

XA Spartan-3 Automotive FPGA Family: Introduction and Ordering Information

DS314 (v1.3) June 18, 2009

Product Specification

Summary

The Xilinx® Automotive (XA) Spartan®-3 family of Field-Programmable Gate Arrays meets the needs of high-volume, cost-sensitive automotive electronic applications. The five-member family offers densities ranging from 50,000 to 1.5 million system gates, as shown in Table 1.

Introduction

XA devices are available in both extended-temperature Q-grade (-40° C to $+125^{\circ}$ C T_J) and I-grade (-40° C to $+100^{\circ}$ C T_J) and are qualified to the industry-recognized AEC-Q100 standard.

The XA Spartan-3 family builds on the success of the earlier XA Spartan-IIE family by increasing the amount of logic resources, the capacity of internal RAM, the total number of I/Os, and the overall level of performance as well as by improving clock management functions. These Spartan-3 enhancements, combined with advanced process technology, deliver more functionality and bandwidth per dollar than was previously possible, setting new standards in the programmable logic industry.

Because of their exceptionally low cost, Spartan-3 FPGAs are ideally suited to a wide range of advanced automotive electronics modules and systems ranging from the latest driver assistance and infotainment systems to instrument clusters and gateways.

The Spartan-3 family is a flexible alternative to ASICs, ASSPs, and microcontrollers. FPGAs avoid the high initial NREs, the lengthy development cycles, and problems with obsolescence. Also, FPGA programmability permits design upgrades in the field with no hardware replacement necessary.

Features

- AEC-Q100 device qualification and full PPAP documentation support available in both extended temperature Q-grade and I-grade
- Guaranteed to meet full electrical specification over the $T_J = -40^{\circ}$ C to +125°C temperature range
- Revolutionary 90-nanometer process technology
- Low cost, high-performance logic solution for high-volume, automotive applications
 - Three power rails: for core (1.2V), I/Os (1.2V to 3.3V), and auxiliary purposes (2.5V)
- SelectIO[™] interface signaling
 - Up to 487 I/O pins
 - 622 Mb/s data transfer rate per I/O
 - Eighteen single-ended signal standards
 - Eight differential signal standards including LVDS
 - Termination by Digitally Controlled Impedance
 - Signal swing ranging from 1.14V to 3.45V
 - Double Data Rate (DDR) support
- Logic resources
 - Abundant logic cells with shift register capability
 - Wide multiplexers

	System	System	Logic	(One	CLB Arr CLB = Fo		Distributed	Block RAM	Dedicated		Maximum	Maximum Differential
Device	Gates	Cells	Rows	Columns	Total CLBs	RAM (bits ¹)	(bits ¹)	Multipliers	DCMs	User I/O	I/O Pairs	
XA3S50	50K	1,728	16	12	192	12K	72K	4	2	124	56	
XA3S200	200K	4,320	24	20	480	30K	216K	12	4	173	76	
XA3S400	400K	8,064	32	28	896	56K	288K	16	4	264	116	
XA3S1000	1M	17,280	48	40	1,920	120K	432K	24	4	333	149	
XA3S1500	1.5M	29,952	64	52	3,328	208K	576K	32	4	487	221	

Table 1: Summary of Spartan-3 FPGA Attributes

1. By convention, one Kb is equivalent to 1,024 bits.

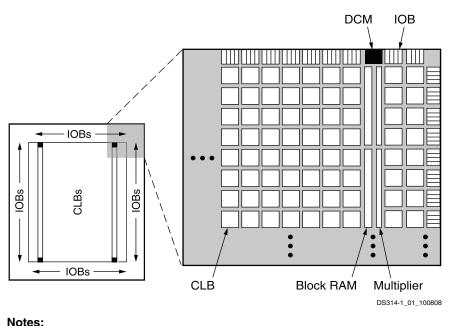
© 2004–2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. HyperTransport is a licensed trademark of the HyperTransport Technology Consortium in the U.S. and other jurisdictions. All other trademarks are the property of their respective owners.

Notes:

- Fast look-ahead carry logic
- Dedicated 18 x 18 multipliers
- JTAG logic compatible with IEEE 1149.1/1532
- SelectRAM[™] hierarchical memory
 - Up to 576 Kbits of total block RAM
 - Up to 208 Kbits of total distributed RAM
- Digital Clock Manager (up to four DCMs)
 - Clock skew elimination
 - Frequency synthesis
 - High-resolution phase shifting
 - Maximum clock frequency 125 MHz
- Fully supported by Xilinx ISE® software development system
 - Synthesis, mapping, placement and routing
- MicroBlaze[™] processor, CAN, LIN, MOST, and other cores
- Pb-free packaging options
- Xilinx and all of our production partners are qualified to ISO-TS16949

Please refer to the Spartan-3 complete data sheet (<u>DS099</u>) for a full product description, AC and DC specifications, and package pinout descriptions

Architectural Overview


The Spartan-3 family architecture consists of five fundamental programmable functional elements:

 Configurable Logic Blocks (CLBs) contain RAM-based Look-Up Tables (LUTs) to implement logic and storage elements that can be used as flip-flops or latches. CLBs can be programmed to perform a wide variety of logical functions as well as to store data.

- Input/Output Blocks (IOBs) control the flow of data between the I/O pins and the internal logic of the device. Each IOB supports bidirectional data flow plus 3-state operation. Twenty-six different signal standards, including eight high-performance differential standards, are available as shown in Table 2. Double Data-Rate (DDR) registers are included. The Digitally Controlled Impedance (DCI) feature provides automatic on-chip terminations, simplifying board designs.
- Block RAM provides data storage in the form of 18-Kbit dual-port blocks.
- Multiplier blocks accept two 18-bit binary numbers as inputs and calculate the product.
- Digital Clock Manager (DCM) blocks provide self-calibrating, fully digital solutions for distributing, delaying, multiplying, dividing, and phase shifting clock signals.

These elements are organized as shown in Figure 1. A ring of IOBs surrounds a regular array of CLBs. The XA3S50 has a single column of block RAM embedded in the array. Those devices ranging from the XA3S200 to the XA3S1500 have two columns of block RAM. Each column is made up of several 18 Kbit RAM blocks; each block is associated with a dedicated multiplier. The DCMs are positioned at the ends of the block RAM columns.

The Spartan-3 family features a rich network of traces and switches that interconnect all five functional elements, transmitting signals among them. Each functional element has an associated switch matrix that permits multiple connections to the routing.

1. The XA3S50 has only the block RAM column on the far left.

Configuration

Spartan-3 FPGAs are programmed by loading configuration data into robust static memory cells that collectively control all functional elements and routing resources. Before powering on the FPGA, configuration data is stored externally in a PROM or some other nonvolatile medium either on or off the board. After applying power, the configuration data is written to the FPGA using any of five different modes: Master Parallel, Slave Parallel, Master Serial, Slave Serial and Boundary Scan (JTAG). The Master and Slave Parallel modes use an 8-bit-wide SelectMAP port.

I/O Capabilities

The SelectIO feature of Spartan-3 devices supports 18 single-ended standards and eight differential standards as listed in Table 2. Many standards support the DCI feature, which uses integrated terminations to eliminate unwanted signal reflections. Table 3 shows the number of user I/Os as well as the number of differential I/O pairs available for each device/package combination.

Standard Category	Description	V _{CCO} (V)	Class	Symbol	DCI Option
Single-Ende	ed				
GTL	Gunning Transceiver Logic	N/A	Terminated	GTL	Yes
		-	Plus	GTLP	Yes
HSTL	High-Speed Transceiver Logic	1.5	I	HSTL_I	Yes
			111	HSTL_III	Yes
		1.8	I	HSTL_I_18	Yes
			II	HSTL_II_18	Yes
			111	HSTL_III_18	Yes
LVCMOS	Low-Voltage CMOS	1.2	N/A	LVCMOS12	No
		1.5	N/A	LVCMOS15	Yes
		1.8	N/A	LVCMOS18	Yes
		2.5	N/A	LVCMOS25	Yes
		3.3	N/A	LVCMOS33	Yes
LVTTL	Low-Voltage Transistor-Transistor Logic	3.3	N/A	LVTTL	No
PCI	Peripheral Component Interconnect	3.0	33 MHz	PCI33_3	No
SSTL	Stub Series Terminated Logic	1.8	N/A (±6.7 mA)	SSTL18_I	Yes
		-	N/A (±13.4 mA)	SSTL18_II	No
		2.5	I	SSTL2_I	Yes
		-	II	SSTL2_II	Yes
Differential		II		1	I
LDT (ULVDS)	Lightning Data Transport (HyperTransport™)	2.5	N/A	LDT_25	No
LVDS	Low-Voltage Differential Signaling		Standard	LVDS_25	Yes
		-	Bus	BLVDS_25	No
			Extended Mode	LVDSEXT_25	Yes
LVPECL	Low-Voltage Positive Emitter-Coupled Logic	2.5	N/A	LVPECL_25	No
RSDS	Reduced-Swing Differential Signaling	2.5	N/A	RSDS_25	No
HSTL	Differential High-Speed Transceiver Logic	1.8	II	DIFF_HSTL_II_18	Yes
SSTL	Differential Stub Series Terminated Logic	2.5	II	DIFF_SSTL2_II	Yes
		1		1	1

Table 2: Signal Standards Supported by the Spartan-3 Family

Table 3: Spartan-3 XA I/O Chart

		Available User I/Os and Differential (Diff) I/O Pairs											
		VQG100		TQG144		PQG208		FTG256		FGG456		FGG676	
Device	Grade	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff
XA3S50	I,Q	63	29	-	-	124	56	-	-	-	-	-	-
XA3S200	I,Q	63	29	97	46	141	62	173	76	-	-	-	-
XA3S400	I,Q	-	-	-	-	141	62	173	76	264	116	-	-
XA3S1000	I,Q	-	-	-	-	-	-	173	76	333	149	-	-
XA3S1500	I	-	-	-	-	-	-	-	-	333	149	487	221

Notes:

1. All device options listed in a given package column are pin-compatible.

DC Specifications

Table 4: General Recommended Operating Conditions

Symbol	Description		Min	Nom	Мах	Units
TJ	lunction temperature	I-Grade	-40	25	100	°C
	Junction temperature	Q-Grade	-40	25	125	°C
V _{CCINT}	Internal supply voltage		1.140	1.200	1.260	V
$V_{CCO}^{(1)}$	Output driver supply voltage		1.140	-	3.450	V
V _{CCAUX}	Auxiliary supply voltage		2.375	2.500	2.625	V
$\Delta V_{CCAUX}^{(2)}$	Voltage variance on VCCAUX w	hen using a DCM	-	-	10	mV/ms
V _{IN}	Voltage applied to all User I/O	$V_{\rm CCO} = 3.3 V$	-0.3	-	3.75	V
	pins and Dual-Purpose pins relative to GND	V _{CCO} <u><</u> 2.5V	-0.3	-	V _{CCO} +0.3	V
	Voltage applied to all Dedicated pins relative to GND		-0.3	-	V _{CCAUX} +0.3	V

Notes:

The V_{CCO} range given here spans the lowest and highest operating voltages of all supported I/O standards. The recommended V_{CCO} range specific to each of the single-ended I/O standards is given in Table 34 of <u>DS099</u>, and that specific to the differential standards is given in Table 36 of <u>DS099</u>.

2. Only during DCM operation is it recommended that the rate of change of VCCAUX not exceed 10 mV/ms.

Table 5: Quiescent Supply Current Characteristics

Symbol	Description	Device	I-Grade Maximum	Q-Grade Maximum	Units
I _{CCINTQ}	Quiescent V _{CCINT} supply current	XA3S50	50	100	mA
		XA3S200	125	200	mA
		XA3S400	180	250	mA
		XA3S1000	315	400	mA
		XA3S1500	410	-	mA
Iccoq	Quiescent V _{CCO} supply current	XA3S50	12	12	mA
		XA3S200	12	12	mA
		XA3S400	14	14	mA
		XA3S1000	14	14	mA
		XA3S1500	16	-	mA
I _{CCAUXQ}	Quiescent V _{CCAUX} supply current	XA3S50	22	25	mA
		XA3S200	33	35	mA
		XA3S400	44	50	mA
		XA3S1000	55	60	mA
		XA3S1500	85	-	mA

Notes:

1. The numbers in this table are based on the conditions set forth in Table 31 of <u>DS099</u>. Quiescent supply current is measured with all I/O drivers in a high-impedance state and with all pull-up/pull-down resistors at the I/O pads disabled. Typical values are characterized using devices with typical processing at ambient room temperature (T_A of 25°C at V_{CCINT} = 1.2V, V_{CCO} = 3.3V, and V_{CCAUX} = 2.5V). Maximum values are the production test limits measured for each device at the maximum specified junction temperature and at maximum voltage limits with V_{CCINT} = 1.26V, V_{CCO} = 3.45V, and V_{CCAUX} = 2.625V. The FPGA is programmed with a "blank" configuration data file (i.e., a design with no functional elements instantiated). For conditions other than those described above, (e.g., a design including functional elements, the use of DCI standards, etc.), measured quiescent current levels may be different than the values in the table. Use the XPower Power Estimator for more accurate estimates. See Note 2.

- 2. There are two recommended ways to estimate the total power consumption (quiescent plus dynamic) for a specific design: a) The XPower Power Estimator at <u>http://www.xilinx.com/ise/power_tools</u> provides quick, approximate, typical estimates, and does not require a netlist of the design. b) XPower, part of the Xilinx ISE development software, uses the FPGA netlist as input to provide more accurate maximum and typical estimates.
- The maximum numbers in this table also indicate the minimum current each power rail requires in order for the FPGA to power-on successfully, once all three rails are supplied. If V_{CCINT} is applied before V_{CCAUX}, there may be temporary additional I_{CCINT} current until V_{CCAUX} is applied. See Surplus ICCINT if VCCINT Applied before VCCAUX, page 51 of <u>DS099</u>.

Ordering Information

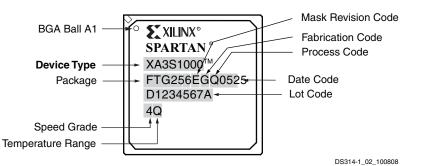
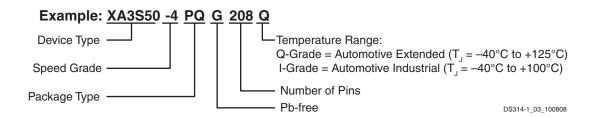



Figure 2: Spartan-3 BGA Package Marking Example for Part Number XA3S1000-4 FTG256Q

Spartan-3 FPGAs are available in Pb-free packaging options for all device/package combinations. The Pb-free packages include a special "G" character in the ordering code.

Pb-Free Packaging

For additional information on Pb-free packaging, see <u>XAPP427</u>: Implementation and Solder Reflow Guidelines for Pb-Free Packages.

Table 6: Package Types and Number of Pins

Device	Speed Grade		Speed Grade Package Type / Number of Pins			Temperature Range (T _J)		
XA3S50	-4	Standard Performance	VQG100	100-pin Very Thin Quad Flat Pack (VQFP)	I	I-Grade (-40°C to +100°C)		
XA3S200			TQG144	144-pin Thin Quad Flat Pack (TQFP)	Q	Q-Grade (-40°C to +125°C)		
XA3S400			PQG208	208-pin Plastic Quad Flat Pack (PQFP)				
XA3S1000			FTG256	256-ball Fine-Pitch Thin Ball Grid Array (FTBGA)				
XA3S1500			FGG456	456-ball Fine-Pitch Ball Grid Array (FBGA)				
. <u></u>			FGG676	676-ball Fine-Pitch Ball Grid Array (FBGA)				

Additional Resources

- <u>DS099</u>, Spartan-3 FPGA Family Data Sheet
- UG331, Spartan-3 Generation FPGA User Guide
- UG332, Spartan-3 Generation Configuration User Guide

Revision History

The following table shows the revision history for this document:

Date	Version	Description
10/18/04	1.0	Initial Xilinx release.
12/20/04	1.1	Multiple text edits throughout.
10/27/06	1.2	Updated IO standards (Table 2), and link to Spartan-3 Data Sheet, added XA3S1500, TQG144, FGG676, Table 4, and Table 5.
11/28/06	1.2.1	Changed order of explanations in Table 6 for TQG144 and PQG208.
11/12/07	1.2.2	Changed all values for the Block RAM (bits) column and two values for the XA3S1000 row in Table 1.
01/25/08	1.2.3	Changed XA3S1500 Q-Grade Maximum in Table 5.
06/18/09	1.3	Added UG331 and UG332 to "Additional Resources" section.

www.xilinx.com

Notice of Disclaimer

THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN ("PRODUCTS") ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED ON THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY OR PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS.

Automotive Applications Disclaimer

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for FPGA - Field Programmable Gate Array category:

Click to view products by Xilinx manufacturer:

Other Similar products are found below :

5AGXMA3D4F27I3N EP1S10F672C7 EP1S20F672I7N EP1SGX25DF672I6N EP2S30F672C5 EP2S60F672C5N PLUS16L87N PLUS16R67N PLUS20L87N PLUS20R87N 5AGXBA5D6F27C6N 5AGXMA5D6F27C6N EP1S20F672C7N EP1SGX25DF672I6 EP20K300EFI672-2X EP2S15F672C3N QP82S100/BXA LCMXO640C-3FT256CAHW 5962-9154507MXA EPF10K200SFI672-2B 5962-9154503MQA EPF10K50EQC240-1N EP1S10F672C7N ICE40UL1K-SWG16ITR1K ICE5LP4K-SWG36ITR1K ICE40UL640-SWG16ITR1K ICE40LP1K-SWG16TR1K ICE40LP640-SWG16TR1K GW1NR-LV9MG100PC6/15 GW1N-LV4CS72C6/15 GW1NR-UV4MG81PC6/15 GW1N-LV9UG332C6/15 GW1NR-LV4MG81PC6/15 GW1NZ-LV1CS16C6/15 GW1NR-LV9QN88PC6/15 GW1N-LV4MG160C6/15 GW1NR-UV4QN88C6/15 GW1NR-UV4MG160C6/15 GW1NR-UV9QN88PC6/15 GW1NR-LV9LQ144PC6/15 GW1N-UV9MG160C6/15 EP2AGX45CU1715G M2GL050-FGG896I AGLP125V5-CSG289 M2GL050-FGG484 APA150-BG456I A3P400-FGG484 A54SX32A-BG329I M2GL050-FGG484 ICE40UL1K-CM36AITR1K