Dual Up Counters

The XD14518 dual BCD counter
counter are constructed with MOS P －channel and N －channel enhancement mode devices in a single monolithic structure．Each consists of two identical，independent，internally synchronous 4－stage counters．The counter stages are type D flip－flops，with interchangeable Clock and Enable lines for incrementing on either the positive－going or negative－going transition as required when cascading multiple stages． Each counter can be cleared by applying a high level on the Reset line．In addition，the XD14518 will count out of all undefined states withintwo clock periods．These complementary MOS up counters find primary use in multi－stage synchronous or ripple counting applications requiring low power dissipation and／or high noise immunity．

Features

14518
PIN ASSIGNMENT

BLOCK DIAGRAM

TRUTH TABLE

Clock	Enable	Reset	Action
ת	1	0	Increment Counter
0	2	0	Increment Counter
2	X	0	No Change
X	J	0	No Change
\bigcirc	0	0	No Change
1	乙	0	No Change
X	X	1	Q0 thru Q3＝ 0

$\mathrm{X}=$ Don＇t Care

Stresses exceeding Maximum Ratings may damage the device．Maximum
Ratings are stress ratings only．Functional operation above the Recommended Operating Conditions is not implied．Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability．
1．Maximum Ratings are those values beyond which damage to the device may occur．

2．Temperature Derating：

Packages：－ $7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
This device contains protection circuitry to guard against damage due to high static voltages or electric fields．However，precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high－impedance circuit．For proper operation， $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$ ．

Unused inputs must always be tied to an appropriate logic voltage level（e．g．，either V_{SS} or V_{DD} ）．Unused outputs must be left open．

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{Vdc} \end{aligned}$	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ (3.)	Max	Min	Max	
Output Voltage $V_{\text {in }}=V_{D D} \text { or } 0$ "1" Level $V_{\text {in }}=0 \text { or } V_{D D}$	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
$\begin{array}{\|cc\|} \hline \text { Input Voltage } & \text { "0" Level } \\ \left(V_{O}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{0}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) & \\ & \\ & \\ & \text { "1" Level } \\ \left(\mathrm{V}_{0}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{0}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{array}$	VIL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	-	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	-	Vdc
Output Drive Current $\begin{array}{ll} \left(\mathrm{VOH}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right) & \text { Source } \\ \left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right) & \\ \left(\mathrm{VOH}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right) & \end{array}$	${ }^{\text {IOH }}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$	-	$\begin{gathered} -2.4 \\ -0.51 \\ -1.3 \\ -3.4 \end{gathered}$	$\begin{gathered} -4.2 \\ -0.88 \\ -2.25 \\ -8.8 \end{gathered}$	-	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$	-	mAdc
$\begin{array}{ll} \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) & \text { Sink } \\ \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) & \end{array}$	l_{OL}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	mAdc
Input Current	$\mathrm{l}_{\text {in }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance $\left(V_{\text {in }}=0\right)$	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	IDD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current (4.) (5.) (Dynamic plus Quiescent, Per Package) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on all outputs, all buffers switching)	${ }^{\text {IT }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(0.6 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(1.2 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(1.7 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \end{aligned}$							$\mu \mathrm{Adc}$

3. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
4. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
5. To calculate total supply current at loads other than 50 pF :

$$
\mathrm{I}_{T}\left(\mathrm{C}_{\mathrm{L}}\right)=\mathrm{I}_{T}(50 \mathrm{pF})+\left(\mathrm{C}_{\mathrm{L}}-50\right) \text { Vfk }
$$

where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in $\mathrm{pF}, \mathrm{V}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$ in volts, f in kHz is input frequency, and $\mathrm{k}=0.002$.

SWITCHING CHARACTERISTICS (6.) $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	$V_{\text {DD }}$	All Types			Unit
			Min	Typ ${ }^{(7 .)}$	Max	
Output Rise and Fall Time $\begin{aligned} & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}}, \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$-$	$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
Propagation Delay Time Clock to Q/Enable to Q $t_{\text {PLH }}, t_{P H L}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+215 \mathrm{~ns}$ $t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+97 \mathrm{~ns}$ $\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+75 \mathrm{~ns}$	$\begin{aligned} & \mathrm{t} \mathrm{tPLH}, \\ & \mathrm{t}_{\mathrm{PH} L} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$-$	$\begin{gathered} 280 \\ 115 \\ 80 \end{gathered}$	$\begin{aligned} & 560 \\ & 230 \\ & 160 \end{aligned}$	ns
```Reset to Q tPHL}=(1.7 ns/pF) C C + 265 ns tPHL}=(0.66 ns/pF) CL + 117 ns tPHL}=(0.66 ns/pF) C C + 95 ns```	$t_{\text {PHL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 330 \\ 130 \\ 90 \end{gathered}$	$\begin{aligned} & 650 \\ & 230 \\ & 170 \end{aligned}$	ns
Clock Pulse Width	$\begin{aligned} & \mathrm{t}_{\mathrm{w}(\mathrm{H})} \\ & \mathrm{t}_{\mathrm{w}(\mathrm{~L})} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 70 \end{gathered}$	$\begin{aligned} & \hline 100 \\ & 50 \\ & 35 \end{aligned}$	-	ns
Clock Pulse Frequency	$\mathrm{f}_{\mathrm{cl}}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 2.5 \\ & 6.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	MHz
Clock or Enable Rise and Fall Time	${ }_{\text {t }}^{\text {THL }}$, $\mathrm{t}_{\text {TLH }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	-	$\begin{gathered} \hline 15 \\ 5 \\ 4 \end{gathered}$	$\mu \mathrm{s}$
Enable Pulse Width	${ }^{\text {tw }}$ H(E)	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 440 \\ & 200 \\ & 140 \end{aligned}$	$\begin{aligned} & 220 \\ & 100 \\ & 70 \end{aligned}$	-	ns
Reset Pulse Width	${ }^{\text {twh(R) }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 280 \\ & 120 \\ & 90 \end{aligned}$	$\begin{gathered} 125 \\ 55 \\ 40 \end{gathered}$	-	ns
Reset Removal Time	$\mathrm{t}_{\text {rem }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -5 \\ 15 \\ 20 \end{gathered}$	$\begin{aligned} & -45 \\ & -15 \\ & -5 \end{aligned}$	-	ns

6. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
7. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.


Power Dissipation Test Circuit and Waveform


Switching Time Test Circuit and Waveforms


Timing Diagram


Decade Counter (XD14518) Logic Diagram
(1/2 of Device Shown)


Binary Counter (XD14518) Logic Diagram (1/2 of Device Shown)

DIP


NOTES：
1．DIMENSIONING AND TOLERANCING PER ANSI Y $14.5 \mathrm{SM}, 1982$
2．CONTROLLING DIMENSION：INCH．
3．DIMENSIONLTO CENTER OF LEADS
WHEN FORMED PARALLEL．
4．DIMENSION B DOES NOT INCLUDE MOLD FLASH．
5．ROUNDED CORNERS OPTIONAL

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.740	0.770	18.80	19.65
B	0.250	0.270	6.35	6.85
C	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.63
F	0.040	0.70	1.02	1.77
G	0.100	BSC	2.54	
H	$0.06 C$			
J	0.008	0.015	1.27	
BSC				
K	0.110	0.130	2.81	0.38
L	0.295	0.305	7.50	3.30
M	$0^{\circ}$	$10^{\circ}$	0	0.74
S	0.020	0.040	0.51	$10^{\circ}$

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Counter Shift Registers category:
Click to view products by XINLUDA manufacturer:
Other Similar products are found below :
5962-8956101EA MC10E446FNG 74HC195N 74HC4516N 74HCT182N HEF4021BD HEF4534BP MC144111P NLV74HC165ADTR2G
5962-9172201M2A MC74HC597ADG MC100EP142MNG MC100EP016AMNG 5962-9172201MFA MC74HC164BDR2G
TC74HC165AP(F) 74AHC164T14-13 MC74LV594ADR2G NLV14094BDTR2G NLV74HC595ADTG MC74HC165AMNTWG
TPIC6C595PWG4 74VHC164MTCX CD74HC195M96 CD4073BM96 CD4053BM96 MM74HC595MTCX 74HCT164T14-13
74HCT164S14-13 74HC4094D-Q100J NLV14014BFELG NLV74HC165ADR2G NLV74HC589ADTR2G NPIC6C595D-Q100, 11 NPIC6C595PW,118 NPIC6C596ADJ NPIC6C596APW-Q100J NPIC6C596D-Q100,11 BU4094BCF-E2 BU4094BCFV-E2 74HC164D14

74HC164T14-13 TPIC6C596PWRG4 STPIC6D595MTR STP08CP05MTR CD74HC123E 74HC164D.653 74HC165D.653
74HCT165D.652 74HCT164D. 652

