
Reed-Solomon
Decoder v9.0

LogiCORE IP Product Guide

Vivado Design Suite
PG107 February 4, 2021

Reed-Solomon Decoder v9.0 2
PG107 February 4, 2021 www.xilinx.com

Table of Contents
IP Facts

Chapter 1: Overview
Navigating Content by Design Process . 5
Core Overview . 5
Functional Description. 6
Feature Summary. 6
Applications . 7
Unsupported Features. 7
Licensing and Ordering . 7

Chapter 2: Product Specification
Performance. 10
Resource Utilization. 10
Port Descriptions . 10

Chapter 3: Designing with the Core
Clocking. 13
Resets . 14
AXI4-Stream Protocol . 14
Erasure Decoding . 23
Processing Delay . 24
Latency . 25
Puncturing . 26
Variable Block Length . 29
Block Code Settings . 31
Multiple Channels . 32
Examples. 33

Chapter 4: Design Flow Steps
Customizing and Generating the Core . 35
Constraining the Core . 42
Simulation . 43
Synthesis and Implementation . 44

Send Feedback

Reed-Solomon Decoder v9.0 3
PG107 February 4, 2021 www.xilinx.com

Chapter 5: Test Bench
Demonstration Test Bench . 45

Appendix A: Upgrading
Migrating to the Vivado Design Suite. 47
Upgrading in the Vivado Design Suite . 47

Appendix B: Debugging
Finding Help on Xilinx.com . 48
Debug Tools . 49
Simulation Debug. 50
Interface Debug . 51

Appendix C: Additional Resources and Legal Notices
Xilinx Resources . 52
Documentation Navigator and Design Hubs . 52
References . 53
Revision History . 53
Please Read: Important Legal Notices . 54

Send Feedback

Reed-Solomon Decoder v9.0 4
PG107 February 4, 2021 www.xilinx.com Product Specification

Introduction
The Reed-Solomon decoder is used for Forward
Error Correction (FEC) in systems where data
are transmitted and subject to errors before
reception.

Features
• High speed, compact Reed-Solomon

Decoder
• Implements many different Reed-Solomon

(RS) coding standards
• Fully synchronous design using a single

clock
• Supports continuous input data with no

gap between code blocks
• Symbol size from 3 to 12 bits
• Code block length variable up to 4095

symbols
• Code block length and number of check

symbols can be dynamically varied on a
block-by-block basis

• Supports shortened codes
• Supports error and erasure decoding
• Supports puncturing (as in IEEE 802.16d

standard)
• Supports multiple channels
• Parameterizable number of errors corrected
• Supports any primitive field polynomial for

a given symbol size
• Counts number of errors corrected and

flags failures
• Marker bits provided with same latency as

input data
• User-selectable control signal behavior

IP Facts

LogiCORE IP Facts Table
Core Specifics

Supported
Device Family(1)

Versal™ ACAP
UltraScale+™ Families

UltraScale™ architecture
Zynq®-7000 SoC

7 Series
Supported User
Interfaces AXI4-Stream

Resources Performance and Resource Utilization web page
Provided with Core

Design Files Encrypted RTL
Example Design Not Provided
Test Bench VHDL
Constraints File Not Provided
Simulation
Model

VHDL Behavioral
VHDL or Verilog Structural

Supported
S/W Driver N/A

Tested Design Flows(2)

Design Entry
Vivado® Design Suite

Vivado
System Generator for DSP

Simulation For supported simulators, see the
Xilinx Design Tools: Release Notes Guide.

Synthesis Vivado Synthesis
Support

Release Notes
and Known
Issues

Master Answer Record: 54510

All Vivado IP
Change Logs Master Vivado IP Change Logs: 72775

 Xilinx Support web page

Notes:
1. For a complete list of supported devices, see the Vivado IP

catalog.
2. For the supported versions of the tools, see the

Xilinx Design Tools: Release Notes Guide.

Send Feedback

Reed-Solomon Decoder v9.0 5
PG107 February 4, 2021 www.xilinx.com

Chapter 1

Overview

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you
find relevant content for your current development task. This document covers the
following design processes:

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware
platform, creating PL kernels, subsystem functional simulation, and evaluating the
Vivado timing, resource and power closure. Also involves developing the hardware
platform for system integration. Topics in this document that apply to this design
process include:

° Port Descriptions

° Clocking

° Resets

° Customizing and Generating the Core

Core Overview
Reed-Solomon codes are usually referred to as (n,k) codes, where n is the total number of
symbols in a code block and k is the number of information or data symbols. In a systematic
code, the complete code block is formed from the k data symbols, followed by the n-k
check symbols.

A Reed-Solomon code is also characterized by two polynomials: the field polynomial and
the generator polynomial. The field polynomial defines the Galois field, of which the
symbols are members. The generator polynomial defines how the check symbols are
generated. Both of these polynomials are usually defined in the specification for any
particular Reed-Solomon code. The core GUI allows both of these polynomials to be
user-defined.

Send Feedback

Reed-Solomon Decoder v9.0 6
PG107 February 4, 2021 www.xilinx.com

Chapter 1: Overview

Functional Description
The Reed-Solomon decoder samples the n symbols on the S_AXIS_INPUT channel and
attempts to correct any errors. The corrected symbols are output on the M_AXIS_OUTPUT
channel.

The maximum number of symbol errors in a block that can be guaranteed to be corrected
by the Reed-Solomon algorithm is t = (n-k)/2. (Each symbol error can contain any number
of bit errors). This is always rounded down to the nearest whole number. The decoder core
implements the Reed-Solomon algorithm in full, but if a block is received with more than t
errors the decoder will fail. The Reed-Solomon decoder algorithm can generally detect that
an excess of errors has occurred and can therefore indicate a failure to decode a block.
However, it is possible for excessive errors to produce a codeword that the decoder
algorithm recognizes as a legitimate lower number of errors, in which case the failure is not
detected. This is a function of the Reed-Solomon algorithm and not a limitation of the core.

Shortened Codes
Normally, n = 2(Symbol Width)-1. If n is less than this, the code is referred to as a “shortened
code.” The decoder core handles both full-length and shortened codes. Only n symbols are
input and output, where n is the value entered in the Vivado® Integrated Design
Environment (IDE) or supplied on the S_AXIS_CTRL channel. This is the case even if the
code is shortened. Shortening does not affect k or the number of check symbols or the
number of errors that can be corrected.

Feature Summary
The core configuration GUI allows a number of pre-configured standards to be selected.
The CCSDS standard results in additional standard-specific hardware being inserted around
the core. Once the appropriate standard has been selected it is still possible to edit some
parameter settings, depending on the standard. If this doesn't give the required
configuration then ‘Custom’ can be selected and any parameter values can be chosen.

Multiple channels can be supported by selecting the number of channels required in the
GUI. This will result in time-division multiplexing of channels on the input and output. If this
does not give sufficient throughput then multiple channels can be handled by using
multiple instances of the core.

Most commonly used Reed-Solomon codes have an 8-bit symbol width. This gives a good
balance of error correction capability, throughput and implementation cost. The core does
support any symbol width from 3 to 12.

Send Feedback

Reed-Solomon Decoder v9.0 7
PG107 February 4, 2021 www.xilinx.com

Chapter 1: Overview

Some standards require the block length or the number of check symbols or both to be
run-time variable. The core supports all of these options. Changing the number of check
symbols automatically changes the generator polynomial, although the core assumes the
scaling factor (h) remains at the value configured in the GUI.

The core uses standard AXI4-Stream interfaces with full handshaking and there is only one
clock input, making it straightforward to use in a system. The core comes with some
optional pins, such as clock enable. These allow extra functionality at the expense of larger
size or slower speed.

Applications
The Reed-Solomon decoder (with the Reed-Solomon algorithm) is used for Forward Error
Correction (FEC) in systems where data are transmitted and subject to errors before
reception, for example, communications systems, disk drives, and so on.

The core meets the requirements of most standards that employ RS codes, such as CCSDS,
DVB, ETSI-BRAN, IEEE802.16, G.709, IESS-308.

Unsupported Features
The field polynomial or symbol width cannot be changed during the operation of the core.

Licensing and Ordering
This Xilinx LogiCORE™ IP module is provided under the terms of the Xilinx Core License
Agreement. The module is shipped as part of the Vivado® Design Suite. For full access to
all core functionalities in simulation and in hardware, you must purchase a license for the
core. To generate a full license, visit the product licensing web page. Evaluation licenses and
hardware timeout licenses might be available for this core or subsystem. Contact your local
Xilinx sales representative for information about pricing and availability.

For more information, visit the Reed-Solomon Decoder product web page.

Information about other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual
Property page. For information on pricing and availability of other Xilinx LogiCORE IP
modules and tools, contact your local Xilinx sales representative.

Send Feedback

Reed-Solomon Decoder v9.0 8
PG107 February 4, 2021 www.xilinx.com

Chapter 1: Overview

TIP: To verify that you need a license, check the “License” column of the IP Catalog. “Included” means
that a license is included with the Vivado® Design Suite; “Purchase” means that you have to purchase
a license to use the core or subsystem.

Evaluation
An evaluation license is available for this core. The evaluation version of the core operates
in the same way as the full version for several hours, dependent on clock frequency.
Operation is then disabled and the data output does not change. If you notice this behavior
in hardware, it probably means you are using an evaluation version of the core. The Xilinx
tools warn that an evaluation license is being used during netlist implementation.

License Checkers
If the IP requires a license key, the key must be verified. The Vivado® design tools have
several license checkpoints for gating licensed IP through the flow. If the license check
succeeds, the IP can continue generation. Otherwise, generation halts with error. License
checkpoints are enforced by the following tools:

• Vivado design tools: Vivado Synthesis
• Vivado Implementation
• write_bitstream (Tcl command)

IMPORTANT: IP license level is ignored at checkpoints. The test confirms a valid license exists. It does
not check IP license level.

Send Feedback

Reed-Solomon Decoder v9.0 9
PG107 February 4, 2021 www.xilinx.com

Chapter 2

Product Specification
The Reed-Solomon Decoder inputs n symbols, comprising k information symbols and n-k
check symbols. This is shown in Figure 2-1, which also shows how the symbols can be
interpreted as polynomial coefficients. The check symbols are generated to form c(x) such
that c(x) is divisible by the generator polynomial, g(x). If the received code word is not
divisible by g(x) then the code word contains errors. The core corrects the errors and
outputs n symbols (or just k symbols if the output check symbol option is not selected).

Figure 2-2 shows how the input data is passed through the core while error values are
computed. The error values are added to the received data to reconstruct the original
transmitted data. The received data with errors still present can also be optionally output.
X-Ref Target - Figure 2-1

Figure 2-1: Reed Solomon Codeword Structure
X-Ref Target - Figure 2-2

Figure 2-2: Reed-Solomon Decoder Block Diagram

k Information Symbols

(n-k)Check Symbolsk Information Symbols

d0 dk-1

d(x) = d0xk-1 + d1xk-2 + ... … + dk-2x1 + dk-1x0

d0xn-1 + d1xn-2 + ... … + dk-2xn-k+1 + dk-1xn-k

c(x) = xn-kd(x) + check(x)
X13182

Error detection and calculation
AXI-S

Interface

AXI-S
Interface

Received data

s_axis_input

s_axis_ctrl
m_axis_output

m_axis_stat

X13183

Send Feedback

Reed-Solomon Decoder v9.0 10
PG107 February 4, 2021 www.xilinx.com

Chapter 2: Product Specification

Performance
Latency
See Latency, page 25.

Throughput
See Processing Delay, page 24.

Resource Utilization
For full details about performance and resource utilization, visit the Performance and
Resource Utilization web page.

Port Descriptions
Some of the pins are optional. The outputs that are not required should be left
unconnected. The Xilinx mapping software removes the logic driving them, ensuring that
FPGA resources are not wasted.

A representative symbol, with the signal names, is shown in Figure 2-3 and described in
Table 2-1. The AXI slave channel is indicated by s_* and the AXI master channel by m_*.

Send Feedback

Reed-Solomon Decoder v9.0 11
PG107 February 4, 2021 www.xilinx.com

Chapter 2: Product Specification

X-Ref Target - Figure 2-3

Figure 2-3: Core Schematic Symbol

Table 2-1: Core Signal Pinout
Signal I/O Optional Description

aclk I No Rising edge clock
aclken I Yes Active-High clock enable
aresetn I Yes Active-Low synchronous clear (overrides aclken)
s_axis_input_tvalid I No TVALID for S_AXIS_INPUT channel. See

AXI4-Stream Protocol for protocol.
s_axis_input_tready O No TREADY for S_AXIS_INPUT
s_axis_input_tdata I No Input data and erase flag, if applicable
s_axis_input_tuser I Yes User bits, passed through core unmodified, with

same latency as s_axis_input_tdata
s_axis_input_tlast I No Marks last symbol of input block. Only used to

generate event outputs. Can be tied Low or High
if event outputs not used.

s_axis_ctrl_tvalid I Yes TVALID for S_AXIS_CTRL channel. This channel is
only present if core has variable block length,
number of check symbols or variable puncturing

s_axis_ctrl_tready O Yes TREADY for s_axis_ctrl_channel
s_axis_ctrl_tdata I Yes Block length, number of check symbols and

puncture select, if applicable
m_axis_output_tvalid O No TVALID for M_AXIS_OUTPUT channel

s_axis_input_tdata

s_axis_input_tvalid

s_axis_input_tlast

aresetn
aclk

aclken

s_axis_input_tuser

s_axis_input_tready

s_axis_ctrl_tdata

s_axis_ctrl_tvalid
s_axis_ctrl_tready

m_axis_output_tdata

m_axis_output_tvalid

m_axis_output_tlast
m_axis_output_tuser

m_axis_output_tready

m_axis_stat_tdata

m_axis_stat_tvalid

m_axis_stat_tlast

event_s_input_tlast_missing
event_s_input_tlast_unexpected

event_s_ctrl_tdata_invalid

m_axis_stat_tready

Send Feedback

Reed-Solomon Decoder v9.0 12
PG107 February 4, 2021 www.xilinx.com

Chapter 2: Product Specification

m_axis_output_tready I No TREADY for M_AXIS_OUTPUT channel. Tie High if
downstream slave is always able to accept data
from M_AXIS_OUTPUT

m_axis_output_tdata O No Corrected data output
m_axis_output_tuser O Yes s_axis_input_tuser delayed by core latency
m_axis_output_tlast O No High when last symbol of last channel is on

m_axis_output_tdata
m_axis_stat_tvalid O No TVALID for M_AXIS_STAT channel
m_axis_stat_tready I No TREADY for M_AXIS_STAT channel. Tie High if

downstream slave is always able to accept data
from M_AXIS_STAT, or if stat channel is not used

m_axis_stat_tdata O No Status information for the last block processed
m_axis_stat_tlast O Yes High when status information for the last

channel is on m_axis_output_tdata. This output is
only present in multichannel mode.

event_s_input_tlast_missing O No Flags that s_axis_input_tlast was not asserted
when expected. Leave unconnected if not
required.

event_s_input_tlast_unexpected O No Flags that s_axis_input_tlast was asserted when
not expected. Leave unconnected if not required.

event_s_ctrl_tdata_invalid O No Flags that values provided on s_axis_ctrl_tdata
were illegal. Core must be reset if this is asserted.
Leave unconnected if not required.

Table 2-1: Core Signal Pinout (Cont’d)

Signal I/O Optional Description

Send Feedback

Reed-Solomon Decoder v9.0 13
PG107 February 4, 2021 www.xilinx.com

Chapter 3

Designing with the Core
This chapter includes guidelines and additional information to facilitate designing with the
core.

Clocking
aclken
The clock enable input (aclken) is an optional pin. When aclken is deasserted (Low), all
the other synchronous inputs are ignored, except aresetn, and the core remains in its
current state. This pin should be used only if it is genuinely required because it has a high
fan out within the core and can result in lower performance. aclken is a true clock enable
and causes the entire core to freeze state when it is Low.

An example of aclken operation is shown in Figure 3-1. In this case, the decoder ignores
symbol D4 as input to the block, and the current m_axis_output_tdata value remains
unchanged. (The decoder still samples n symbols.) As D4 is not included in the code block,
the output sequence ...D0,D1,D2,D3,D5... appears on m_axis_output_tdata during the
output stage of this block.
X-Ref Target - Figure 3-1

Figure 3-1: Clock Enable Timing

aclk

aclken

s_axis_input_tvalid

s_axis_input_tdata

m_axis_output_tdata

D0 D1 D2 D3 D4 D5 D6

Send Feedback

Reed-Solomon Decoder v9.0 14
PG107 February 4, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Resets
aresetn
The synchronous reset (aresetn) input is an optional pin. It can be used to re-initialize the
decoder at any time, regardless of the state of aclken. aresetn needs to be asserted Low
for at least two clock cycles to initialize the circuit. The decoder becomes ready for normal
operation two cycles after aresetn goes High. This pin should be selected with caution, as
it increases the size of the core and can reduce performance. The timing for the aresetn
input is shown in Figure 3-2. Note that some outputs are not reset by aresetn.

AXI4-Stream Protocol
The use of AXI4-Stream interfaces brings standardization and enhances interoperability of
Xilinx IP LogiCORE™ solutions. Other than general control signals such as aclk, aclken
and aresetn, and event outputs, all inputs and outputs to the core are conveyed via
AXI4-Stream channels. A channel consists of TVALID and TDATA always, plus several
optional ports and fields. In the RS Decoder core, the additional ports used are TREADY,
TLAST and TUSER. Together, TVALID and TREADY perform a handshake to transfer a value,

X-Ref Target - Figure 3-2

Figure 3-2: Synchronous Reset Timing

aclk

aclken

aresetn

s_axis_input_tready

s_axis_ctrl_tready

m_axis_output_tdata

m_axis_output_tuser

m_axis_output_tvalid

m_axis_output_tlast

m_axis_stat_tdata

m_axis_stat_tvalid

m_axis_stat_tlast

event_s_input_tlast_missing

event_s_input_tlast_unexpected

event_s_ctrl_tdata_invalid

Send Feedback

Reed-Solomon Decoder v9.0 15
PG107 February 4, 2021 www.xilinx.com

Chapter 3: Designing with the Core

where the payload is TDATA, TUSER and TLAST. The payload is indeterminate when TVALID
is deasserted.

The RS Decoder core operates on the values contained in the S_AXIS_INPUT channel TDATA
fields and outputs the results in the TDATA fields of the M_AXIS_OUTPUT channel. The RS
Decoder core does not use inputs TUSER and TLAST as such, but the core provides the
facility to convey TUSER with the same latency as TDATA. This facility of passing TUSER from
input to output is intended to ease use of the core in a system. TLAST is provided purely as
a check that the core is in sync with the system and its use is optional. For further details on
AXI4-Stream Interfaces see [Ref 1] and [Ref 2].

Basic Handshake
Figure 3-3 shows the transfer of data in an AXI4-Stream channel. TVALID is driven by the
source (master) side of the channel and TREADY is driven by the receiver (slave). TVALID
indicates that the value in the payload fields (TDATA, TUSER and TLAST) is valid. TREADY
indicates that the slave is ready to receive data. When both TVALID and TREADY are true in
a cycle, a transfer occurs. The master and slave set TVALID and TREADY respectively for the
next transfer appropriately.

The full flow control of AXI4-Stream aids system design because the flow of data is
self-regulating. Data loss is prevented by the presence of back pressure (TREADY), so that
data is only propagated when the downstream datapath is ready to process it.

The core has two input channels: S_AXIS_INPUT and S_AXIS_CTRL. If any of the block
parameters, such as block length, have been selected to be run time configurable then a
block cannot be processed until the control values for that block have been loaded on
S_AXIS_CTRL. A new control value must be loaded for every new block or the core will stall
the S_AXIS_INPUT channel by deasserting s_axis_input_tready. Some data can be
input without a control value until the input FIFO fills. It is recommended to write control
values before the data is supplied. To guarantee that the input channel is not stalled due to
lack of control information, the control value should be written no later than one clock cycle
before the first data symbol is sampled. Control values are stored in a FIFO inside the core
and used when a new input block is started. Up to 16 control values can be stored before

X-Ref Target - Figure 3-3

Figure 3-3: Data Transfer in an AXI-Stream Channel

ACLK

TVALID

TREADY

TDATA

TLAST

TUSER

D1 D2 D3 D4

L1 L2 L3 L4

U1 U2 U3 U4

Send Feedback

Reed-Solomon Decoder v9.0 16
PG107 February 4, 2021 www.xilinx.com

Chapter 3: Designing with the Core

any input data is provided. After the control FIFO fills, s_axis_ctrl_tready is
deasserted.

The core has two output channels: M_AXIS_OUTPUT and M_AXIS_STAT. If the output is
prevented from off-loading data because m_axis_output_tready is Low then data
accumulates in the core. When the core’s internal buffers are full the core stops further
operations. This prevents the input buffers from off-loading data for new operations so the
input buffers fill as new data is input. When the input buffers fill, their respective TREADYs
(s_axis_input_tready and s_axis_ctrl_tready) are de-asserted to prevent further
input. This is the normal action of back pressure. One status value is output on M_AXIS_STAT
for each block output on M_AXIS_OUTPUT. In multichannel mode a separate status value is
output for each channel, with m_axis_stat_tlast indicating the last channel. If
m_axis_stat_tready is Low and this status information is not read then the status
information is buffered inside the core. When this buffer fills and the core needs to output
more status information, the input channel is eventually blocked and
s_axis_input_tready is deasserted. To prevent the output channel stalling, it is
recommended to read the status information for a block before the status information for
the next block is output.

S_AXIS_INPUT Channel

s_axis_input_tdata

Data to be processed is passed into the core on this port. The port is composed of a number
of subfields, depending on parameter settings. To ease interoperability with byte-oriented
buses, each subfield within TDATA is padded with zeros, if necessary, to fit a bit field which
is a multiple of 8 bits. The padding bits are ignored by the core and do not result in
additional resource use. The structure is shown in Figure 3-4.

DATA_IN Field

This is the input bus for the incoming Reed-Solomon coded data. The width of the DATA_IN
portion of the field is set by the Symbol Width parameter in the GUI.

ERASE Field

This field is only present when erasure support is required. It only contains a single bit of
information: the ERASE input. Erasure handling is described later in this document.

X-Ref Target - Figure 3-4

Figure 3-4: Input Channel TDATA Structure

DATA_INERASEPAD PAD

Send Feedback

Reed-Solomon Decoder v9.0 17
PG107 February 4, 2021 www.xilinx.com

Chapter 3: Designing with the Core

s_axis_input_tuser

This optional input is used to pass information through the core with exactly the same
latency as s_axis_input_tdata. This could be used to tag each symbol sampled on
DATA_IN with marker bits, for example. The number of TUSER bits is parameterizable and
set by the Number of Marker Bits parameter in the GUI. The TUSER bits are delayed with the
same latency as DATA_IN to DATA_OUT and output on m_axis_output_tuser. For
example, if ‘5’ is sampled on s_axis_input_tuser at the same time as the first symbol
on s_axis_input_tdata, then ‘5’ is output on m_axis_output_tuser at the same
time the first symbol is output on m_axis_output_tdata.

This feature can be used to mark special symbols within a frame or to tag data from
different blocks with block identification numbers.

In general, using a small number of marker bits makes very little difference to the core size.
However, a point is reached where extra marker bits cause more memory to be used. This
point is dependent on the symbol width and latency.

s_axis_input_tlast

This input can be tied Low or High if the event outputs (event_s_input_tlast_missing
and event_s_input_tlast_unexpected) are not used. It is present purely to provide a
check that the system and core are in sync with block sizes. If the event outputs are used
then s_axis_input_tlast must be asserted High when the last symbol of a block is
sampled on s_axis_input_tdata. In the multichannel case it must be asserted when the
last symbol of the last channel of the block is sampled on s_axis_input_tdata. The core
maintains its own internal count of the symbols, so it knows when the last symbol is being
sampled. If s_axis_input_tlast is not sampled High when the last input symbol is
sampled then event_s_input_tlast_missing is asserted until the next input sample is
taken. Similarly, if s_axis_input_tlast is sampled High when the core is not expecting
it, event_s_input_tlast_unexpected is asserted until the next input sample is taken.
If either of these events occurs then the system and the core are out of sync and the core,
and possibly the system, should be reset.

S_AXIS_CTRL Channel

s_axis_ctrl_tdata

If the S_AXIS_CTRL channel is present, control data for each block is passed into the core on
this port. The port is composed of a number of subfields, depending on parameter settings.
Each subfield is padded to make it a multiple of 8 bits. The padding bits are ignored by the
core and do not result in additional resource use. The structure is shown in Figure 3-5. Care
should be taken to ensure only valid combinations of N_IN and R_IN are provided, as the
core might need to be reset if invalid values are written.

Send Feedback

Reed-Solomon Decoder v9.0 18
PG107 February 4, 2021 www.xilinx.com

Chapter 3: Designing with the Core

N_IN Field

This field is only present if “Variable Block Length” is selected in the GUI. This allows the
block length to be changed every block. Selecting this input significantly increases the size
of the core. Unless there is an R_IN field, the number of check symbols is fixed, so varying
n automatically varies k.

For example, if N_IN is set to 255 and R_IN is set to 16 in the control word C1 in Figure 3-7,
the next input block (starting D1) is treated as a (n=255, k=239) codeword. If C2 has N_IN
equal to 64 and R_IN is equal to 8, then the next input block (starting DN) is treated as a
(n=64, k=56) codeword. For this example, n should be set to 255 and k to 239 in the GUI, as
the largest expected R_IN value is 16. This would give an R_IN field width of 5 bits (plus 3
padding bits).

R_IN Field

This field is only present if Variable Number of Check Symbols is selected in the GUI. It
allows the number of check symbols to be changed every block.

The width of the R_IN field is the minimum number of bits required to represent the
maximum n value minus the minimum k value, padded with unused inputs to round up to
the nearest multiple of 8.

The value input on R_IN must correspond to the generator polynomial (and, hence, number
of check symbols) used to encode the codeword. Some specifications appear to vary the
number of check symbols, but in reality the codewords are all generated by the same
generator polynomial, and the number of check symbols is varied by deleting some of
them. The R_IN field should not be used in these cases. The PUNC_SEL field is provided to
handle this.

PUNC_SEL Field

This field is only present if the number of puncture patterns is greater than one. It selects a
puncture pattern to be applied to the code block. Puncturing is explained in Puncturing,
page 26.

X-Ref Target - Figure 3-5

Figure 3-5: Control Channel TDATA Structure

N_INR_INPAD PADPUNC_SELPAD

Send Feedback

Reed-Solomon Decoder v9.0 19
PG107 February 4, 2021 www.xilinx.com

Chapter 3: Designing with the Core

M_AXIS_OUTPUT Channel

m_axis_output_tdata

Raw data with errors sampled on s_axis_input_tdata is corrected and output from the
core on this port. The port is composed of a number of subfields, depending on parameter
settings. All output fields are padded with zeroes to fit a bit field which is a multiple of 8
bits. The structure is shown in Figure 3-6.

DATA_OUT Field

This is the output field for the corrected symbols. This field always has the same width as
DATA_IN.

Corrected symbols start to appear at a number of clock cycles after the first symbol is
sampled on DATA_IN. This delay is termed the latency of the decoder and is explained in
Latency. Latency can vary if the block size is dynamically varied with the N_IN field or if the
output is stalled by deassertion of a TREADY input.

DATA_DEL Field

This optional output field is an uncorrected version of DATA_OUT. It is DATA_IN delayed by
the latency of the core. DATA_DEL is useful for making comparisons of corrected and
uncorrected data. This field always has the same width as DATA_IN.

This field can be compared to DATA_OUT to gather error statistics and examine the position
of error bits. The positions of individual bit errors can be obtained by XORing DATA_OUT
and DATA_DEL.

INFO Field

This optional output field contains a single information bit, INFO, which is High when data
symbols are on DATA_OUT and Low when check symbols are on DATA_OUT (that is, the last
n-k symbols of the block).

m_axis_output_tuser

This optional output is s_axis_input_tuser delayed by the same latency as
s_axis_input_tdata to m_axis_output_tdata. The width is the same as
s_axis_input_tuser.

X-Ref Target - Figure 3-6

Figure 3-6: Output Channel TDATA Structure

DATA_OUTINFOPAD PADDATA_DELPAD

Send Feedback

Reed-Solomon Decoder v9.0 20
PG107 February 4, 2021 www.xilinx.com

Chapter 3: Designing with the Core

m_axis_output_tlast

This output is High when the last symbol of a block is on m_axis_output_tdata. This is
either the kth symbol (if the “Output Check Symbols” option is not selected in the GUI) or
the nth symbol (if the “Output Check Symbols” option is selected in the GUI) of the code
word block. In the multichannel case, m_axis_output_tlast is only asserted High when
the last symbol of the last channel is present on m_axis_output_tdata.

M_AXIS_STAT Channel

m_axis_stat_tdata

Status information for the block just output is provided on this port. One status word is
provided for each output block, one word for each channel in the multichannel case. The
status word is output after the last symbol has been processed inside the core. The status
word(s) must be read before the core needs to write more status information to its internal
buffer or the input channel is eventually blocked. If the status channel is not required then
m_axis_stat_tready should be tied High.

There is a parameter-dependent latency on both the output data and the status output.
These latencies are different. For some parameter combinations the status output can be
output before the last output tdata. They are independent AXI4-Stream channels, so their
timing is decoupled and the status information for the previous block might not even have

X-Ref Target - Figure 3-7

Figure 3-7: Block Input to Output Timing

aclk

s_axis_ctrl_tdata

s_axis_ctrl_tvalid

s_axis_ctrl_tready

s_axis_input_tdata

s_axis_input_tuser

s_axis_input_tvalid

s_axis_input_tlast

s_axis_input_tready

m_axis_output_tready

m_axis_output_tvalid

m_axis_output_tlast

m_axis_output_tdata

m_axis_output_tuser

m_axis_stat_tdata

m_axis_stat_tvalid

m_axis_stat_tready

C1 C2

D1 D2 D3 DN-2 DN-1 DN

U1 U2 U3 UN-2 UN-1 UN

D1 D2 D3 DN-2 DN-1 DN

U1 U2 U3 UN-2 UN-1 UN

S1

Input code word Process code word Output code word

Send Feedback

Reed-Solomon Decoder v9.0 21
PG107 February 4, 2021 www.xilinx.com

Chapter 3: Designing with the Core

been read when the last value is output on m_axis_output_tdata. There is always one
set of status information for each block.

The port is composed of a number of elements, depending on parameter settings. The port
is padded with zeroes to be a multiple of 8 bits. The elements are always packed into the
least significant bits. For example, if erasures are not required there is no ERASE_CNT
element and BIT_ERR_0_TO_1 abuts ERR_CNT, assuming ‘Error Statistics’ is selected in the
GUI. The structure is shown in Figure 3-8.

FAIL Element

The decoder sets FAIL High if it determines that there were more errors in the code block
than it could correct. In this case, ERR_FOUND, ERR_CNT, ERASE_CNT, BIT_ERR_0_TO_1
and BIT_ERR_1_TO_0 status outputs are now undefined and should not be relied upon
until FAIL goes Low again.

With Reed-Solomon codes, if the error correcting capacity of the code is exceeded, it is
usually possible to detect this and assert FAIL. However, there might be some cases where
it is impossible. For example, consider a (5,1) code. This code can correct up to two symbol
errors. Any more than two symbol errors should result in a failure. Assume the transmitted
codeword symbol sequence was [a, b, c, d, e]. Also assume that [g, h, i, j, k] is another
legitimate codeword. Suppose the received codeword is [a, b, i, j, k]. This contains three
symbol errors; however, this is the same as [g, h, i, j, k] with two symbol errors.

The decoder corrects this to yield [g, h, i, j, k], and FAIL is not asserted. This is a function
of the codes themselves and not the decoder implementation. As the block sizes become
larger, it is extremely unlikely that one codeword will be converted into another, and FAIL
generally detects that the correction capacity of the code has been exceeded.

If the error correction capacity of the code is exceeded in a particular code block, then the
values on DATA_OUT when that block is output are undefined.

ERR_FOUND Element

If the decoder detected any errors, erasures, or punctures in the code block, ERR_FOUND is
High. If no errors, erasures, or punctures are found, ERR_FOUND is Low.

ERR_CNT Element

The ERR_CNT element gives the number of errors, erasures, and punctures that were
corrected. The width of the element depends on the input parameters n and k. The width is
equal to the number of binary bits required to represent (n-k). If n-k = 16, for example, the
ERR_CNT element is five bits wide.

X-Ref Target - Figure 3-8

Figure 3-8: Stat Channel TDATA Structure

FAILBIT_ERR_0_TO_1PAD ERR_FOUNDERR_CNTERASE_CNTBIT_ERR_1_TO_0

Send Feedback

Reed-Solomon Decoder v9.0 22
PG107 February 4, 2021 www.xilinx.com

Chapter 3: Designing with the Core

If decoding fails, then FAIL is asserted and the ERR_CNT value cannot be relied upon.

ERASE_CNT Element

This element is only included when erasure or puncture support is required. The element
width is equal to the number of binary bits required to represent n. Erasure handling is
described later in this document.

BIT_ERR_0_TO_1 Element

This element is only included when ‘Error Statistics’ is selected in the GUI. It gives the
number of bits that were received as 1 but corrected to 0 in the block. As long as the error
correction capability of the code has not been exceeded, this is the same as the number of
0 bits that were corrupted to 1 during transmission. The element width is the number of
binary bits required to represent ((n-k) * Symbol_Width).

BIT_ERR_1_TO_0 Output

This element is included when BIT_ERR_0_TO_1 is included. It has the same functionality and
width as BIT_ERR_0_TO_1, except it counts the number of bits received as 0 but corrected
to 1.

m_axis_stat_tlast

This output is only driven in the multichannel case. It is asserted High when
m_axis_stat_tdata holds the information for the last channel. This is illustrated in
Figure 3-9.
X-Ref Target - Figure 3-9

Figure 3-9: TLAST Timing for 3 Channel Example

aclk

m_axis_output_tlast

m_axis_output_tdata

m_axis_output_tvalid

m_axis_output_tready

m_axis_stat_tlast

m_axis_stat_tdata

m_axis_stat_tvalid

m_axis_stat_tready

AN-1 BN-1 CN-1 AN BN CN

A B C

Send Feedback

Reed-Solomon Decoder v9.0 23
PG107 February 4, 2021 www.xilinx.com

Chapter 3: Designing with the Core

event_s_input_tlast_missing
This output is asserted High if s_axis_input_tlast is not sampled High when the last
symbol of a block is sampled. It should be left unconnected if not required and the logic
used to generate it is optimized away. This output is only asserted until the next input
sample starts to be processed inside the core, so care must be taken not to miss a pulse on
this output. This output can be used to interrupt the system and possibly instigate a reset
sequence.

event_s_input_tlast_unexpected
This output is asserted High if s_axis_input_tlast is sampled High when an input
symbol that is not the last symbol of a block is sampled. Its timing and operation are the
same as event_s_input_tlast_missing.

event_s_ctrl_tdata_invalid
This output is asserted High if the core has an S_AXIS_CTRL channel and values are sampled
on N_IN or R_IN that are outside the absolute limits the core can handle. The limits are
computed at core generation time, based on the parameters selected. When asserted, this
output remains asserted until the core is reset. The core must be reset if this output is
asserted, as invalid N_IN or R_IN values can cause the core to malfunction for subsequent
blocks and not recover. Control values should be within the limits defined in Table 4-2.

Erasure Decoding
An erased symbol is an input symbol that is known to be wrong. The symbol is flagged as
being erased by asserting the ERASE input High while the symbol is being sampled. In the
example shown in Figure 3-10, D2 is flagged as an erasure.
The decoder corrects the code block if 2e + E ≤ n-k, where e is the number of errors and E
is the number of erasures.

The ERASE_CNT output provides a count of the number of erasures that were flagged for
the block just output. It is updated at the same time as ERR_CNT and the other status
outputs. If erasure decoding is selected, ERR_CNT provides a count of the number of
erasures plus errors that were corrected.

X-Ref Target - Figure 3-10

Figure 3-10: ERASE Timing

aclk

s_axis_input_tvalid

ERASE

DATA_IN D0 D1 D2 D3 D4

Send Feedback

Reed-Solomon Decoder v9.0 24
PG107 February 4, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Erasure decoding increases the size of the core considerably. It should be selected only if it
is essential as there is a large area overhead compared to the same core without erasure
support. See Examples.

Processing Delay
The core inputs a block, processes it and outputs the corrected block. The times to input
and output the block are dependent on the block length. The time to process the block is
dependent on the number of check symbols, (n-k). The Processing Delay (PD) in clock
cycles, for a given t, is shown in Figure 3-11. The Processing Delay should not be confused
with latency. It is a component of the latency. Processing delay is important because it
determines if blocks can be indefinitely input without pause.

The core can still accept a new code block immediately after the previous one has been
sampled, even if the Processing Delay is greater than n, due to its internal buffering.
However, if new blocks are continually fed to the decoder with n less than PD, at some point
it is unable to accept a new code block and s_axis_input_tready is deasserted. If PD is
less than or equal to n then blocks can be input continuously, without pause, providing the
output is not stalled by deasserting one of the output channel TREADY inputs. The timing is
described in Variable Block Length, page 29.
X-Ref Target - Figure 3-11

Figure 3-11: Processing Delay against t, where t = (n-k)/2

DS252_12_061506

Send Feedback

Reed-Solomon Decoder v9.0 25
PG107 February 4, 2021 www.xilinx.com

Chapter 3: Designing with the Core

The number of clock cycles can be calculated using Equation 3-1:

Equation 3-1

If erasure decoding or puncturing is enabled, Equation 3-2 should be used:

Equation 3-2

If then the maximum throughput is equal to the clock frequency * symbol width
Mb/s. If then maximum throughput is approximately (n/PD) * clock frequency *
symbol width Mb/s.

Latency
The latency is the number of clock edges from a symbol being sampled on DATA_IN to the
corrected version of that symbol appearing on DATA_OUT. An example, with a latency of
three, is shown in Figure 3-12. In reality, the latency is usually much greater than this.

The latency is dependent on the values of n (the number of symbols in a code block), t (the
number of correctable errors), whether erasures or puncturing are selected, symbol width,
number of channels and code specification. The GUI computes the actual latency based on
the entered parameters and displays the value on the last page.

Latency can vary if the processing delay is greater than the block length. The core can buffer
data for the next blocks while still processing previous blocks. Internally it has to wait for
the previous block to be processed, increasing latency on the new block. If n is always
greater than the processing delay or the number of cycles taken from the start of one block
to the start of the next is greater than the processing delay then the latency calculation in
Table 3-5 is valid.

PD 2t 2 9t 3+ +=

PD n k–()2 6 n k–() 4+ +=

PD n≤
PD n>

X-Ref Target - Figure 3-12

Figure 3-12: Latency = 3

aclk

s_axis_input_tvalid

s_axis_input_tdata

m_axis_output_tvalid

m_axis_output_tdata

0 1 2 3 4 5

D0 D1 D2 D3 D4

D0 D1

Latency=3

Send Feedback

Reed-Solomon Decoder v9.0 26
PG107 February 4, 2021 www.xilinx.com

Chapter 3: Designing with the Core

The following equations are used to calculate the latency, where r=n-k and t=r/2.

If erasure decoding or puncturing is enabled use Equation 3-3:

Equation 3-3

otherwise use Equation 3-4:

Equation 3-4

The latency is then defined in Equation 3-5:

Equation 3-5

where m, nc, c, and ev are defined in Table 3-1.

Puncturing
Puncturing can be thought of as erasure decoding where the erasure positions are known
prior to the block being received. For example, in the IEEE802.16d standard, the RS
codeword always has 16 check symbols; however, some of those symbols might not be
transmitted. If only the first 12 check symbols are transmitted, the number of errors that
can be corrected is reduced from 8 to 6. The decoder still decodes as if there were 16 check
symbols. The last 4 check symbols are sampled, but ignored. One way of handling this is to
flag the last 4 symbols of the block as erasures; however, the complexity of the full erasure
decoding logic is not required. It is possible to define the known erasure positions in a file
when generating the core. The core then automatically compensates for the deleted
symbols. Erasure decoding must be unselected if puncturing is required. If both puncturing
and erasure decoding are required, then the puncturing must be handled externally by
asserting the ERASE input at the appropriate time.

As far as the core is concerned, the length of the block (n) still includes the punctured
symbols. So for variable N codes, the value sampled on N_IN must include the number of

Table 3-1: Latency Variables
m nc c ev

Symbol Width 1
0

Number Channels 1
0

Code Specification 2
0

(Erasures AND
Variable Block Length)
OR (CCSDS selected)

1
0

L r2 6r 5 n+ + +() num_channels× 10+=

L 2t2 9t 4 n+ + +() num_channels× 10+=

Latency L m nc c ev+ + + +=

8=

8≠

1>

1≤

CCSDS=

CCSDS≠

0≠

0=

Send Feedback

Reed-Solomon Decoder v9.0 27
PG107 February 4, 2021 www.xilinx.com

Chapter 3: Designing with the Core

punctured symbols. For example, IEEE802.16d specifies a (120,108,6) code, that is, n=120,
k=108, and t=(n-k)/2=6. It would seem this code has only 12 check symbols, but it is
actually a 16 check symbol code with 4 punctured check symbols. Therefore, the real value
of n is 124 and N_IN must be set to 124 to allow for the 4 dummy symbols that are sampled
after the 120 real symbols.

The PUNC_SEL field can be used to select between a number of predefined puncture
patterns. The number of puncture patterns is set in the core GUI. If this is fewer than two,
then PUNC_SEL is not required. If it is greater than zero, then a puncture definition file must
be supplied to define the puncture patterns. For example, the file for IEEE802.16d is as
follows:

In this example, there are four possible puncture patterns. The number of symbols to be
punctured from a block is defined in the puncture_select_vector. The number of
symbols punctured for each PUNC_SEL value in this example is shown in Table 3-2.

The puncture_select_vector entries can be in the range 0 to n-k. This is because the
maximum number of punctured symbols that can be recovered is n-k.

The puncture_vector defines which symbols are punctured for each of the
puncture_select_vector entries. In the previous example, there are no entries for
PUNC_SEL=0, as the puncture_select_vector has defined 0 symbols to be punctured
in this case. If PUNC_SEL=1, then the puncture_select_vector has defined that four
symbols are to be punctured. The first four entries of the puncture_vector define the
symbol positions. The entries count back from the last symbol in a block, with 0 being the
last symbol. Thus if PUNC_SEL=1, symbols 0, 1, 2 and 3 are all punctured, that is, the last
four symbols in the block. If PUNC_SEL=2, then the last eight symbols in the block are
punctured. If PUNC_SEL=3, then the last twelve symbols in the block are punctured.

The number of entries in the puncture_vector must equal the sum of the entries in the
puncture_select_vector.

radix=10;
puncture_select_vector= 0,4,8,12;
puncture_vector= 0,1,2,3,

0,1,2,3,4,5,6,7,
0,1,2,3,4,5,6,7,8,9,10,11;

Table 3-2: puncture_select_vector Example
PUNC_SEL Number of Symbols Punctured

0 0
1 4
2 8
3 12

Send Feedback

Reed-Solomon Decoder v9.0 28
PG107 February 4, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Each puncture_vector entry must be less than n. If n is variable, then the selected
puncture_vector entry for a given block must be less than the value sampled on N_IN.

If the number of puncture patterns is not a power of two and an illegal PUNC_SEL value is
sampled, then the punctured pattern applied by the core is not defined. For example, if the
number of puncture patterns was set to 3, then only 0, 1, and 2 are legal values for
PUNC_SEL. A value of 3 should never be sampled on PUNC_SEL.

Timing for the IEEE802.16 example is shown in Figure 3-13. PUNC_SEL is set to 1 using the
control channel. The puncture_select_vector defines this as four punctured symbols.
The puncture_vector specifies that the last four symbols of the block are to be
punctured (symbols 0, 1, 2, and 3). The core still samples DATA_IN for the four punctured
symbols. Dummy symbols must be provided to the core in the puncture positions, as shown
in Figure 3-13. The value on DATA_IN is irrelevant at this time. DN-4 is the last real symbol
received.

The decoder actually determines the values of the punctured symbols and outputs them in
the correct sequence. The ERASE_CNT element of S1 shows how many symbols were
punctured. The ERROR_CNT element shows the number of errors plus the number of
punctures. So, if there were no errors in the block, ERROR_CNT would be 4 and ERASE_CNT
would be 4 as well. The number of true errors is ERROR_CNT-ERASE_CNT.

If puncturing is used, the latency and Processing Delay are derived from the same equation
as if erasures were enabled. See Processing Delay.

X-Ref Target - Figure 3-13

Figure 3-13: Puncture Timing

aclk

PUNC_SEL

s_axis_ctrl_tvalid

s_axis_input_tdata

s_axis_input_tvalid

s_axis_input_tlast

s_axis_input_tready

m_axis_output_tready

m_axis_output_tvalid

m_axis_output_tlast

m_axis_output_tdata

m_axis_stat_tdata

m_axis_stat_tvalid

m_axis_stat_tready

1

D1 D2 DN-5 DN-4

D1 D2 DN-3 DN-2 DN-1 DN

S1

Punctured by transmitter

Input code word Output code word

Send Feedback

Reed-Solomon Decoder v9.0 29
PG107 February 4, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Variable Block Length
If the N_IN field of s_axis_ctrl_tdata is used, the block length can be different for
every new block. N_IN can vary within the ranges shown in Table 4-2. It must also be greater
than the number of check symbols, r. The number of check symbols can be fixed or variable,
depending on whether “Variable Number of Check Symbols” is selected in the GUI.

When variable block length is used the latency and Processing Delay for each individual
block are the same as for the fixed block core and can be checked in the core GUI. The
values sampled on N_IN and R_IN can be used in the equations to compute the Processing
Delay for each block sampled. The Processing Delay depends only on the number of check
symbols.

A block might actually take longer to appear on DATA_OUT than the calculated latency, as
an earlier, larger block might still be being processed. Figure 3-14 shows an example where
the Processing Delay is greater than the block length. In this example block N2 is input
while block N1 is still being processed. Block N2 cannot be processed until processing has
completed for block N1. It is buffered until the Processing Delay for N1 completes. N3 is
also input and buffered. The start of N4 is also input but the input FIFO fills at this point and
s_axis_input_tready is deasserted. When the processing of N1 has completed,
processing of N2 begins and N3 is prepared for processing. This preparation takes r cycles.
When this is complete the rest of N4 can be loaded.

Note that if all the block lengths had been greater than or equal to the Processing Delay
then s_axis_input_tready would not have been deasserted.
is

The core always samples data and outputs results as soon as possible. If the Processing
Delay is not greater than any sampled block size there are never gaps between output
blocks. However, it is possible for s_axis_input_tready to go Low, even if the
Processing Delay is not greater than all the sampled block sizes. This can happen if a large
block is followed by many relatively small blocks: see Figure 3-15 for example. Because the
large block (N1) takes a long time to output, the small input blocks start to back up inside
the core. Thus, the input data might need to be temporarily held up, as in Figure 3-15,
because a large block was followed by many small ones. An additional FIFO could be placed

X-Ref Target - Figure 3-14

Figure 3-14: Variable n – TREADY Operation

N1 In N1 OutProcessing Delay

N3 In PD

s_axis_input_tready

N4 In

N2 In N2 OutProcessing Delay

Send Feedback

Reed-Solomon Decoder v9.0 30
PG107 February 4, 2021 www.xilinx.com

Chapter 3: Designing with the Core

in front of the core to smooth out these effects if necessary. The input symbols to the FIFO
would not need to have any gaps, and there would never be any gaps between output
symbols from the core.
I

Note that the overall latency for block N2 is larger than predicted by the latency equation.
This is because it had to wait for N1 to be output.

The processing section can also buffer results for up to two blocks. This is shown in the
example in Figure 3-15. As the processing for N2 (that is, PD2) completes, the core is still
outputting N1, so it stores the PD2 results in a buffer. These results are then used when
outputting N2. PD3 completes before the PD2 results have been used, so the PD3 results
are also buffered. The processing buffer can hold two blocks, so it is now full, and PD4
cannot begin until the PD3 results have been unloaded. N5 can still be input as the core can
hold just over two complete blocks of data (or more if the blocks are extremely small) in its
input stage. PD4 can begin when the N2 values begin to be output, as this is when the PD2
values are unloaded from the processing buffer. PD4 then begins and completes while the
core is still outputting values from earlier blocks so its results are buffered until N3 has been
output. PD5 can begin immediately after PD4, because the processing buffer can hold two
blocks. The first few samples of block N6 can be loaded into the core input stage but the
input stage already contains N4 and N5, so the input FIFO soon fills up and
s_axis_input_tready goes Low. The input buffer frees up again as the N4 values are
fed into the processing section at the start of PD4 and the rest of N6 can be read in.

Note that there is no gap between the output blocks, even though there were gaps at the
input side. This is because the core always outputs results as soon as possible.

Figure 3-14 and Figure 3-15 are a slight simplification of what actually happens, but they
serve to illustrate the core behavior. For example, there are some small fixed latencies
between the input section, the processing section, and the output section.

X-Ref Target - Figure 3-15

Figure 3-15: Processing Delay Buffer

N1 In N1 OutPD1

N2 In PD2

s_axis_input_tready
N6 In

N2

N3 In PD3 N3

N4 In PD4 N4

N5 In PD5 N5

PD6 N6

Send Feedback

Reed-Solomon Decoder v9.0 31
PG107 February 4, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Block Code Settings
The core decodes a systematic (n_block, k_block) block code, where the input block is
n_block symbols long, comprised from k_block data symbols followed by r_block check
symbols. The block code settings n_block, k_block, and r_block are optionally variable on a
block-by-block basis. For multichannel configurations, all channels have the same settings
for n_block, k_block, and r_block. See Table 3-3.

n_block
The block code setting n_block specifies the total number of symbols in the current code
block.

• When a variable block length is not required, n_block is set to the parameter n for every
code block.

• When a variable block length is required, n_block is written on the S_AXIS_CTRL channel
prior to each new block.

Table 3-3: Block Code Settings – Value and Range
Block Code Settings Value (1)

Fixed Block Length, Fixed Number of Check Symbols
n_block n(2)

k_block k(2)

r_block (n-k)
Fixed Block Length. Variable Number of Check Symbols
n_block n
k_block n - R_IN
r_block R_IN
Variable Block Length, Fixed Number of Check Symbols
n_block N_IN
k_block N_IN - (n-k)
r_block (n-k)
Variable Block Length, Variable Number of Check Symbols
n_block N_IN
k_block (3) N_IN - R_IN
r_block R_IN

Notes:
1. The minimum and maximum values are defined in Table 4-2.
2. n and k are the values set in the GUI.
3. Set k in GUI so that (n-k) equals the largest value the core needs to handle on R_IN. For example, if n=255 and the

largest legal R_IN value is 20, then set k to 235.

Send Feedback

Reed-Solomon Decoder v9.0 32
PG107 February 4, 2021 www.xilinx.com

Chapter 3: Designing with the Core

k_block
The block code setting k_block specifies the number of data symbols in the current code
block.

• When a variable block length is not required and a variable number of check symbols is
not required, k_block is set to the parameter k for every block.

• When a variable block length is not required and a variable number of check symbols is
required, k_block is set to the parameter n minus the value written on R_IN.

• When a variable block length is required and a variable number of check symbols is not
required, k_block is set to the value written on N_IN minus the parameter (n-k).

• When a variable number of check symbols is required, k_block is set to the value written
on N_IN minus the value written on R_IN.

r_block
The block code setting r_block specifies the number of check symbols in the current code
block.

• When a variable number of check symbols is not required, r_block is set to parameter
(n-k) for every block.

• When a variable number of check symbols is required, r_block is written on R_IN prior
to each new block.

Multiple Channels
The core can process multiple input channels simultaneously with a relatively small increase
in the number of LUTs used. There is a larger increase in the number of registers used. A
multichannel core generally runs at a higher clock frequency than a single-channel core.
Using one multichannel core in a high-speed application can be more efficient than
instantiating several single-channel RS decoder cores. Multichannel is available only for
fixed n and r decoders. All channels have the same code parameters.

When a new block is started for one channel, a new block is started for all the other
channels as well. The code settings (n, k, etc.) are the same for all channels. If puncturing is
used, then a single PUNC_SEL value that applies to all channels is written on S_AXIS_CTRL.

With multiple channels, there is still only one S_AXIS_INPUT channel. Incoming symbols
for the channels are interlaced, so that the core samples the first symbol of channel 1 on the
first rising clock edge, then the first symbol of channel 2 on the second rising clock edge,
and so on, assuming s_axis_input_tvalid and s_axis_input_tready are asserted.
Symbols (both information and check) are output on m_axis_output_tdata in the same
sequence. An example with three channels is shown in Figure 3-16.

Send Feedback

Reed-Solomon Decoder v9.0 33
PG107 February 4, 2021 www.xilinx.com

Chapter 3: Designing with the Core

A single control value (C1) is written. This is only required if there is more than one puncture
pattern and sets PUNC_SEL for all three channels. A new block is started for all three
channels when s_axis_input_tvalid is asserted. A1, B1 and C1 are the first symbols of
the new block for channels A, B and C. s_axis_input_tvalid can be deasserted at any
time. For example, no value is sampled at the start of clock cycle 8.

If erasures are enabled, then the ERASE field can be asserted at any time for each channel
independently. Symbols on m_axis_output_tdata are interlaced in the same way as
symbols on s_axis_input_tdata. The timing for the output of the end of the block and
the status channel is shown in Figure 3-9, page 22.

The Processing Delay is the single-channel Processing Delay multiplied by the number of
channels. This must be less than or equal to n multiplied by the number of channels for
continuous input of code blocks with no input stalling.

The latency is multiplied by an amount roughly proportional to the number of channels. See
the GUI for the exact latency value for a given set of parameters.

Examples
Example 1:

Symbol Width = 8
Symbols per Block (n) = 255
Data Symbols (k) = 239

RS(255,239) is a configuration of 255 symbols, including 239 8-bit data symbols. This code
is capable of correcting 8 symbol errors, that is, up to 64 bit errors. The Processing Delay is
203 cycles, which is less than 255, so this configuration is capable of continuous processing
and the throughput in Mb/s is 8 times the clock frequency (MHz).

X-Ref Target - Figure 3-16

Figure 3-16: Multi-Channel Operation

aclk

s_axis_ctrl_tvalid

s_axis_ctrl_tdata

s_axis_input_tvalid

s_axis_input_tdata

m_axis_output_tdata

m_axis_output_tvalid

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C1

A1 B1 C1 A2 B2 C2

A1 B1 C1 A2 B2 C2

Send Feedback

Reed-Solomon Decoder v9.0 34
PG107 February 4, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Example 2:

Symbol Width = 8
Symbols per Block (n) = 255
Data Symbols (k) = 229

RS(255,229) is a configuration of 255 symbols, including 229 8-bit data symbols. This has a
greater error correcting capability than Example 1, in that 13 symbols, or 104 bits of data,
can be corrected. However, as the Processing Delay is 458 cycles, and is therefore greater
than 255, continuous processing cannot be done.

Maximum throughput is approximately (255/458) * 8 * clock frequency.

Example 3:

Symbol Width = 12
Symbols per Block (n) = 400
Data Symbols (k) = 376

The requirement is to be able to detect and correct a minimum of 3% of the symbols in a
block of 12-bit data and have continuous operation. As this is 12-bit data, the maximum
number of symbols in the block is 4095, and to meet the correction criteria the
configuration would be RS(4095,3849). The Processing Delay (31369 symbol periods) would
be prohibitive due to the n-k value of 246.

The solution could be to use a shortened code. If RS(400,376) was used, this would correct
3% within the 400 symbols block. The Processing Delay is 399, so continuous code blocks
are possible.

Example 4:

Symbol Width = 8
Symbols per Block (n) = 255
Data Symbols (k) = 239
Variable Block Length Checked
Variable Number of Check Symbols Checked

In this case there is a requirement to vary the number of symbols and the number of check
symbols in the block. The symbol width is 8 bits, so n must be set to 255, or less. The largest
expected R_IN value is 16, so k must be set to n-16=239. This gives an R_IN field width of 5
bits, plus 3 padding bits.

So N_IN can have a value up to 255 and R_IN can have a value up to 16. Lower limits are
defined in Table 4-2.

Send Feedback

Reed-Solomon Decoder v9.0 35
PG107 February 4, 2021 www.xilinx.com

Chapter 4

Design Flow Steps
This chapter describes customizing and generating the core, constraining the core, and the
simulation, synthesis and implementation steps that are specific to this IP core. More
detailed information about the standard Vivado® design flows and the IP integrator can be
found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
[Ref 4]

• Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 6]
• Vivado Design Suite User Guide: Getting Started (UG910) [Ref 7]
• Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 8]

Customizing and Generating the Core
This section includes information about using Xilinx tools to customize and generate the
core in the Vivado Design Suite.

If you are customizing and generating the core in the Vivado IP integrator, see the Vivado
Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 4] for
detailed information. IP integrator might auto-compute certain configuration values when
validating or generating the design. To check whether the values do change, see the
description of the parameter in this chapter. To view the parameter value you can run the
validate_bd_design command in the Tcl Console.

You can customize the IP for use in your design by specifying values for the various
parameters associated with the IP core using the following steps:

1. Select the IP from the IP catalog.
2. Double-click the selected IP or select the Customize IP command from the toolbar or

right-click menu.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 6] and
the Vivado Design Suite User Guide: Getting Started (UG910) [Ref 7].

The core GUI provides a number of preset parameter values for several common
Reed-Solomon standards. It also allows the user to define the following parameters.

Send Feedback

Reed-Solomon Decoder v9.0 36
PG107 February 4, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Code Block Specification Parameters

Code Specification (including CCSDS)

The GUI aids creation of cores for a number of common Reed-Solomon specifications. Upon
selecting a particular specification, the GUI automatically selects the parameter values
necessary to meet the specification.

When implementing the CCSDS specification, the core automatically implements the
dual-basis conversions defined in the CCSDS specification. This is shown in Figure 4-1. If
the dual-basis conversions are not wanted, select custom specification instead of CCSDS
and enter all the code parameters manually. Short CCSDS codes are also supported by
selecting the appropriate values of n and k from the GUI. If IEEE 802.16d is selected, then the
GUI uses a predefined COE file to define the required puncture patterns. This file can be
modified if required.

Symbol Width

This is the width of DATA_IN and DATA_OUT.

Field Polynomial

This is the Galois Field polynomial, used to generate the Galois Field for the code.
Polynomials are entered as decimal numbers. The bits of the binary equivalent correspond
to the polynomial coefficients. For example,

285 = 100011101 => x8+x4+x3+x2+1

A value of zero causes the default polynomial for the given symbol width to be selected.

X-Ref Target - Figure 4-1

Figure 4-1: CCSDS Decoder

CCSDS Symbols

Dual-Basis to Normal

Conventional Decoder

Normal to Dual-Basis

CCSDS Symbols
DS252_11_061506

Send Feedback

Reed-Solomon Decoder v9.0 37
PG107 February 4, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Scaling Factor (h)

This is the scaling factor for the generator polynomial root index. Normally h is 1.

To ensure correct operation, the value of h must be chosen so that the greatest common
divisor of h and 2(Symbol_Width)-1 is 1, that is, h and 2(Symbol_Width)-1 must be relative primes.

Generator Start

This is the Galois Field logarithm of the first root of the generator polynomial.

Normally, Generator Start is 0 or 1; however, the core accepts other values.

Variable Block Length

This is selected when the N_IN field is required in s_axis_ctrl_tdata.

Symbols Per Block (n)

This is the number of symbols in an entire code block. If this is a shortened code, n should
be the shortened number.

Table 4-1: Default Polynomials
Symbol Width Default Polynomial Decimal Representation

3 x3+x+1 11
4 x4+x+1 19
5 x5+x2+1 37
6 x6+x+1 67
7 x7+x3+1 137
8 x8+x4+x3+x2+1 285
9 x9+x4+1 529

10 x10+x3+1 1033
11 x11+x2+1 2053
12 x12+x6+x4+x+1 4179

g x() x αh GeneratorStart i+()×–()

i 0=

n k– 1–

∏=

Send Feedback

Reed-Solomon Decoder v9.0 38
PG107 February 4, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Data Symbols (k)

This is the number of information or data symbols in a code block. If the core has an N_IN
or R_IN input, then k is used to specify the maximum number of check symbols supported.
For example, if n=255 and k=239, then there can be a maximum of 16 check symbols.

Variable Number of Check Symbols

This is selected when the R_IN field is required in s_axis_ctrl_tdata. Take care that this
is actually required, and variable check symbols are not to be implemented using puncture
patterns.

Define Supported R_IN Values

If only a subset of the possible values that could be sampled on R_IN is actually required,
then it is possible to reduce the size of the core slightly. For example, for the Intelsat
standard, the R_IN input is 5 bits wide but it only requires r values of 14, 16, 18, and 20. The
core size can be slightly reduced by defining only these four values to be supported. If any
other value is sampled on R_IN, the core does not decode the data correctly.

Number of Supported R_IN Values

If “Define Supported R_IN Values” has been selected, then the number of supported R_IN
values must be entered.

Supported R_IN Definition File

This is a COE file that defines the R values to be supported. It has the following format:

radix=10;

legal_r_vector=14,16,18,20;

The number of elements in the legal_r_vector must equal the “Number of Supported R_IN
Values” set in the GUI.

Implementation Parameters

Self-Recovering

Selecting this option causes extra logic to be generated in the core to detect if the
controlling state machine has entered an illegal state. This should never happen; however,
in some systems illegal timing conditions can be generated by switching clocks outside of
the core, for example. If the core is not reset after a violation like this, then it might end up
in an illegal state. If this is detected, then the core automatically synchronously resets itself.

Send Feedback

Reed-Solomon Decoder v9.0 39
PG107 February 4, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Selecting this option means that all the logic to handle synchronous reset is included in the
core.

Memory Style

The following options are available:

• Distributed – The core should not use any block memories if possible. This is useful if
they are required elsewhere in the design. For symbol widths of 8 and under, this
option results in no block memories being used. For symbol widths greater than 8,
some block memories are used, but their use is kept to a minimum.

• Block – The core should use block memories wherever possible. This keeps the number
of CLBs used to a minimum, but might use block memory wastefully.

• Automatic – This option allows the core to use the most appropriate style of memory
for each case, based on required memory depth.

Number of Channels

This parameter defines how many channels the core should support. Multichannel
operation is described in Multiple Channels, page 32.

Output Check Symbols

If selected, then the entire n symbols of each block are output on the M_AXIS_OUTPUT
channel. If not selected, then only the k information symbols are output.

Puncture Options

Number of Puncture Patterns

This defines how many puncture patterns the core needs to handle. It is set to 0 if
puncturing is not required, which is explained in Puncturing, page 26. This parameter is not
available if erasures are selected. The puncturing can be handled externally by asserting the
ERASE input in this case.

Puncture Definition File

This is the .coe file that defines the punctured symbol positions within a block for each
PUNC_SEL value. This is explained in Puncturing, page 26.

Send Feedback

Reed-Solomon Decoder v9.0 40
PG107 February 4, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Optional Pins

Clock Enable

This is selected when the aclken input is required.

Synchronous Reset

This is selected when the aresetn input is required.

Erase

This is selected when erasure support is required. See the explanation in Erasure Decoding,
page 23.

Info

This is selected when the INFO field is required in m_axis_output_tdata. This option is
not available if “Output Check Symbols” is de-selected, as it is redundant in that case.

Original Delayed Data

This is selected when the DATA_DEL field is required in m_axis_output_tdata.

Error Statistics

This is selected when the BIT_ERR_0_TO_1 and BIT_ERR_1_TO_0 elements are required
in m_axis_stat_tdata.

Marker Bits

This is selected when s_axis_input_tuser and m_axis_output_tuser are required.

Number of Marker Bits

This sets the width of s_axis_input_tuser and m_axis_output_tuser.

Parameter Ranges
Valid ranges for the parameters are given in Table 4-2.

Send Feedback

Reed-Solomon Decoder v9.0 41
PG107 February 4, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

User Parameters
Table 4-3 shows the relationship between the fields in the Vivado IDE and the User
Parameters (which can be viewed in the Tcl Console).

All parameters are visible in the IP integrator. No parameters are set automatically.

Table 4-2: Parameter Ranges
Parameter Min Max Notes

n 5 2(Symbol_Width)-1 [1]
k 1 2(Symbol_Width)-3 [2]
h 1 2(16)-1
Polynomial 0 2(13)-1
r=n-k 2 256 [3] [4]
Symbol Width 3 12
Gen Start 0 1023
Number of Puncture Patterns 0 128
Number of Channels 1 128
Number of Marker Bits 1 16 [5]

Notes:
1. The lower limit for the variable n decoder is Maximum(5, r+1).
2. Max = n-r
3. In reality, r is limited by the maximum size of the device available. If the core exceeds the device size because r is

so large, and a larger FPGA cannot be selected, the size of the core can be reduced by increasing the number of
clock periods per symbol.

4. For CCSDS the minimum value of r is 3.
5. Only used if Marker Bits option is selected in the GUI.

Table 4-3: Vivado IDE Parameter to User Parameter Relationship
Vivado IDE Parameter User Parameter Default Value

Code Specification code_specification Custom
Variable Block Length variable_block_length False
Variable Number of Check Symbols variable_number_of_check_symbols False
Symbol Width symbol_width 8
Field Polynomial field_polynomial 0
Scaling Factor scaling_factor 1
Generator Start generator_start 0
Symbols Per Block symbols_per_block 255
Data Symbols data_symbols 239
Define Supported R_IN Values define_supported_r_in_values False

Send Feedback

Reed-Solomon Decoder v9.0 42
PG107 February 4, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

System Generator for DSP Graphical User Interface
The Reed-Solomon Decoder core is available through Xilinx System Generator, a DSP design
tool that enables the use of The Mathworks model-based design environment Simulink®
for FPGA design. The Reed-Solomon Decoder core is one of the DSP slice building blocks
provided in the Xilinx blockset for Simulink. The core can be found in the Xilinx Blockset in
the Communication section. The block is called ‘Reed-Solomon Decoder 9.0.’ See the
System Generator for DSP User Guide [Ref 3] for more information.

The controls in the System Generator GUI work identically to those in the Vivado IDE,
although the layout has changed slightly. See Customizing and Generating the Core,
page 35, for detailed information about all other parameters.

Output Generation
For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 6].

Constraining the Core
This section contains information about constraining the core in the Vivado Design Suite.

Number of Supported R_IN Values number_of_supported_r_in_values 2
Supported R_IN Definition File supported_r_in_definition_file No_coe_file_loaded
Memory Style memory_style Automatic
Number of Channels number_of_channels 1
Output Check Symbols output_check_symbols True
Self Recovering self_recovering False
Number of Puncture Patterns number_of_puncture_patterns 0
Puncture Definition File puncture_definition_file No_coe_file_loaded
Clock Enable aclken false
Synchronous Reset aresetn False
Info info False
Erase erase False
Error Statistics error_statistics False
Original Delayed Data original_delayed_data False
Marker Bits marker_bits False
Number of Marker Bits number_of_marker_bits 1

Table 4-3: Vivado IDE Parameter to User Parameter Relationship (Cont’d)

Vivado IDE Parameter User Parameter Default Value

Send Feedback

Reed-Solomon Decoder v9.0 43
PG107 February 4, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Required Constraints
This section is not applicable for this IP core.

Device, Package, and Speed Grade Selections
This section is not applicable for this IP core.

Clock Frequencies
It is recommended that the core aclk input is constrained to the required operating
frequency.

Clock Management
This section is not applicable for this IP core.

Clock Placement
This section is not applicable for this IP core.

Banking
This section is not applicable for this IP core.

Transceiver Placement
This section is not applicable for this IP core.

I/O Standard and Placement
This section is not applicable for this IP core.

Simulation
For comprehensive information about Vivado simulation components, as well as
information about using supported third-party tools, see the Vivado Design Suite User
Guide: Logic Simulation (UG900) [Ref 8].

IMPORTANT: For cores targeting 7 series or Zynq-7000 devices, UNIFAST libraries are not supported.
Xilinx IP is tested and qualified with UNISIM libraries only.

Send Feedback

Reed-Solomon Decoder v9.0 44
PG107 February 4, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Synthesis and Implementation
For details about synthesis and implementation, see the Vivado Design Suite User Guide:
Designing with IP (UG896) [Ref 6].

Send Feedback

Reed-Solomon Decoder v9.0 45
PG107 February 4, 2021 www.xilinx.com

Chapter 5

Test Bench
This chapter contains information about the test bench provided in the Vivado® Design
Suite.

Demonstration Test Bench
When the core is generated using the Vivado IDE, a demonstration test bench is created.
This is a simple VHDL test bench that exercises the core.

The demonstration test bench source code is one VHDL file: demo_tb/
tb_<component_name>.vhd in the Vivado output directory. The source code is
comprehensively commented.

Using the Demonstration Test Bench
Compile the netlist and the demonstration test bench into the work library (see your
simulator documentation for more information on how to do this). Then simulate the
demonstration test bench. View the test bench signals in your simulator waveform viewer
to see the operations of the test bench.

Demonstration Test Bench in Detail
The demonstration test bench performs the following tasks:

• Instantiates the core
• Generates a source codeblock consisting of a sinusoid
• RS encodes the source codeblock to create input codeblocks for the RS Decoder core
• Generates a clock signal
• Drives the core input signals to demonstrate core features
• Checks that the core output signals obey AXI protocol rules
• Checks that the core output corrected data values match the source data values
• Provides signals showing the separate fields of AXI TDATA and TUSER signals

Send Feedback

Reed-Solomon Decoder v9.0 46
PG107 February 4, 2021 www.xilinx.com

Chapter 5: Test Bench

The demonstration test bench drives the core input signals to demonstrate the features and
modes of operation of the core. The operations performed by the demonstration test bench
are appropriate for the configuration of the generated core and are a subset of the
following operations:

1. An initial phase where the core is initialized and no operations are performed.
2. Decode a codeblock containing no errors.
3. Decode and correct a codeblock containing the maximum number of errors the core can

correct.
4. Try and fail to decode and correct a codeblock containing more errors than the core can

correct.
5. Decode and correct a codeblock containing errors and erasures.
6. Use a different codeblock configuration, with fewer symbols, fewer check symbols, and

a different puncture pattern, as appropriate to the core: decode and correct a codeblock
containing errors.

7. Decode and correct 20 codeblocks, streaming data continuously as fast as the core can
process it.

8. Decode and correct 10 more codeblocks which demonstrating the AXI control signals’
use and effects.

9. If aclken is present: Demonstrate the effect of toggling aclken.
10. If aresetn is present: Demonstrate the effect of asserting aresetn.

Customizing the Demonstration Test Bench
It is possible to modify the demonstration test bench to use different codeblock data or
different control information.

Source data is pre-generated in the create_src_table function and stored in the
SRC_DATA constant. Data from this constant is RS encoded and driven into the core by the
drive_input_codeblock procedure. The RS encoding is performed by the rs_encoder
function from the XilinxCoreLib library: this function is obfuscated and its source code is not
available. It is recommended to use the drive_input_codeblock procedure to drive a
codeblock into the core.

For cores with an S_AXIS_CTRL control channel, control information is generated and
driven into the core by the ctrl_stimuli process. Ensure that control information is
provided for each data codeblock to prevent the core stalling.

The clock frequency of the core can be modified by changing the CLOCK_PERIOD constant.

Send Feedback

Reed-Solomon Decoder v9.0 47
PG107 February 4, 2021 www.xilinx.com

Appendix A

Upgrading
This appendix contains information about upgrading to a more recent version of the IP
core.

Migrating to the Vivado Design Suite
For information about migrating to the Vivado Design Suite, see the ISE to Vivado Design
Suite Migration Guide (UG911) [Ref 9].

Upgrading in the Vivado Design Suite
This section provides information about any changes to the user logic or port designations
that take place when you upgrade to a more current version of this IP core in the Vivado
Design Suite.

Parameter Changes
No changes.

Port Changes
No changes.

Other Changes
No changes.

Send Feedback

Reed-Solomon Decoder v9.0 48
PG107 February 4, 2021 www.xilinx.com

Appendix B

Debugging
This appendix includes details about resources available on the Xilinx Support website and
debugging tools.

TIP: If the IP generation halts with an error, there might be a license issue. See License Checkers in
Chapter 1 for more details.

Finding Help on Xilinx.com
To help in the design and debug process when using the Reed-Solomon Decoder, the Xilinx
Support web page (Xilinx Support web page) contains key resources such as product
documentation, release notes, answer records, information about known issues, and links
for obtaining further product support.

Documentation
This product guide is the main document associated with the Reed-Solomon Decoder. This
guide, along with documentation related to all products that aid in the design process, can
be found on the Xilinx Support web page or by using the Xilinx Documentation Navigator.

Download the Xilinx Documentation Navigator from the Downloads page. For more
information about this tool and the features available, open the online help after
installation.

Answer Records
Answer Records include information about commonly encountered problems, helpful
information on how to resolve these problems, and any known issues with a Xilinx product.
Answer Records are created and maintained daily ensuring that users have access to the
most accurate information available.

Answer Records for this core are listed below, and can be located by using the Search
Support box on the main Xilinx support web page. To maximize your search results, use
proper keywords such as

Send Feedback

Reed-Solomon Decoder v9.0 49
PG107 February 4, 2021 www.xilinx.com

Appendix B: Debugging

• Product name
• Tool message(s)
• Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Answer Records for the Reed-Solomon Decoder

AR: 54510

Technical Support
Xilinx provides technical support in the Xilinx Support web page for this LogiCORE™ IP
product when used as described in the product documentation. Xilinx cannot guarantee
timing, functionality, or support if you do any of the following:

• Implement the solution in devices that are not defined in the documentation.
• Customize the solution beyond that allowed in the product documentation.
• Change any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support, navigate to the Xilinx Support web page.

Debug Tools
There are many tools available to address Reed-Solomon Decoder design issues. It is
important to know which tools are useful for debugging various situations.

Vivado Design Suite Debug Feature
The Vivado® Design Suite debug feature inserts logic analyzer and virtual I/O cores directly
into your design. The debug feature also allows you to set trigger conditions to capture
application and integrated block port signals in hardware. Captured signals can then be
analyzed. This feature in the Vivado IDE is used for logic debugging and validation of a
design running in Xilinx devices.

The Vivado logic analyzer is used with the logic debug IP cores, including:

• ILA 2.0 (and later versions)
• VIO 2.0 (and later versions)

See Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 10].

Send Feedback

Reed-Solomon Decoder v9.0 50
PG107 February 4, 2021 www.xilinx.com

Appendix B: Debugging

Simulation Debug
The simulation debug flow for Mentor Graphics Questa® Advanced Simulator is illustrated in
Figure B-1. A similar approach can be used with other simulators.
X-Ref Target - Figure B-1

Questa Advanced Simulator
Simulation Debug

Does simulating the core
test bench give the expected output?

No

No

The core test bench
 should allow the user to quickly

determine if the simulator is set up
correctly.

Do you get errors referring to
failing to access library?

Yes

Yes

Yes

Examine waveforms to gain
understanding of core behavior.

Check behavior of AXI Interfaces
is as described in this document.
Ensure that the demonstration
test bench has been selected
as the top level of the design.

Yes
If problem is more design specific, open

a case with Xilinx Technical Support
and include a wlf file dump of the simulation.
For the best results, dump the entire design

hierarchy.

NoIf using Verilog, do you have a
mixed-mode simulation license?

Obtain a mixed-mode
simulation license.

Yes

No
Check that the simulator

version matches that of the Vivado
 release. See the Xilinx Design Tools:

Release Notes Guide (link at
foot of IP Facts table)

Update to this version.

Although versions of
simulators more recent
than the Vivado release
might be compatible, no
guarantee can be given.

A VHDL license is required
to simulate with the

behavioral model. If the
user design uses Verilog, a

mixed mode license is required.

Need to compile and map the
correct libraries. See the Vivado
Design Suite User Guide - Logic

 Simulation UG900

Send Feedback

Reed-Solomon Decoder v9.0 51
PG107 February 4, 2021 www.xilinx.com

Appendix B: Debugging

Interface Debug
AXI4-Stream Interfaces
If data is not being transmitted or received, check the following conditions:

• If transmit m_axis_output_tready or m_axis_stat_tready is stuck Low
following the m_axis_output_tvalid or m_axis_stat_tvalid input being
asserted, the core cannot send data.

• If the receive <interface_name>_tvalid is stuck Low, the core is not receiving
data.

• Check that the aclk inputs are connected and toggling.
• Check that the AXI4-Stream waveforms are being followed. See Figure 3-3, Figure 3-7,

Figure 3-9, and Figure 3-10.
• Check core configuration.
• Check none of the event outputs have been asserted. These indicate incorrect input

signal timing or invalid control data.

Send Feedback

Reed-Solomon Decoder v9.0 52
PG107 February 4, 2021 www.xilinx.com

Appendix C

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado® IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.
• On the Xilinx website, see the Design Hubs page.
Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.

Send Feedback

Reed-Solomon Decoder v9.0 53
PG107 February 4, 2021 www.xilinx.com

Appendix C: Additional Resources and Legal Notices

References
These documents provide supplemental material useful with this product guide:

1. AMBA® AXI4-Stream Protocol Specification (ARM IHI 0051A)
2. Vivado® Design Suite AXI Reference Guide (UG1037)
3. System Generator for DSP User Guide (UG640)
4. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
5. Vivado Design Suite User Guide: Implementation (UG904)
6. Vivado Design Suite User Guide: Designing with IP (UG896)
7. Vivado Design Suite User Guide: Getting Started (UG910)
8. Vivado Design Suite User Guide: Logic Simulation (UG900)
9. ISE® to Vivado Design Suite Migration Guide (UG911)
10. Vivado Design Suite User Guide: Programming and Debugging (UG908)

Revision History
The following table shows the revision history for this document.

Date Version Revision
02/04/2021 9.0 • Added Versal ACAP support.
11/18/2015 9.0 • Added support for UltraScale+ families.

• Updated link to resource utilization data.
04/02/2014 9.0 • Added link to resource utilization figures

• Updated template
12/18/2013 9.0 • Revision number advanced to 9.0 to align with core version number.

• Added UltraScale™ architecture support.
• Template updated.

03/20/2013 1.0 Initial release as a Product Guide; replaces DS862. Latency calculation added.
Appendix B, Debugging added.

Send Feedback

Reed-Solomon Decoder v9.0 54
PG107 February 4, 2021 www.xilinx.com

Appendix C: Additional Resources and Legal Notices

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to
notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display
the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty,
please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to
warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products
in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2013–2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal, Virtex, Vivado, Zynq, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, Arm,
ARM1176JZ-S, CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other countries.
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. All other trademarks are the property of their respective
owners.

Send Feedback

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Development Software category:

Click to view products by Xilinx manufacturer:

Other Similar products are found below :

RAPPID-567XFSW SRP004001-01 SW163052 SYSWINEV21 Core429-SA WS01NCTF1E W128E13 SW89CN0-ZCC IPS-EMBEDDED

IP-UART-16550 MPROG-PRO535E AFLCF-08-LX-CE060-R21 WS02-CFSC1-EV3-UP SYSMAC-STUDIO-EIPCPLR LIB-PL-PC-N-

1YR-DISKID LIB-PL-A-F SW006026-COV 1120270005 1120270006 MIKROBASIC PRO FOR FT90X (USB DONGLE) MIKROC PRO

FOR FT90X (USB DONGLE) MIKROC PRO FOR PIC (USB DONGLE LICENSE) MIKROBASIC PRO FOR AVR (USB DONGLE LICEN

MIKROBASIC PRO FOR FT90X MIKROC PRO FOR DSPIC30/33 (USB DONGLE LI MIKROPASCAL PRO FOR ARM (USB DONGLE

LICE MIKROPASCAL PRO FOR FT90X MIKROPASCAL PRO FOR FT90X (USB DONGLE) MIKROPASCAL PRO FOR PIC32 (USB

DONGLE LI SW006021-2H ATATMELSTUDIO 2400573 2702579 2988609 2702546 SW006022-DGL 2400303 2701356 VDSP-21XX-

PCFLOAT VDSP-BLKFN-PC-FULL 88970111 DG-ACC-NET-CD 55195101-102 SW1A-W1C MDK-ARM PCI-EXP1-E3-US PCI-T32-

E3-US SW006021-2NH SW006021-1H SW006021-2

https://www.x-on.com.au/category/embedded-solutions/engineering-tools/development-software
https://www.x-on.com.au/manufacturer/xilinx
https://www.x-on.com.au/mpn/nxp/rappid567xfsw
https://www.x-on.com.au/mpn/lantronix/srp00400101
https://www.x-on.com.au/mpn/microchip/sw163052
https://www.x-on.com.au/mpn/omron/syswinev21
https://www.x-on.com.au/mpn/microsemi/core429sa
https://www.x-on.com.au/mpn/omron/ws01nctf1e
https://www.x-on.com.au/mpn/omron/w128e13
https://www.x-on.com.au/mpn/toshiba/sw89cn0zcc
https://www.x-on.com.au/mpn/intel/ipsembedded
https://www.x-on.com.au/mpn/intel/ipuart16550
https://www.x-on.com.au/mpn/advantech/mprogpro535e
https://www.x-on.com.au/mpn/iei/aflcf08lxce060r21
https://www.x-on.com.au/mpn/omron/ws02cfsc1ev3up
https://www.x-on.com.au/mpn/omron/sysmacstudioeipcplr
https://www.x-on.com.au/mpn/microsemi/libplpcn1yrdiskid
https://www.x-on.com.au/mpn/microsemi/libplpcn1yrdiskid
https://www.x-on.com.au/mpn/microchip/libplaf
https://www.x-on.com.au/mpn/microchip/sw006026cov
https://www.x-on.com.au/mpn/molex/1120270005
https://www.x-on.com.au/mpn/molex/1120270006
https://www.x-on.com.au/mpn/mikroelektronika/mikrobasicproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikrocproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikrocproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikrocproforpicusbdonglelicense
https://www.x-on.com.au/mpn/mikroelektronika/mikrobasicproforavrusbdonglelicen
https://www.x-on.com.au/mpn/mikroelektronika/mikrobasicproforft90x
https://www.x-on.com.au/mpn/mikroelektronika/mikrocprofordspic3033usbdongleli
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforarmusbdonglelice
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforarmusbdonglelice
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforft90x
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforpic32usbdongleli
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforpic32usbdongleli
https://www.x-on.com.au/mpn/microchip/sw0060212h
https://www.x-on.com.au/mpn/microchip/atatmelstudio
https://www.x-on.com.au/mpn/phoenixcontact/2400573
https://www.x-on.com.au/mpn/phoenixcontact/2702579
https://www.x-on.com.au/mpn/phoenixcontact/2988609
https://www.x-on.com.au/mpn/phoenixcontact/2702546
https://www.x-on.com.au/mpn/microchip/sw006022dgl
https://www.x-on.com.au/mpn/phoenixcontact/2400303
https://www.x-on.com.au/mpn/phoenixcontact/2701356
https://www.x-on.com.au/mpn/analogdevices/vdsp21xxpcfloat
https://www.x-on.com.au/mpn/analogdevices/vdsp21xxpcfloat
https://www.x-on.com.au/mpn/analogdevices/vdspblkfnpcfull
https://www.x-on.com.au/mpn/crouzet/88970111
https://www.x-on.com.au/mpn/digiinternational/dgaccnetcd
https://www.x-on.com.au/mpn/honeywell/55195101102
https://www.x-on.com.au/mpn/idec/sw1aw1c
https://www.x-on.com.au/mpn/keil/mdkarm
https://www.x-on.com.au/mpn/lattice/pciexp1e3us
https://www.x-on.com.au/mpn/lattice/pcit32e3us
https://www.x-on.com.au/mpn/lattice/pcit32e3us
https://www.x-on.com.au/mpn/microchip/sw0060212nh
https://www.x-on.com.au/mpn/microchip/sw0060211h
https://www.x-on.com.au/mpn/microchip/sw0060212

