connection of the Ethernet AVB Endpoint core to the Xilinx® Tri-
Mode Ethernet MAC (TEMAC) core when not using the Ethernet Statistics core.
Figure 12-1 provides detail for the connections between the two cores which were shown
in Figure 5-1.

All connections, as shown, are logic-less connections. Because the AVB standard does not
include support for half-duplex or flow control operation, the relevant half-duplex/flow-
control signals of the TEMAC can be left unused: inputs can be tied to logic 0, outputs can
be left unconnected.

Because the TEMAC core can often be used in different clocking modes, note the following:

• The Ethernet transmitter client clock domain must always be connected to the
tx_clk input of the Ethernet AVB Endpoint core. Additionally, the transmitter clock
enable, as used with the TEMAC, must always be connected to the tx_clk_en input
of the Ethernet AVB Endpoint core.

• The Ethernet receiver client clock domain must always be connected to the rx_clk
input of the Ethernet AVB Endpoint core. Additionally, the receiver clock enable, as
used with the TEMAC, must always be connected to the rx_clk_en input of the
Ethernet AVB Endpoint core.

• The host_clk inputs of the Ethernet AVB Endpoint and of the TEMAC must always
share the same clock source. If desired, this can also be the clock source used for the
PLB interface.

108 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 12: System Integration

Connections Including Ethernet Statistics

Figure 12-2 illustrates the connection of the Ethernet AVB Endpoint core to the Xilinx Tri-
Mode Ethernet MAC (TEMAC) core when using the Ethernet Statistics core. This shares
much in common with Figure 12-1, but take note of the following additional points:

• All the MAC Management Interface output signals of the Ethernet AVB Endpoint core
connect directly to the signals of the same name at both the TEMAC and Ethernet
Statistics cores.

• The Ethernet AVB Endpoint core provides two separate MAC Management Interface
inputs for management reads. This allows for logic-less connections between all three
cores as illustrated. To achieve this

• connect host_rd_data_mac[31:0] of the Ethernet AVB Endpoint core to the
host_rd_data[31:0] port of the TEMAC.

• connect host_rd_data_stats[31:0] of the Ethernet AVB Endpoint core to
the host_rd_data[31:0] port of the Ethernet Statistics core.

X-Ref Target - Figure 12-2

Figure 12-2: Connection to the Tri-Mode Ethernet MAC and Ethernet Statistic Cores

tx_clk
tx_clk_en

tx_data[7:0]

rx_clk
rx_clk_en

 rx_data[7:0]

rx_frame_good
rx_frame_bad

host_opcode[1:0]
host_addr[9:0]

host_wr_data[31:0]
host_req

host_miim_sel
host_miim_rdy

host_rd_data_mac[31:0]
host_rd_data_stats[31:0]

host_clk

pause_req
pause_val[15:0]

tx_clk
tx_clk_en

tx_data[7:0]
tx_data_valid
tx_underrun
tx_ack
tx_collision
tx_retransmit
tx_ifg_delay[7:0]

rx_clk
rx_clk_en

rx_data[7:0]

rx_frame_good
rx_data_valid

rx_frame_bad

host_opcode[1:0]
host_addr[9:0]
host_wr_data[31:0]
host_req
host_miim_sel
host_miim_rdy
host_rd_data[31:0]

host_clk

host_opcode[1:0]
host_addr[9:0]

host_req
host_miim_sel
host_miim_rdy
host_rd_data[31:0]
host_stats_lsw_rdy
host_stats_msw_rdy

host_clk

tx_statistics_valid
tx_statistics_vector[31:0]

rx_statistics_valid
rx_statistics_vector[27:0]

tx_clk
tx_clk_en

tx_statistics_valid
tx_statistics_vector[31:0]

rx_clk
rx_clk_en

rx_statistics_valid
rx_statistics_vector[27:0]

host_clk

GND

GND

NC
NC

TEMAC BLock-level Wrapper
(from TEMAC Example Design)

Ethernet AVB Endpoint
Core Netlist

host_stats_msw_rdy
host_stats_lsw_rdy

rx_data_valid

tx_data_valid
tx_underrun

tx_ack

Ethernet Statistics Block-level Wrapper
(from Ethernet Statistics Example Design)

Ethernet AVB Endpoint User Guide www.xilinx.com 109
UG492 March 1, 2011

LogiCORE IP Embedded Tri-Mode Ethernet MACs

Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC Wrapper Generation

When generating the Virtex-5 FPGA Embedded Ethernet MAC Wrapper (EMAC) in the
CORE Generator software, be sure that the following options are selected:

• Enable EMACs. Enable only a single EMAC (from the pair) at this time

• Host Type. Select Host

• Speed. Select Tri-speed

• Global Buffer Usage. Clock Enable

• Flow Control Configuration. Disabled

• EMAC0 Configuration. Enable VLAN Enable in both the Transmitter Configuration and
Receiver Configuration boxes

See the Virtex-5 Embedded Tri-Mode Ethernet MAC Wrapper Getting Started Guide (UG340) for
additional information.

110 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 12: System Integration

Connections Without Ethernet Statistics

Figure 12-3 illustrates the connection of the Ethernet AVB Endpoint core to the Xilinx Tri-
Mode Ethernet MAC (EMAC) core when not using the Ethernet Statistics core. Figure 12-3
provides detail for the connections between the two cores which were shown in Figure 5-1.

All connections, as shown, are logic-less connections. Because the AVB standard does not
include support for half-duplex or flow control operation, the relevant half-duplex/flow-
control signals of the EMAC can be left unused: inputs can be tied to logic 0, outputs can be
left unconnected.

X-Ref Target - Figure 12-3

Figure 12-3: Connection to the Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC
(without Ethernet Statistics)

tx_clk
tx_clk_en

tx_data[7:0]

rx_clk
rx_clk_en

rx_data[7:0]
rx_data_valid

rx_frame_good
rx_frame_bad

host_opcode[1:0]
host_addr[9:0]

host_wr_data[31:0]
host_req

host_miim_sel
host_miim_rdy

host_rd_data_mac[31:0]
host_rd_data_stats[31:0]

host_stats_lsw_rdy
host_stats_msw_rdy

host_clk

CLIENTEMAC0PAUSEREQ
CLIENTEMAC0PAUSEVAL[15:0]

TX_CLK_0
TX_CLIENT_CLK_ENABLE_0
CLIENTEMAC0TXD[7:0]
CLIENTEMAC0TXDVLD
CLIENTEMAC0TXUNDERRUN
EMAC0CLIENTTXACK
EMAC0CLIENTTXCOLLISION
EMAC0CLIENTTXRETRANSMIT
CLIENTEMAC0IFGDELAY

GMII_RX_CLK0
RX_CLIENT_CLK_ENABLE_0
EMAC0CLIENTRXD[7:0]
EMAC0CLIENTRXDVLD
EMAC0CLIENTRXGOODFRAME
EMAC0CLIENTRXBADFRAME

HOSTADDR[9:0]
HOSTWRDATA[31:0]
HOSTREQ
HOSTMIIMSEL
HOSTMIIMRDY
HOSTRDDATA[31:0]

HOSTCLK
HOSTEMAC1SEL

EMAC0CLIENTTXSTATS
EMAC0CLIENTTXSTATSVLD

EMAC0CLIENTTXSTATSBYTEVLD

EMAC0CLIENTRXSTATS[6:0]
EMAC0CLIENTRXSTATSVLD

EMAC0CLIENTRXSTATSBYTEVLD

host_clk

NC
NC

NC

NC

GND

GND

GND

NC

NC

NC

NC

NC

GND

tx_data_valid
tx_underrun

tx_ack

Ethernet AVB Endpoint
Core Netlist

Block-level Wrapper
(from Virtex-5 Embedded Tri-mode

Ethernet MAC Wrapper)

HOSTOPCODE[1:0]

Ethernet AVB Endpoint User Guide www.xilinx.com 111
UG492 March 1, 2011

Because the EMAC core can often be used in different clocking modes, note the following:

• The Ethernet transmitter client clock domain must always be connected to the
tx_clk input of the Ethernet AVB Endpoint core. Additionally, the transmitter clock
enable, as used with the EMAC, must always be connected to the tx_clk_en input
of the Ethernet AVB Endpoint core.

• The Ethernet receiver client clock domain must always be connected to the rx_clk
input of the Ethernet AVB Endpoint core. Additionally, the receiver clock enable, as
used with the EMAC, must always be connected to the rx_clk_en input of the
Ethernet AVB Endpoint core.

• The host_clk input of the Ethernet AVB Endpoint and the HOSTCLK input the
EMAC must always share the same clock source.

Connections Including Ethernet Statistics
X-Ref Target - Figure 12-4

Figure 12-4: Connection to the Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC and Ethernet Statistic
Core

tx_clk
tx_clk_en

tx_data[7:0]
tx_data_valid
tx_underrun

tx_ack

rx_clk
rx_clk_en

rx_data[7:0]
rx_data_valid

host_opcode[1:0]
host_addr[9:0]

host_wr_data[31:0]
host_req

host_miim_sel
host_miim_rdy

host_rd_data_mac[31:0]
hos_rd_data_stats[31:0]

host_clk

CLIENTEMAC0PAUSEREQ
CLIENTEMAC0PAUSEVAL[15:0]

TX_CLK_0
TX_CLIENT_CLK_ENABLE_0
CLIENTEMAC0TXD[7:0]
CLIENTEMAC0TXDVLD
CLIENTEMAC0TXUNDERRUN
EMAC0CLIENTTXACK
EMAC0CLIENTTXCOLLISION
EMAC0CLIENTTXRETRANSMIT
CLIENTEMAC0IFGDELAY

GMII_RX_CLK0
RX_CLIENT_CLK_ENABLE_0
EMAC0CLIENTRXD[7:0]
EMAC0CLIENTRXDVLD
EMAC0CLIENTRXGOODFRAME
EMAC0CLIENTRXBADFRAME

HOSTOPCODE[1:0]
HOSTADDR[9:0]
HOSTWRDATA[31:0]
HOSTREQ
HOSTMIIMSEL
HOSTMIIMRDY

HOSTCLK
HOSTEMAC1SEL

EMAC0CLIENTTXSTATS
EMAC0CLIENTTXSTATSVLD

EMAC0CLIENTTXSTATSBYTEVLD

EMAC0CLIENTRXSTATS[6:0]
EMAC0CLIENTRXSTATSVLD

EMAC0CLIENTRXSTATSBYTEVLD

host_clk

GND

GND

NC
NC

GND

host_opcode[1:0]
host_addr[9:0]

host_req
host_miim_sel
host_miim_rdy
host_rd_data[31:0]
host_stats_lsw_rdy
host_stats_msw_rdy

host_clk

txclientclkin
clienttxstats

clienttxstatsvld
clienttxstatsbytevalid

rxclientclkin
clientrxstats[6:0]

clientrxstatsvld
clientrxstatsbytevalid

clientrxdvld

host_stats_lsw_rdy
host_stats_msw_rdy

rx_frame_good
rx_frame_bad

Ethernet Statistics Block-level Wrapper
(from Ethernet Statistics Example Design)

Block-level Wrapper
(from Virtex-5 Embedded Tri-mode

Ethernet MAC Wrapper)

Ethernet AVB Endpoint
Core Netlist

HOSTRDDATA[31:0]

112 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 12: System Integration

Figure 12-4 illustrates the connection of the Ethernet AVB Endpoint core to the EMAC
when using the Ethernet Statistics core. This shares much in common with Figure 12-2;
however, note the following additional points:

• All of the MAC Management Interface output signals of the Ethernet AVB Endpoint
core connect directly to the signals of both the EMAC and Ethernet Statistics cores.

• The Ethernet AVB Endpoint core provides two separate MAC Management Interface
inputs for management reads. This allows for logic-less connections between all three
cores as illustrated. To achieve this

• connect host_rd_data_mac[31:0] of the Ethernet AVB Endpoint core to the
HOSTRDDATA[31:0] port of the EMAC.

connect host_rd_data_stats[31:0] of the Ethernet AVB Endpoint core to the
host_rd_data[31:0] port of the Ethernet Statistics core.

Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC

The Ethernet AVB Endpoint core will also connect directly to the Virtex-6 FPGA Embedded
Tri-Mode Ethernet MAC (EMAC). Use all of the preceding steps described for the Virtex-5
FPGA EMAC, the only difference being that Virtex-6 FPGA EMAC does not come in pairs;
each EMAC is an individual element.

Connection of the PLB to the EDK for LogiCORE IP Ethernet MACs
Figure 12-5 illustrates the connection of the core to an embedded processor subsystem
(MicroBlaze™ processor is illustrated). As shown:

• The PLB can be shared across all peripherals as illustrated.

• The Interrupt Signals should be connected to the inputs of an interrupt controller
module, for example, the xps_intc core provided with the EDK.

• The embedded processor should be configured to use the software drivers provided
with the core (see Chapter 13, Software Drivers) (not illustrated).

Ethernet AVB Endpoint User Guide www.xilinx.com 113
UG492 March 1, 2011

X-Ref Target - Figure 12-5

Figure 12-5: Connection of the Ethernet AVB Endpoint Core into an Embedded Processor Sub-system

Microblaze

BRAM

xps_intc xps_uartlite

lmb_bram_if_cntlr

Ethernet
AVB

Endpoint

TEMAC

Custom AV logic

Custom Legacy logic

PLB

PLB

AV
traffic
I/F

Legacy
traffic
I/F

MAC
client
I/F

Host I/F MDIO

Ethernet
PHY I/F

interrupt_ptp_timer

interrupt_ptp_rx

interrupt_ptp_tx

114 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 12: System Integration

Figure 12-5 can be implemented using the Xilinx tool set using two methods:

• Using an EDK Project Top Level

• Using an ISE Software Top-Level Project

Using an EDK Project Top Level

Figure 12-6 shows the implementation using an EDK project. In this hierarchy, the Ethernet
AVB Endpoint, Tri-Mode Ethernet MAC, and all custom logic blocks, must be manually
translated into pcores using the standard pcore approach described in Xilinx Platform
Studio documentation. The standard EDK flow can then be implemented to build the
project.

X-Ref Target - Figure 12-6

Figure 12-6: Connection into an Embedded Processor Sub-system with an EDK Top-level Project

Microblaze

BRAM

xps_intc xps_uartlite

lmb_bram_if_cntlr

Ethernet
AVB

Endpoint

TEMAC

Custom AV logic

Custom Legacy logic

PLB

PLB

AV
traffic
I/F

Legacy
traffic
I/F

MAC
client
I/F

Host I/F

interrupt_ptp_timer

interrupt_ptp_rx

interrupt_ptp_tx

pcore:
plb_port

EDK Tool Domain

pcorepcore

pcore

pcore

MDIO

Ethernet
PHY I/F

Ethernet AVB Endpoint User Guide www.xilinx.com 115
UG492 March 1, 2011

In this example, the instance of the Ethernet AVB Endpoint core should be assigned a base
address in the Microprocessor Hardware Specification (.mhs) file, to match that of the
Ethernet AVB Endpoint PLB Base Address (in the generated netlist produced by the CORE
Generator software). Then the AVB software drivers can be assigned to this instance in the
Microprocessor Software Specification (.mss) file.

Using an ISE Software Top-Level Project
X-Ref Target - Figure 12-7

Figure 12-7: Connection into an Embedded Processor Sub-system with an ISE Software Top-Level Project

Microblaze

BRAM

xps_intc xps_uartlite

lmb_bram_if_cntlr

Ethernet
AVB

Endpoint

TEMAC

Custom AV logic

Custom Legacy logic

PLB

PLB

AV
traffic
I/F

Legacy
traffic
I/F

MAC
client
I/F

Host I/F MDIO

Ethernet
PHY I/F

interrupt_ptp_timer

interrupt_ptp_rx

interrupt_ptp_tx

pcore:
plb_port

EDK tool domain

ISE tool domain

116 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 12: System Integration

Figure 12-7 shows the implementation using an ISE® software top-level project. In this
hierarchy, the embedded processor subsystem is created using an EDK project containing
only the blocks illustrated in the EDK tool domain block. This EDK project is not the top
level of the system and is instantiated as a black box subcomponent in a standard ISE
software project as illustrated.

In this example:

• The EDK component is synthesized by the EDK tools; this block can then be left alone
(unedited)

• All other components (for example, the Custom AV logic) can be created using a
standard ISE software project. This flow should be familiar to a wider range of
engineers than the EDK tool set.

The main advantages of this implementation hierarchy are in terms of possible faster
development turn-around for synthesis/implementation run time.

A final word of explanation is required for the EDK project illustrated in Figure 12-7. To
assign the AVB software drivers running on the MicroBlaze processor to the Ethernet AVB
Endpoint core, the plb_port pcore was created. This pcore is simply a bunch of wires to
route through all of the PLB signals through to ports of the EDK block top level. In the
Microprocessor Hardware Specification (.mhs) file, this pcore was assigned a base address
matching that of the Ethernet AVB Endpoint PLB Base Address (in the generated netlist
produced by the CORE Generator software). Then the AVB software drivers were assigned
to the plb_port instance in the Microprocessor Software Specification (.mss) file. The main
advantages of this implementation hierarchy are in terms of possible faster development
turn-around for synthesis/implementation run time. This is because the EDK components
will exist in a netlist format and so do not have to be re-synthesized for each design
iteration.

Ethernet AVB Endpoint User Guide www.xilinx.com 117
UG492 March 1, 2011

Chapter 13

Software Drivers

Software drivers delivered with the Ethernet AVB Endpoint core provide the following
functions, which utilize the dedicated hardware within the core for the Precise Timing
Protocol (PTP) IEEE P802.1AS specification:

• Best Clock Master Algorithm (BMCA) determines whether the core should operate
in master clock or slave clock mode

• PTP Clock Master functions

• PTP Clock Slave functions that accurately synchronize the local Real Time Clock
(RTC) to match that of the network clock master

The following definitions provide only a simplistic concept of PTP protocol operation. For
detailed information about the PTP protocol, see the IEEE P802.1AS specification.

This chapter only describes the basic operation and some key components of the software
drivers. The software driver code is documented such that the comments can be viewed by
Doxygen and detailed descriptions of all aspects of the software are available throughout
the code. This should allow customers to fully understand the operation of the provided
software drivers and to edit the drivers for their own secret source applications.

Fundamentally, the slave Real Time Clock synchronization functions complete a software
controlled phase-locked loop. Therefore, many implementations are possible. The
provided software drivers implement a very simple software PLL implementation.
However, this has been shown in hardware to provide excellent Real Time Clock
synchronization results.

The document section drivers/avb_v3_01_a/src in Chapter 16 lists all of the C files
delivered with the Ethernet AVB Endpoint core and provides a description of how the
software is divided up between these files.

Clock Master
If the core is acting as clock master, the software drivers delivered with the core
periodically sample the current value of the RTC and transmit this value to every device on
the network using the P802.1 defined Sync and Follow-Up PTP packets.

118 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 13: Software Drivers

Clock Slave
If the core is acting as a clock slave, the local RTC is closely matched to the value and
frequency of the network clock master. This is achieved, in part, by receiving the PTP Sync
and Follow-Up frames transmitted across the network by the clock master (and containing
the sampled RTC value of the master). The PTP mechanism also tracks the total routing
delay across the network between the clock master and itself. The software drivers use this
data, in conjunction with recent historical data, to calculate the error between its local RTC
counter and that of the RTC clock master. The software then periodically calculates an RTC
correction value and an updated increment rate, and these values are written to
appropriate RTC configuration registers.

Because the drivers are provided as C code text files, they can be easily modified and
designers can edit the files to provide their own secret source, or even to update the
software drivers for P802.1AS specification changes.

Software System Integration
The software drivers for the Ethernet AVB Endpoint core need to be run on an embedded
processor. In addition, they require instantiation into the overall software project, and then
initialization.

An example software project file that performs the required steps is included with the core
in the following location:

<component_name>/MyProcessorIPLib/drivers/
ethernet_avb_endpoint_v3_01_a/examples/xavb_example.c

This software example has been tested in a real system. For this reason, use this file for
reference, along with the following descriptions:

• Driver Instantiation

• Interrupt Service Routine Connections

• Core Initialization

• Ethernet AVB Endpoint Setup

• Starting and Stopping the AVB Drivers

Note: Unless you are already familiar with the Xilinx® Embedded Development Kit (EDK), see the
EDK documentation to follow the steps described.

Driver Instantiation
Software driver instantiation for the Ethernet AVB Endpoint core follows the standard
EDK model used for all EDK IP cores and as recommended for all user defined pcores (see
the EDK documentation). Initialization of the driver requires that an instance of the driver
is instantiated, assigned a base address within the PLB address range, and configured
using the standardized cores CfgInitialize function.

Ethernet AVB Endpoint User Guide www.xilinx.com 119
UG492 March 1, 2011

Software System Integration

For example, in the user software, the AVB drivers can be instanced as follows:

/* Allocate an instance of the XAvb device driver */
static XAvb Avb;
int Status;
XAvb_Config *AvbConfigPtr;
.
/* Initialize AVB Driver */
AvbConfigPtr = XAvb_LookupConfig(AVB_DEVICE_ID);
Status = XAvb_CfgInitialize(&Avb,

AvbConfigPtr,
AvbConfigPtr->BaseAddress);

In the previous example, the AVB_DEVICE_ID is defined in the xparameters.h file,
automatically generated by the EDK tools as a result of the software driver instance and
the hardware instance of the Ethernet AVB Endpoint core in the Microprocessor Software
Specification (.mss) file and the Microprocessor Hardware Specification (.mhs) files.

When the core has been generated in the Standard CORE Generator™ software format (see
Core Delivery Format), the value of the base address used for the hardware instance in the
.mhs file must match the value of the PLB base address which was selected during the
Ethernet AVB Endpoint core generation.

When the core has been generated in the EDK pcore format, the value of the PLB base
address is automatically configured by XPS.

Interrupt Service Routine Connections
The Ethernet AVB Endpoint core creates three interrupt output signals:
interrupt_ptp_timer, interrupt_ptp_tx and interrupt_ptp_rx. It is
recommended that these be connected to the interrupt input ports of a xps_intc core: this
is a standard interrupt controller core, complete with associated software drivers, which
are available with the EDK.

In this version of the Ethernet AVB Endpoint core, only the interrupt_ptp_timer and
interrupt_ptp_rx interrupts are required by the software drivers. The functionality
provided by the interrupt_ptp_tx interrupt signal, as used in previous software driver
versions, has been replaced with polling functionality to reduce the overall interrupt
driver overhead.

The two hardware interrupt signals required need to be connected to the following
interrupt routine service functions:

• interrupt_ptp_timer needs to call the function XAvb_PtpTimerInterruptHandler()

• interrupt_ptp_rx needs to call the function XAvb_PtpRxInterruptHandler()

Again, see the provided software example file that performs these steps.

120 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 13: Software Drivers

Core Initialization

When Using a LogiCORE IP Tri-Mode Ethernet MAC

The Xilinx LogiCORE™ IP Tri-Mode Ethernet MACs require initialization of the MDIO
clock frequency (the MDC signal) and requires specific non-default configuration (VLAN
enabled, Flow Control disabled). The following lines of code of perform these steps.

/* Configure MDIO Master in TEMAC - MUST be done before any MDIO
accesses */
 XAvbMac_WriteConfig(InstancePtr->Config.BaseAddress,
 XAVB_MAC_MGMT_REG_OFFSET,
 0x0000004F);

 /* Disable TEMAC Flow Control */
 XAvbMac_WriteConfig(InstancePtr->Config.BaseAddress,
 XAVB_MAC_FC_REG_OFFSET,
 0x0);

 /* Initialize TEMAC by enabling Tx and Rx with VLAN capability */
 XAvbMac_WriteConfig(InstancePtr->Config.BaseAddress,
 XAVB_MAC_TX_REG_OFFSET,
 (XAVB_MAC_TX_ENABLE_MASK |
XAVB_MAC_TX_VLAN_ENABLE_MASK));

Ethernet AVB Endpoint Setup
This section describes the main elements that you may have to modify in order to operate
the Ethernet AVB Endpoint software in their application.

System-Specific Defines in xavb_hw.h

This header file assumes that the rtc_clk input is connected to a 125 MHz clock source.
If a clock with a different frequency is connected to this input, then the following #define
should be edited so that the increment written to the RTC Increment Value Control
Register matches the RTC clock.

#define XAVB_RTC_INCREMENT_NOMINAL_RATE 0x00800000

System-Specific Defines in xavb.h

The timestamp reference plane is defined by IEEE P802.1AS to be at the PHY and because
the Ethernet AVB Endpoint captures the timestamp when the first symbol following the
SFD is seen at the Ethernet MAC Client interface, the software needs to know the fixed
latency values through the MAC and PHY. The following two #defines should be edited to
include the values (in nanoseconds) of the ingress and egress delays through the PHY that
is being used in the system. The values are set to 80 by default (which is the fixed delay
through the MAC (only) in each direction).

#define XAVB_TX_MAC_LATENCY_IN_NS 80
#define XAVB_RX_MAC_LATENCY_IN_NS 80

Ethernet AVB Endpoint User Guide www.xilinx.com 121
UG492 March 1, 2011

Software System Integration

Setting up SourcePortIdentity (and Default TX PTP Messages)

The TX Packet buffers are pre-initialized with default values for all of the possible fields in
each message. However, in order for the Ethernet AVB Endpoint software drivers to run
correctly the following fields need to be written with sensible values.

• sourcePortIdentity in all TX PTP default messages

• grandmasterIdentity in TX PTP Announce message

• pathSequence (ClockIdentity[1]) in TX PTP Announce message

The example design xavb_example.c provides a simple mechanism to achieve this using
the following #defines.

#define ETH_SOURCE_ADDRESS_EUI48_HIGH 0xFFEEDD
#define ETH_SOURCE_ADDRESS_EUI48_LOW 0xCCBBAA

You can edit the #defines shown in the previous lines to be the Ethernet Source Address for
the device and the example software then provides code that translates this address into an
XAvb_PortIdentity struct. The function XAvb_SetupSourcePortIdentity() is called with the
XAvb_PortIdentity struct and writes it to the appropriate fields in the TX PTP Buffer.
Additionally it stores it in the XAvb struct as the following member:

/** Contains the local port Identity information */
XAvb_PortIdentity portIdLocal;

The example software also provides an example of how to write the Ethernet Source
Address into all TX PTP packet buffers.

Setting up GrandMaster Discontinuity Callback Handler

The Ethernet AVB Endpoint software defines a callback routine which is called when the
endpoint switches between being a Master and a Slave (or vice versa), or when it loses PTP
lock. The application software must define a callback handler for this; otherwise an error is
asserted. The example software provides an example of this as follows:

/** Function Prototype */
static void GMDiscontinuityHandler(void *CallBackRef,

unsigned int TimestampsUncertain);

/** Main function in this example */
main() {
/** ... */
 XAvb_Config *AvbConfigPtr;

/** Setup the handler that will be called if the PTP drivers
 * identify a possible discontinuity in GrandMaster time. */
 XAvb_SetGMDiscontinuityHandler(&Avb, GMDiscontinuityHandler, &Avb);

/** ... */
/***/
/**
* This function is the handler which will be called if the PTP drivers
* identify a possible discontinuity in GrandMaster time.
* This handler provides an example of how to handle this situation -
* but this function is application specific.
*
* @param CallBackRef contains a callback reference from the driver, in
* this case it is the instance pointer for the AVB driver.
* @param TimestampsUncertain - a value of 1 indicates that there is a

122 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 13: Software Drivers

* possible discontinuity in GrandMaster time. A value of 0
* indicates that Timestamps are no longer uncertain.
**/
static void GMDiscontinuityHandler(void *CallBackRef,

 unsigned int TimestampsUncertain)
{
xil_printf("\r\nGMDiscontinuityHandler: Timestamps are now %s\r\n",

TimestampsUncertain ? "uncertain" : "certain");
}

Starting and Stopping the AVB Drivers
The default state after driver initialization is for the AVB drivers to be inactive. After the
Ethernet link has been established, the drivers can be started using the following function
call. This begins operation of the IEEE802.1 AS PTP protocol.

XAvb_Start(InstancePtr);

Before starting the drivers, ensure that the Ethernet PHY has successfully auto-negotiated
a full duplex link at either 100 Mb/s or 1 Gb/s Ethernet speeds. Early implementations
may also require the completion of an LLDP (Link Layer Discovery Protocol) function.
LLDP has been used in early AVB implementations to negotiate support of AVB between
peer devices for interoperability (AVB standards are still considering the use of LLDP).
LLDP is not currently included in our software drivers or example file.

The AVB drivers can be stopped at any time (to halt the IEEE802.1 AS PTP protocol) by
calling the following function:

XAvb_Stop(InstancePtr);

The software example included halts the drivers whenever the Ethernet PHY Auto-
Negotiation indicates that it has lost the link, or has negotiation to an unsupported
ethernet mode (for example, half duplex).

Ethernet AVB Endpoint User Guide www.xilinx.com 123
UG492 March 1, 2011

Chapter 14

Quick Start Example Design

The quick start steps provided in this chapter let you quickly generate an Ethernet AVB
Endpoint core, run the design through implementation with the Xilinx tools, and simulate
the design using the provided demonstration test bench. For detailed information about
the Standard CORE Generator™ software example design, see Chapter 15, Detailed
Example Design.

Overview
The Ethernet AVB Endpoint example design consists of the following:

• Ethernet AVB Endpoint core netlist

• Example design HDL top-level and associated HDL files

• Demonstration test bench to exercise the example design

124 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 14: Quick Start Example Design

The Ethernet AVB Endpoint example design has been tested using Xilinx® ISE® software
v13.1, Cadence Incisive Enterprise Simulator (IES) v10.2, Mentor Graphics ModelSim
v6.6d, and Synopsys VCS and VCS MX 2010.06.
X-Ref Target - Figure 14-1

Figure 14-1: Ethernet AVB Endpoint Example Design and Test Bench

Example Design Top Level

Ethernet
AVB

Endpoint
LogiCORE

legacy
traffic

AV trafficTx frame
stimulus

loopback
moduleTx frame

stimulus

Rx frame
checker

Rx frame
checker

PLBInterrupts

PLB
module

AV traffic

legacy
traffic

Clock
and

Reset
generation

Statistic
Gathering

Demonstration Test Bench

Ethernet AVB Endpoint User Guide www.xilinx.com 125
UG492 March 1, 2011

Generating the Core

Generating the Core
This section provides detailed instructions for generating the Ethernet AVB Endpoint
example design core.

To generate the core:

1. Start the CORE Generator tool.

For general help with starting and using CORE Generator software on your system,
see the documentation supplied with the ISE software, including the CORE Generator
Guide. These documents can be downloaded from:
www.xilinx.com/support/software_manuals.htm

2. Create a new project.

3. For project options, select the following:

• A Virtex®-6, Virtex-5, Spartan®-3, Spartan-3E, Spartan-3A/3A DSP or Spartan-6
device to generate the default Ethernet AVB Endpoint core.

• In the Design Entry section, select VHDL or Verilog; then select Other for Vendor.

4. Locate the Ethernet AVB Endpoint core in the taxonomy tree, listed under one of the
following:

• Automotive & Industrial/Automotive

• Communications & Networking/Ethernet

• Communications & Networking/Networking

• Communications & Networking/Telecommunications

5. Double-click the core name. A message may appear to indicate the limitations of the
Simulation Only Evaluation license.

6. Click OK; the core customization screen appears.
X-Ref Target - Figure 14-2

Figure 14-2: Ethernet AVB Endpoint Core Customization Screen

126 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 14: Quick Start Example Design

7. Enter a core instance name in the Component Name field.

8. Maintain the default options on GUI page 2.

9. Click Generate to deliver the core using the default options.

The default core and its supporting files, including the example design, are generated in
your project directly. For a detailed description of the design example files and directories,
see Chapter 15, Detailed Example Design.

Implementing the Example Design
After the core is generated, the netlists and example design can be processed by the Xilinx
implementation tools. The generated output files include several scripts to assist you in
running the Xilinx software.

To implement the Ethernet AVB Endpoint example design core:

From the CORE Generator software project directory window, type the following:

Linux

% cd <project_dir>/<component_name>/implement

% ./implement.sh

Windows

> cd <project_dir>\<component_name>\implement

> implement.bat

These commands execute a script that synthesizes, builds, maps, and place-and-routes the
example design. The script then creates gate-level netlist HDL files in either VHDL or
Verilog, along with associated timing information (SDF) files.

Ethernet AVB Endpoint User Guide www.xilinx.com 127
UG492 March 1, 2011

Simulating the Example Design

Simulating the Example Design

Setting up for Simulation
To run functional and timing simulations you must have the Xilinx Simulation Libraries
compiled for your system. See the Compiling Xilinx Simulation Libraries (COMPXLIB) in
the Xilinx ISE Synthesis and Verification Design Guide, and the Xilinx ISE Software Manuals
and Help. You can download these documents from:
www.xilinx.com/support/software_manuals.htm

Functional Simulation
This section provides instructions for running a functional simulation of the Ethernet AVB
Endpoint core using either VHDL or Verilog. The functional simulation model is provided
when the core generated; implementing the core before simulation is not required.

To run a VHDL or Verilog functional simulation of the example design:

1. Open a command prompt or shell, then set the current directory to:
<project_dir>/<component_name>/simulation/functional/

2. Launch the simulation script:

ModelSim: vsim -do simulate_mti.do

IES: ./simulate_ncsim.sh

VCS: ./simulate_vcs.sh (Verilog only)

The simulation script compiles the functional simulation model, the example design files,
the demonstration test bench, and adds relevant signals to a wave window. It then runs the
simulation to completion. After completion, you can inspect the simulation transcript and
waveform to observe the operation of the core.

Timing Simulation
This section contains instructions for running a timing simulation of the Ethernet AVB
Endpoint core using either VHDL or Verilog. A timing simulation model is generated
when run through the Xilinx tools using the implementation script. You must implement
the core before attempting to run timing simulation.

To run a VHDL or Verilog timing simulation of the example design:

1. Run the implementation script (see Implementing the Example Design, page 126).

2. Open a command prompt or shell, then set the current directory to:
<project_dir>/<component_name>/simulation/timing/

3. Launch the simulation script:

ModelSim: vsim -do simulate_mti.do

IES: ./simulate_ncsim.sh

VCS: ./simulate_vcs.sh (Verilog only)

The simulator script compiles the gate-level model and the demonstration test bench, adds
relevant signals to a wave window, and then runs the simulation to completion. You can
then inspect the simulation transcript and waveform to observe the operation of the core.

128 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 14: Quick Start Example Design

What’s Next?
For detailed information about the core delivery including example design information,
guidelines for modifying the design and extending the test bench, see Chapter 15, Detailed
Example Design

Ethernet AVB Endpoint User Guide www.xilinx.com 129
UG492 March 1, 2011

Chapter 15

Detailed Example Design

This chapter provides detailed information on the core and example design, including a
description of files and the directory structure generated by the Xilinx® CORE
Generator™ software, the purpose and contents of the provided scripts, the contents of the
example HDL wrappers, and the operation of the demonstration test bench.
top directory link - white text invisible

<project directory>
Top-level project directory; name is user-defined.

 <project directory>/<component name>
Core release notes file

 <component name>/doc
Product documentation

 <component name>/example design
Verilog or VHDL design files

<component name>/implement
Implementation script files

 implement/results
Results directory, created after implementation scripts are run, and
contains implement script results

 <component name>/simulation
Simulation scripts

 simulation/functional
Functional simulation files

 simulation/timing
Timing simulation files

 <component_name>/drivers/v3_01_a
Files for compiling the low-level drivers provided with the core

 drivers/avb_v3_01_a/data
Data files for automatic integration into Xilinx Platform Studio

 drivers/avb_v3_01_a/examples
An application example using the low-level driver files

 drivers/avb_v3_01_a/src
Low-level driver source C files

130 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 15: Detailed Example Design

Directory and File Contents
The core directories and their associated files are defined in the following tables.

<project directory>
The project directory contains all the CORE Generator software project files.

Table 15-1: Project Directory

Name Description

<project_dir>

<component_name>.ngc Top-level netlist. This is instantiated by
the Verilog or VHDL example design.

<component_name>.v[hd] Verilog or VHDL simulation model;
UniSim-based.

<component_name>.v{ho|eo} Verilog or VHDL instantiation template
for the core.

<component_name>.xco Log file that records the settings used to
generate a core. An XCO file is
generated by the CORE Generator
software for each core that it creates in
the current project directory. An XCO
file can also be used as an input to the
CORE Generator software.

<component_name>_flist.txt List of files delivered with the core.

<project directory>

Ethernet AVB Endpoint User Guide www.xilinx.com 131
UG492 March 1, 2011

Directory and File Contents

<project directory>/<component name>
The <component name> directory contains the release notes file provided with the core,
which can include last-minute changes and updates.

<component name>/doc
The doc directory contains the PDF documentation provided with the core.

<component name>/example design
The example design directory contains the example design files provided with the core.
See Example Design, page 138.

Table 15-2: Component Name Directory

Name Description

<project_dir>/<component_name>

eth_avb_endpoint_readme.txt Core release notes file

<project directory>

Table 15-3: Doc Directory

Name Description

<project_dir>/<component_name>/doc

eth_avb_endpoint_ds677.pdf Ethernet AVB Endpoint Data Sheet

eth_avb_endpoint_ug492.pdf Ethernet AVB Endpoint User Guide

<project directory>

Table 15-4: Example Design Directory

Name Description

<project_dir>/<component_name>/example_design/

<component_name>_example_design.ucf Example User Constraints File (UCF)
provided for the example design.

<component_name>_example_design.v[hd] Top-level file that allows the example
design to be implemented in a device as a
stand-alone design.

tx_frame_stimulus.v[hd] An HDL file which is capable of
producing Ethernet frames at maximum
line-rate and containing a predictable
pattern in the data field.

temac_loopback_shim.v[hd] An HDL file which sits in the place of an
Ethernet MAC (an Ethernet MAC is
required in a real system). This file loops
back the data from the transmitter client
to the receiver client.

132 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 15: Detailed Example Design

<component name>/implement
The implement directory contains the core implementation script files.

rx_frame_checker.v[hd] An HDL file which is capable of receiving
Ethernet frames at maximum line rate.
This checks the data contained in each
Ethernet frame received against a
predictable pattern. This file partners the
tx_frame_stimulus file.

plb_client_logic.v[hd] An HDL file that sits in the place of an
embedded microprocessor (an
embedded microprocessor is required in
a real system), which provides stimulus
to the PLB, performing write and reads
that initiate PTP frame transmission.

<project directory>

Table 15-4: Example Design Directory (Cont’d)

Name Description

Table 15-5: Implement Directory

Name Description

<project_dir>/<component_name>/implement

implement.sh LINUX shell script that processes the
example design through the Xilinx tool flow.
See Implementation Scripts, page 137.

implement.bat Windows batch file that processes the
example design through the Xilinx tool flow.
See Implementation Scripts, page 137.

xst.prj XST project file for the example design
(VHDL only); it enumerates all of the VHDL
files that need to be synthesized.

xst.scr XST script file for the example design.

<project directory>

Ethernet AVB Endpoint User Guide www.xilinx.com 133
UG492 March 1, 2011

Directory and File Contents

implement/results
The results directory is created by the implement script, after which the implement script
results are placed in the results directory.

<component name>/simulation
The simulation directory and subdirectories that provide the files necessary to test a
Verilog or VHDL implementation of the example design. See Example Design, page 138.

simulation/functional
The functional directory contains functional simulation scripts provided with the core.

Table 15-6: Results Directory

Name Description

<project_dir>/<component_name>/implement/results

routed.v[hd] Back-annotated SimPrim-based model used
for timing simulation.

routed.sdf Timing information for simulation.

<project directory>

Table 15-7: Simulation Directory

Name Description

<project_dir>/<component_name>/simulation

demo_tb.v[hd] The demonstration test bench for the example
design. Instantiates the example design (the
Device Under Test (DUT)), generates clocks,
resets, and gathers statistics as the simulation
is run.

<project directory>

Table 15-8: Functional Directory

Name Description

<project_dir>/<component_name>/simulation/functional

simulate_mti.do ModelSim macro file that compiles Verilog or
VHDL sources and runs the functional
simulation to completion.

wave_mti.do ModelSim macro file that opens a wave
window and adds signals of interest to it. It is
called by the simulate_mti.do macro file.

simulate_ncsim.sh IES script file that compiles the Verilog or
VHDL sources and runs the functional
simulation to completion.

wave_ncsim.sv IES macro file that opens a wave window and
adds signals of interest to it. It is called by the
simulate_ncsim.sh script file.

134 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 15: Detailed Example Design

simulation/timing
The timing directory contains timing simulation scripts provided with the core.

<component_name>/drivers/v3_01_a
A directory containing the software device drivers for the Ethernet AVB Endpoint core and
associated supporting files.

simulate_vcs.sh VCS script file that compiles the Verilog
sources and runs the functional simulation to
completion.

vcs_commands.key This file is sourced by VCS at the start of
simulation; it configures the simulator.

vcs_session.tcl VCS macro file that opens a wave window
and adds signals of interest to it. It is called by
the simulate_vcs.sh script file.

<project directory>

Table 15-8: Functional Directory (Cont’d)

Name Description

Table 15-9: Timing Directory

Name Description

<project_dir>/<component_name>/simulation/timing

simulate_mti.do ModelSim macro file that compiles Verilog or
VHDL sources and runs the timing
simulation to completion.

wave_mti.do ModelSim macro file that opens a wave
window and adds signals of interest to it. It is
called by the simulate_mti.do macro file.

simulate_ncsim.sh IES script file that compiles the Verilog or
VHDL sources and runs the timing
simulation to completion.

wave_ncsim.sv IES macro file that opens a wave window and
adds signals of interest to it. It is called by the
simulate_ncsim.sh script file.

simulate_vcs.sh VCS script file that compiles the Verilog
sources and runs the timing simulation to
completion.

vcs_commands.key File sourced by VCS at the start of simulation;
it configures the simulator.

vcs_session.tcl VCS macro file that opens a wave window
and adds signals of interest to it. It is called by
the simulate_vcs.sh script file.

<project directory>

Ethernet AVB Endpoint User Guide www.xilinx.com 135
UG492 March 1, 2011

Directory and File Contents

drivers/avb_v3_01_a/data
The driver data directory contains the data files for automatic generation of parameter specific
files when integrated into Xilinx Platform Studio.

drivers/avb_v3_01_a/examples
The driver examples directory contains an application example using the low-level driver files.

Table 15-10: Driver Data Directory

Name Description

<project_dir>/<component_name>/drivers/
avb_v3_01/data

avb_v2_1_0.mdd Current MDD file used, including the version of the tools
interface.

avb_v2_1_0.tcl Used to provide design rule checks within Xilinx Platform
Studio.

<project directory>

Table 15-11: Driver Example Directory

Name Description

<project_dir>/<component_name>/drivers/
avb_v3_01/examples

xavb_example.c Contains a very basic example design of using the AVB
driver.

<project directory>

136 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 15: Detailed Example Design

drivers/avb_v3_01_a/src
The driver source (src) directory contains the low-level driver source C files.
Table 15-12: Driver Source Directory

Name
Description

<project_dir>/<component_name>/drivers/
avb_v3_01/src

Makefile Makefile to compile the drivers; used by Xilinx Platform Studio.

xavb.h Main header file for the XAvb driver. The file provides the
constants, type definitions and function templates which are
required to initialize and run the IEEE802.1AS Precise Timing
Protocol (PTP). This defines the level 1 device driver for the
Ethernet AVB Endpoint core.

xavb_g.c Contains a configuration structure that holds all the
configuration values required, per single instance, of the device
driver.

xavb.c Provides the top-level function calls for the Ethernet AVB
Endpoint level 1 device driver.

xavb_ptp_packets.c Provides the functions which are required for the creation of PTP
frames for transmission and for the decode of received PTP
frames.

xavb_ptp_bmca.c Provides the functions which are required for the PTP Best
Master Clock Algorithm (BMCA).

xavb_rtc_sync.c Provides the functions which are required to synchronize the
local version of the Real Time Counter (RTC), when operating as
a slave, to that of the network clock master.

xavb_hw.h Contains all the constant definitions and the bare minimum of
functions / function templates which are required for register
read/write access. This defines the low level 0 device driver for
the Ethernet AVB Endpoint core.

xavb_hw.c This file partners the xavb_hw.h header file and implements the
functions for which avb_hw.h contained a template.

<project directory>

Ethernet AVB Endpoint User Guide www.xilinx.com 137
UG492 March 1, 2011

Implementation Scripts

Implementation Scripts
The implementation script is either a shell script or batch file that processes the example
design through the Xilinx tool flow and is one of the following locations:

Linux

<project_dir>/<component_name>/implement/implement.sh

Windows

<project_dir>/<component_name>/implement/implement.bat

The implement script performs the following steps:

1. HDL example design files are synthesized using XST.

2. Ngdbuild is run to consolidate the core netlist and the example design netlist into the
NGD file containing the entire design.

3. Design is mapped to the target technology.

4. Design is placed-and-routed on the target device.

5. Static timing analysis is performed on the routed design using trce.

6. A bitstream is generated.

7. Netgen runs on the routed design to generate a VHDL or Verilog netlist (as
appropriate for the Design Entry project setting) and timing information in the form of
SDF files.

The Xilinx tool flow generates several output and report files that are saved in the
following directory (which is created by the implement script):

<project_dir>/<component_name>/implement/results

Simulation Scripts

Functional Simulation
The test script is a ModelSim, IES, or VCS macro that automates the simulation of the test
bench and is in the following location:

<project_dir>/<component_name>/simulation/functional/

The test script performs the following tasks:

• Compiles the structural UniSim simulation model

• Compiles HDL example design source code

• Compiles the demonstration test bench

• Starts a simulation of the test bench

• Opens a Wave window and adds signals of interest

• Runs the simulation to completion

138 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 15: Detailed Example Design

Timing Simulation
The test script is a ModelSim, IES, or VCS macro that automates the simulation of the test
bench and is in the following location:

<project_dir>/<component_name>/simulation/timing/

The test script performs the following tasks:

• Compiles the SimPrim-based gate level netlist simulation model

• Compiles the demonstration test bench

• Starts a simulation of the test bench using back-annotated timing information (SDF)

• Opens a Wave window and adds signals of interest

• Runs the simulation to completion

Example Design
Figure 15-1 illustrates the complete example design for the Ethernet AVB Endpoint.
Individual sub-blocks are described in the following sections.

Note: The example design is designed to allow the core, in isolation, to be tested and to
demonstrate some of the functionality of the core, and does not create a realistic implementation. In
a real system the loopback module should be replaced with an Ethernet MAC, the PLB module
should be replaced with an embedded processor, and the frame stimulus and checker modules
should be replaced with the desired AV and Legacy client functionality.

X-Ref Target - Figure 15-1

Figure 15-1: Example Design HDL for the Ethernet AVB Endpoint

Example Design Top Level

PLB
module

Interrupts PLB

Ethernet
AVB

Endpoint
Core

Tx Frame
Stimulus

Tx Frame
Stimulus

Rx Frame
Checker

Rx Frame
Checker

AV Traffic

AV Traffic

Legacy
Traffic

Legacy
Traffic

Loopback
Module

Ethernet AVB Endpoint User Guide www.xilinx.com 139
UG492 March 1, 2011

Example Design

Top-Level Example Design HDL
The following files describe the top-level example design for the Ethernet AVB Endpoint
core.

VHDL

<project_dir>/<component_name>/example_design/<component_name>_example
_design.vhd

Verilog

<project_dir>/<component_name>/example_design/<component_name>_example
_design.v

The example design HDL top level contains the following:

• An instance of the Ethernet AVB Endpoint core

• Two instances of an Ethernet Frame Stimulus block, configured differently and
connected as follows:

• One instance is connected to the AV transmitter interface, configured to produce
VLAN Ethernet frames with a priority of 3 and VID of 2.

• A second instance is connected to the Legacy transmitter interface, configured to
produce standard Ethernet frames without a VLAN field

• An instance of a Loopback Module, instantiated in place of where an Ethernet MAC
should exist, enables the example design to be stand-alone. All AV and Legacy frames
transmitted are then looped back and received at the corresponding AV and Legacy
receive client interfaces.

• Two instances of an Ethernet Frame Checker block, configured differently and
connected as follows:

• One instance is connected to the AV receiver interface, configured to expect the
VLAN frames produced by the AV Frame Stimulus block

• A second instance is connected to the Legacy receiver interface, configured to
expect the standard Ethernet frames produced by the Legacy Frame Stimulus
block

• A PLB Module that connects to the PLB interface of the core and contains simple state
machines to perform initialization of configuration and interrupt management state
machines.

Ethernet Frame Stimulus
The following files describe the Ethernet Frame Stimulus logic:

VHDL

<project_dir>/<component_name>/example_design/tx_frame_stimulus.vhd

Verilog

<project_dir>/<component_name>/example_design/tx_frame_stimulus.v

This module contains the logic to produce an Ethernet test frame. The MAC header fields
of this frame are defined by generics (Destination Address, Source Address, Length/Type);
the VLAN field is optional. Additionally, the length of the Ethernet frame can also be set
using a generic.

140 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 15: Detailed Example Design

The data field of the frame is designed to create a simple 8-bit binary counter that
continues seamlessly across consecutive Ethernet frames. The Ethernet Frame Stimulus
block is designed to produce frames at full line rate to fully stress the core.

Ethernet Frame Checker
The following files describe the Ethernet Frame Checker logic.

VHDL

<project_dir>/<component_name>/example_design/rx_frame_checker.vhd

Verilog

<project_dir>/<component_name>/example_design/rx_frame_checker.v

This module contains the logic to check a received Ethernet frame against expected
parameters. The MAC header fields of this expected frame are defined by generics
(Destination Address, Source Address, Length/Type); the VLAN field is optional.
Additionally, the expected length of the Ethernet frame can also be set using a parameter.

The data field of the frame is expected to consist of a simple 8-bit binary counter which
continues seamlessly across consecutive Ethernet frames.

This logic is designed to check against the frames generated by the tx_frame_stimulus
module; identical parameters must be passed into both modules to obtain a match.

Loopback Module
The following files describe the Loopback module.

VHDL

<project_dir>/<component_name>/example_design/temac_loopback_shim.vhd

Verilog

<project_dir>/<component_name>/example_design/temac_loopback_shim.v

This logic implements a simple logic shim to provide a frame loopback function at the
MAC client Interface. This logic does NOT implement a MAC and should be replaced with
a real MAC in any real implementations.

Ethernet AVB Endpoint User Guide www.xilinx.com 141
UG492 March 1, 2011

Example Design

PLB Module
The following files describe the logic for the PLB module.

VHDL

<project_dir>/<component_name>/example_design/plb_client_logic.vhd

Verilog

<project_dir>/<component_name>/example_design/plb_client_logic.v

The PLB module connects to the PLB interface of the core and performs the following
functions:

• Initialization. A state machine writes to the RTC configuration space to set the RTC
running at the correct frequency following reset/power-up.

• PTP Timer Interrupt Service Routine. When the interrupt_ptp_timer is
asserted, a state machine requests transmission of a PTP sync frame, then clears the
interrupt.

• PTP Transmit Interrupt Service Routine. When interrupt_ptp_tx is asserted (a
PTP frame has been transmitted), the state machine reads from the PTP Tx
Control/Status register to determine the type of PTP frame sent. If it was a sync
frame, it then requests a follow-up frame to be sent. For any other PTP frame type, no
action is taken. Reading from the PTP Tx Control/Status register clears the interrupt.

• PTP Receive Interrupt Service Routine. When interrupt_ptp_rx is asserted (a
PTP frame has been received), the state machine reads from the PTP Rx
Control/Status register to determine which of the PTP frame buffers the received
frame will be stored in; this read also clears the interrupt. In this simple
demonstration, nothing further is performed.

This functionality is related to the normal operation of a PTP clock master in that the logic
results in a transmission of PTP Sync/Follow-Up pair of frames being sent periodically.
However, the functionality is greatly simplified and none of the relevant variable PTP
Sync/Follow-up fields are correctly set.

Note: The real intent for the PLB interface is for connection into the EDK environment; software
drivers are provided to be run on an embedded processor, which performs full 802.1AS (Precise
Timing Protocol (PTP)) functionality. See Chapter 13, Software Drivers for detailed information about
the provided software drivers.

142 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 15: Detailed Example Design

Demonstration Test Bench
Figure 15-2 illustrates the Ethernet AVB Endpoint demonstration test bench, a simple
VHDL or Verilog program for exercising the example design and the core.

The following files describe the top level of the demonstration test bench:

VHDL

<project_dir>/<component_name>/simulation/demo_tb.vhd

Verilog

<project_dir>/<component_name>/simulation/demo_tb.v

The top-level test bench entity instantiates the example design for the core, which is the
Device Under Test (DUT). The test bench provides clocks and resets, and gathers statistics
for the duration of the simulation. A final statistic report is created at the end of the
simulation run time that contains the following:

• The number of PTP frames transmitted and received

• The number of AV frames transmitted and received

• The number of legacy frames transmitted and received.
All transmitted frame statistics should exactly match the received frame statistics for
each particular frame type; if this is not the case, an error message is issued.

• Finally, the test bench estimates the percentage of overall Ethernet line rate consumed
by each of the three types. This should illustrate the bandwidth policing functionality
of the core, which should only allow the AV frames to consume a maximum of 75% of
the overall bandwidth.

X-Ref Target - Figure 15-2

Figure 15-2: Ethernet AVB Endpoint Demonstration Test Bench

Example Design Top Level

Ethernet
AVB

Endpoint
LogiCORE

legacy
traffic

AV trafficTx frame
stimulus

loopback
moduleTx frame

stimulus

Rx frame
checker

Rx frame
checker

PLBInterrupts

PLB
module

AV traffic

legacy
traffic

Clock
and

Reset
generation

Statistic
Gathering

Demonstration Test Bench

Ethernet AVB Endpoint User Guide www.xilinx.com 143
UG492 March 1, 2011

Example Design

Customizing the Test Bench

Simulation Run Time

The default simulation run time is set to only 40 microseconds, which can be easily
extended by editing the simulation_run_time constant, set near the top of the
demonstration test bench file. For example, from the VHDL file:

--
-- **** The following value determines the simulations run time ****
--
constant simulation_run_time : time := 40000 ns;

The test bench allows the DUT to run until the simulation time is exceeded; after this,
Ethernet frames already in the system are allowed to complete cleanly; then the test bench
reports the final statistics and end.

Changing Frame Data

The Ethernet Frame Stimulus and Ethernet Frame Checker modules can be set to produce
and check different Ethernet frames by changing the parameters sent to them. These
parameters are set in the Top-Level Example Design HDL. Editing this file allows a
Functional Simulation to immediately use the new settings. However, because these
modifications require logical changes, the Implementation Scripts must be re-run on the
design before running a Timing Simulation.

See the Top-Level Example Design HDL file for information about these frame-type
parameters. As an example, the following syntax is taken from the Verilog version of the
file and contains the syntax required to configure both the Legacy Ethernet Frame Stimulus
and Ethernet Frame Checker modules:

//---------------------------------
// Configure the Legacy frames used in this example design (the
// following parameters can be edited)
//---------------------------------

// Use minimum sized Ethernet frames (64-bytes total length)
parameter [10:0] LEGACY_FRAME_LENGTH = 11'd64;

// Set the Destination Address to be AA-BB-CC-DD-EE-FF
parameter [47:0] LEGACY_DEST_ADDR = 48'hFFEEDDCCBBAA;

// Set the Destination Address to be 00-11-22-33-44-55
parameter [47:0] LEGACY_SRC_ADDR = 48'h554433221100;

// Do not use VLAN fields
parameter LEGACY_HAS_VLAN = 1'b0;

// VLAN fields are not used so the following parameter is n/a
parameter [15:0] LEGACY_VLAN_DATA = 16'h0000;

// Use a Generic Type field
parameter [15:0] LEGACY_TYPE_FIELD = 16'h8000;

144 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Chapter 15: Detailed Example Design

Viewing the Simulation Wave Form

The Simulation Scripts for the selected simulator automatically selects signals of interest
from within the DUT and adds them to the simulator wave window. These are organized
into grouped interfaces, which are identified using section headings in the wave window.

Figure 15-3 illustrates the grouped interfaces selected for the Functional Simulation. The
circled numbers represent the order in which they are displayed (the wave window section
headings are also numbered to match Figure 15-3). Further signals of interest can be added
as desired.

The signals added to the Timing Simulation are a subset of the ones used in the Functional
Simulation. To summarize, the PLB interface is not viewed, due to
synthesis/implementation optimization that occurs on these signals, the result of which
merges signals and changes names.
X-Ref Target - Figure 15-3C

Figure 15-3: Simulator Wave Window Contents

Legacy
Traffic

PLBInterrupts

AV T raffic

Legacy
Traffic

1

4

2 3

AV Traffic

5

7 8

6

Demonstration Test Bench

PLB
Module

Tx Frame
Stimulus

Tx Frame
Stimulus

Rx Frame
Checker

Rx Frame
Checker

Ethernet
AVB

Endpoint
Core

Loopback
Module

Clock
and

Reset
Generation

Statistic
Gathering

Example Design Top Level

Ethernet AVB Endpoint User Guide www.xilinx.com 145
UG492 March 1, 2011

Appendix A

RTC Time Stamp Accuracy

Time Stamp Accuracy
The accuracy of the time stamps, taken by sampling the Real Time Clock (RTC) whenever
PTP frames are transmitted or received, is essential to the Precise Timing Protocol across
the network link. For this reason, the time stamps are performed in hardware. Despite this,
time stamp inaccuracies can be introduced from two sources:

• RTC Real Time Instantaneous Error

• RTC Sampling Error

Following this discussion, we then consider the Accuracy Resulting from the Combined
Errors.

RTC Real Time Instantaneous Error
Figure A-1 illustrates a RTC implementation which uses a 40 ns clock period as its clock
source (this is worst case). Therefore, the controlled frequency RTC is only updated every
40ns. Because the concept of a RTC is a continuous measurement of time, the
implementation of the RTC illustrated in Figure A-1 is only accurate immediately after an
update. During the 40 ns update cycle, the error accrues linearly to a maximum of 40 ns.
This behavior is periodic as illustrated.

In Figure A-1, two time stamps of the RTC are sampled. The figure shows that the accuracy
is variable. For example:

• The 1st time stamp is requested at 119 ns. However, the RTC has yet to update and so
the sample taken will be of 80 ns. This has an inaccuracy of 39 ns.

• The 2nd time stamp is requested at 201 ns. The RTC has recently updated and so the
sample taken will be of 200. This has an inaccuracy of 1 ns.

146 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Appendix A: RTC Time Stamp Accuracy

The maximum RTC inaccuracy, per time stamp sample, is equal to the period of the RTC
reference clock (in this example 40 ns). By using a high frequency RTC reference clock, a
high degree of accuracy can be obtained.
X-Ref Target - Figure A-1

Figure A-1: RTC Periodic Error

Time (ns)
0

RTC Error (ns)

-40

40 80 120 160 200 240

Timestamp A
(Error = 39 ns)

Timestamp B
(Error = 1 ns)

0 40 80 120 160 200 240RTC

Ethernet AVB Endpoint User Guide www.xilinx.com 147
UG492 March 1, 2011

Time Stamp Accuracy

RTC Sampling Error
It has to be assumed that the RTC reference clock is of a different frequency to the MAC
transmitted and receiver clocks. Therefore, the RTC sampling logic has to be
asynchronous.

There are a number of methods to obtain a time stamp across an asynchronous clock
boundary. The simplest method, is to pass a toggle signal from the Tx/Rx domain into the
RTC reference clock domain whenever a time stamp is required. This method should only
result in an uncertainty of one cycle: the logic is illustrated in Figure A-2.

In Figure A-2, the Sample Timestamp signal is generated whenever the Tx/Rx time
stamp position is detected (see Time Stamp Sampling Position of MAC Frames). From this,
a toggle signal is generated as illustrated, and this is passed across the clock domain from
Tx/Rx MAC clock to the RTC reference clock domain.

When in the RTC clock domain, the toggle signal is re-clocked using the two
synchronization flip-flops illustrated. After this, an edge detection circuit is used to
determine that the RTC should be sampled.

The single clock period of uncertainty arises from the behavior of the first synchronization
flip-flop. Figure A-3 illustrates that the rising edge of the toggle signal can occur very
close to the clock edge of the RTC reference clock. It is possible that the setup timing of this
flip-flop could be violated, resulting in uncertainty as to whether a logic ‘0’ or a logic ‘1’ is
sampled. If the flip-flop samples logic ‘1’, the result is Timing Case 1; if the flip-flop
samples logic ‘0’, Timing Case 2 results.

The overall result of this is to obtain a single Reference Clock Period of uncertainty in the
captured time stamp value.

X-Ref Target - Figure A-2

Figure A-2: RTC Sampling Logic

D Q

CE

Take Timestamp
(SFD detected on
MAC Client I/F)

MAC Tx/Rx clock

D0 Q0 D1 Q1 D2 Q2

XOR

Take RTC
Sample

RTC Reference
Clock (rtc_clk)

synchronisation pair

toggle

clock
boundary

148 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Appendix A: RTC Time Stamp Accuracy

X-Ref Target - Figure A-3

Figure A-3: Sampling Position Uncertainty

TIMING CASE 1

MAC Tx/Rx clock

toggle

RTC Reference
Clock

Q0

Q1

Q2

Take RTC Sample

clock boundary

MAC Tx/Rx clock

toggle

RTC Reference
Clock

Q0

Q1

Q2

Take RTC Sample

clock boundary

TIMING CASE 2

Sampling
uncertainty

Sample

Sample

Ethernet AVB Endpoint User Guide www.xilinx.com 149
UG492 March 1, 2011

Time Stamp Accuracy

Accuracy Resulting from the Combined Errors
The section RTC Real Time Instantaneous Error describes how a maximum error of one
RTC reference clock period can result as a consequence of the RTC itself. The section RTC
Sampling Error describes how the position of the time stamp request, as observed in the
RTC reference clock domain, can result in one RTC reference clock period of uncertainty.
Figure A-4 attempts to illustrate the result of the combination of these two types of error.
Again, the worst case clock period of 40 ns is illustrated.

In Figure A-4, two time stamps of the RTC are sampled. The figure shows that the accuracy
is variable. For example:

• The request for the 1st time stamp is made at 60 ns. Because the time to the next RTC
reference clock is 20 ns, this does not violate the setup time for the 1st synchronization
flip-flop in Figure A-2. Therefore, on the next RTC reference clock, the sample will be
taken as 40 ns (resulting in an error of 20 ns which is entirely due to the RTC Real
Time Instantaneous Error).

• The request for the 2nd time stamp is made at 239 ns. This is very close to the rising
edge of the 1st synchronization flip-flop in Figure A-2, so the situation is
unpredictable:

X-Ref Target - Figure A-4

Figure A-4: Overall Time Stamp Accuracy

Time (ns)
0

RTC Error (ns)

-40

40 80 120 160 200 240

0 40 80 120 160 200 240RTC

Sampling
uncertainty

sam
ple R

T
C

 value as 240

sam
ple R

T
C

 value as 200

request sam
ple at tim

e 239

request sam
ple at tim

e 60

sam
ple R

T
C

 value as 40

Timing Case 1 Timing Case 2

150 www.xilinx.com Ethernet AVB Endpoint User Guide
UG492 March 1, 2011

Appendix A: RTC Time Stamp Accuracy

• If the flip-flop samples the new value, then Timing Case 1 results. The RTC is
sampled as 200 (resulting in an error of 39 ns which is entirely due to the RTC Real
Time Instantaneous Error).

• If the flip-flop samples the old value, then Timing Case 2 results. The RTC is
sampled 1 RTC reference clock period later as 240 (resulting in an error of only 1
ns).

Hopefully these examples have illustrated that the timing uncertainty in the asynchronous
sampling circuit has not resulted in any additional error.

The maximum inaccuracy, per time stamp sample, is still equal to the period of the RTC
reference clock (in this example 40 ns). By using a high frequency RTC reference clock, a
high degree of accuracy can be obtained. For example, when using a 125 MHz clock source
for the RTC, the maximum time stamp error will be 8 ns or less.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Development Software category:

Click to view products by Xilinx manufacturer:

Other Similar products are found below :

RAPPID-567XFSW SRP004001-01 SW163052 SYSWINEV21 Core429-SA WS01NCTF1E W128E13 SW89CN0-ZCC IPS-EMBEDDED

IP-UART-16550 MPROG-PRO535E AFLCF-08-LX-CE060-R21 WS02-CFSC1-EV3-UP SYSMAC-STUDIO-EIPCPLR LIB-PL-PC-N-

1YR-DISKID LIB-PL-A-F SW006026-COV 1120270005 1120270006 MIKROBASIC PRO FOR FT90X (USB DONGLE) MIKROC PRO

FOR FT90X (USB DONGLE) MIKROC PRO FOR PIC (USB DONGLE LICENSE) MIKROBASIC PRO FOR AVR (USB DONGLE LICEN

MIKROBASIC PRO FOR FT90X MIKROC PRO FOR DSPIC30/33 (USB DONGLE LI MIKROPASCAL PRO FOR ARM (USB DONGLE

LICE MIKROPASCAL PRO FOR FT90X MIKROPASCAL PRO FOR FT90X (USB DONGLE) MIKROPASCAL PRO FOR PIC32 (USB

DONGLE LI SW006021-2H ATATMELSTUDIO 2400573 2702579 2988609 2702546 SW006022-DGL 2400303 2701356 VDSP-21XX-

PCFLOAT VDSP-BLKFN-PC-FULL 88970111 DG-ACC-NET-CD 55195101-102 SW1A-W1C MDK-ARM PCI-EXP1-E3-US PCI-T32-

E3-US SW006021-2NH SW006021-1H SW006021-2

https://www.x-on.com.au/category/embedded-solutions/engineering-tools/development-software
https://www.x-on.com.au/manufacturer/xilinx
https://www.x-on.com.au/mpn/nxp/rappid567xfsw
https://www.x-on.com.au/mpn/lantronix/srp00400101
https://www.x-on.com.au/mpn/microchip/sw163052
https://www.x-on.com.au/mpn/omron/syswinev21
https://www.x-on.com.au/mpn/microsemi/core429sa
https://www.x-on.com.au/mpn/omron/ws01nctf1e
https://www.x-on.com.au/mpn/omron/w128e13
https://www.x-on.com.au/mpn/toshiba/sw89cn0zcc
https://www.x-on.com.au/mpn/intel/ipsembedded
https://www.x-on.com.au/mpn/intel/ipuart16550
https://www.x-on.com.au/mpn/advantech/mprogpro535e
https://www.x-on.com.au/mpn/iei/aflcf08lxce060r21
https://www.x-on.com.au/mpn/omron/ws02cfsc1ev3up
https://www.x-on.com.au/mpn/omron/sysmacstudioeipcplr
https://www.x-on.com.au/mpn/microsemi/libplpcn1yrdiskid
https://www.x-on.com.au/mpn/microsemi/libplpcn1yrdiskid
https://www.x-on.com.au/mpn/microchip/libplaf
https://www.x-on.com.au/mpn/microchip/sw006026cov
https://www.x-on.com.au/mpn/molex/1120270005
https://www.x-on.com.au/mpn/molex/1120270006
https://www.x-on.com.au/mpn/mikroelektronika/mikrobasicproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikrocproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikrocproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikrocproforpicusbdonglelicense
https://www.x-on.com.au/mpn/mikroelektronika/mikrobasicproforavrusbdonglelicen
https://www.x-on.com.au/mpn/mikroelektronika/mikrobasicproforft90x
https://www.x-on.com.au/mpn/mikroelektronika/mikrocprofordspic3033usbdongleli
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforarmusbdonglelice
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforarmusbdonglelice
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforft90x
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforpic32usbdongleli
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforpic32usbdongleli
https://www.x-on.com.au/mpn/microchip/sw0060212h
https://www.x-on.com.au/mpn/microchip/atatmelstudio
https://www.x-on.com.au/mpn/phoenixcontact/2400573
https://www.x-on.com.au/mpn/phoenixcontact/2702579
https://www.x-on.com.au/mpn/phoenixcontact/2988609
https://www.x-on.com.au/mpn/phoenixcontact/2702546
https://www.x-on.com.au/mpn/microchip/sw006022dgl
https://www.x-on.com.au/mpn/phoenixcontact/2400303
https://www.x-on.com.au/mpn/phoenixcontact/2701356
https://www.x-on.com.au/mpn/analogdevices/vdsp21xxpcfloat
https://www.x-on.com.au/mpn/analogdevices/vdsp21xxpcfloat
https://www.x-on.com.au/mpn/analogdevices/vdspblkfnpcfull
https://www.x-on.com.au/mpn/crouzet/88970111
https://www.x-on.com.au/mpn/digiinternational/dgaccnetcd
https://www.x-on.com.au/mpn/honeywell/55195101102
https://www.x-on.com.au/mpn/idec/sw1aw1c
https://www.x-on.com.au/mpn/keil/mdkarm
https://www.x-on.com.au/mpn/lattice/pciexp1e3us
https://www.x-on.com.au/mpn/lattice/pcit32e3us
https://www.x-on.com.au/mpn/lattice/pcit32e3us
https://www.x-on.com.au/mpn/microchip/sw0060212nh
https://www.x-on.com.au/mpn/microchip/sw0060211h
https://www.x-on.com.au/mpn/microchip/sw0060212

