The XD14538 is a dual，retriggerable，resettable monostable multivibrator．It may be triggered from either edge of an input pulse， and produces an accurate output pulse over a wide range of widths，the duration and accuracy of which are determined by the external timing components， C_{X} and R_{X} ．Output Pulse Width $\mathrm{T}=\mathrm{R}_{\mathrm{X}} \cdot \mathrm{C}_{\mathrm{X}}$（secs）

$$
\mathrm{R}_{\mathrm{X}}=\Omega
$$

$C_{X}=$ Farads

Features

－Unlimited Rise and Fall Time Allowed on the A Trigger Input
－Pulse Width Range $=10 \mu \mathrm{~s}$ to 10 s
－Latched Trigger Inputs
－Separate Latched Reset Inputs
－3．0 Vdc to 18 Vdc Operational Limits
－Triggerable from Positive（A Input）or Negative－Going Edge（B－Input）
－Capable of Driving Two Low－Power TTL Loads or One Low－Power Schottky TTL Load Over the Rated Temperature Range
－Pin－for－pin Compatible with XD14538
－Use the XD14538 for Pulse Widths Less Than 10μ s with Supplies Up to 6 V
－NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements；AEC－Q100 Qualified and PPAP Capable
－These Devices are Pb －Free and are RoHS Compliant

Stresses exceeding Maximum Ratings may damage the device．Maximum Ratings are stress ratings only．Functional operation above the Recommended Operating Conditions is not implied．Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability．
1．Temperature Derating：
Plastic＂P and D／DW＂Packages：－ $7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
This device contains protection circuitry to guard against damage due to high static voltages or electric fields．However，precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high－impedance circuit．For proper operation， $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$ ．

Unused inputs must always be tied to an appropriate logic voltage level （e．g．，either V_{SS} or V_{DD} ）．Unused outputs must be left open．

XD14538

PIN ASSIGNMENT		
$V_{S S}[1 \bullet$	16	V_{DD}
$\mathrm{C}_{\mathrm{X}} / \mathrm{R}_{\mathrm{X}} \mathrm{A}$ [2	15	$\mathrm{V}_{S S}$
RESET A [3	14	$]^{C} / R_{x} B$
$\mathrm{A}_{\mathrm{A}}[4$	13	RESET b
$\bar{B}_{\text {A }} ¢ 5$	12	A_{B}
$Q_{\text {A }}[6$	11	\bar{B}_{B}
$\bar{Q}_{\text {A }}[7$	10	Q_{B}
$\mathrm{V}_{S S}[8$	9	Q_{B}

ONE-SHOT SELECTION GUIDE

BLOCK DIAGRAM

R_{X} AND C_{X} ARE EXTERNAL COMPONENTS.
$V_{D D}=$ PIN 16
$V_{S S}=$ PIN 8, PIN 1, PIN 15

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	$V_{D D}$ Vdc	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ (Note 2)	Max	Min	Max	
Output Voltage "0" Level $V_{\text {in }}=V_{D D} \text { or } 0$ "1" Level $\mathrm{V}_{\mathrm{in}}=0 \text { or } \mathrm{V}_{\mathrm{DD}}$	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{aligned} & \hline 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
Input Voltage $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) \end{aligned}$ "1" Level $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	-	Vdc
$\begin{array}{\|lll} \hline \text { Output Drive Current } & \\ \left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right) & \text { Source } \\ \left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right) & \end{array}$	$\mathrm{IOH}^{\text {I }}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$	- - - -	$\begin{gathered} -2.4 \\ -0.51 \\ -1.3 \\ -3.4 \end{gathered}$	$\begin{gathered} -4.2 \\ -0.88 \\ -2.25 \\ -8.8 \end{gathered}$	-	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$	-	mAdc
$\begin{aligned} & \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) \end{aligned}$	${ }^{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	mAdc
Input Current, Pin 2 or 14	$\mathrm{l}_{\text {in }}$	15	-	± 0.05	-	± 0.00001	± 0.05	-	± 0.5	$\mu \mathrm{Adc}$
Input Current, Other Inputs	$\mathrm{l}_{\text {in }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance, Pin 2 or 14	$\mathrm{C}_{\text {in }}$	-	-	-	-	25	-	-	-	pF
Input Capacitance, Other Inputs $\left(V_{\text {in }}=0\right)$	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package) $\mathrm{Q}=$ Low, $\overline{\mathrm{Q}}=$ High	I_{DD}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \hline 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Quiescent Current, Active State (Both) (Per Package) $\mathrm{Q}=$ High, $\overline{\mathrm{Q}}=$ Low	I_{DD}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	-	$\begin{aligned} & 0.04 \\ & 0.08 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.45 \\ & 0.70 \end{aligned}$	-	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	mAdc
Total Supply Current at an external load capacitance (C_{L}) and at external timing network $\left(\mathrm{R}_{\mathrm{X}}, \mathrm{C}_{\mathrm{X}}\right)$ (Note 3)	I_{T}	$\begin{aligned} & 5.0 \\ & 10 \end{aligned}$		$\begin{aligned} & I_{T}=\left(3.5 \times 10^{-2}\right) R_{X} C_{X} f+4 C_{X} f+1 \times 10^{-5} C_{L}{ }^{f} \\ & I_{T}=\left(8.0 \times 10^{-2}\right) R_{X} C_{X f}{ }^{f}+9 C_{X f} f+2 \times 10^{-5} C_{L} f^{f} \\ & I_{T}=\left(1.25 \times 10^{-1}\right) R_{X} C_{X} f+12 C_{X} f+3 \times 10^{-5} C_{L} f \end{aligned}$ where: I_{T} in $\mu \mathrm{A}$ (one monostable switching only), C_{X} in $\mu F, C_{L}$ in $p F, R_{X}$ in k ohms, and f in Hz is the input frequency.						$\mu \mathrm{Adc}$

2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
3. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.

SWITCHING CHARACTERISTICS (Note 4) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Characteristic	Symbol	$V_{D D}$ Vdc	All Types			Unit
			Min	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	Max	
$\begin{aligned} & \text { Output Rise Time } \\ & \mathrm{t}_{\mathrm{TLH}}=(1.35 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+33 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(0.60 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(0.40 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \end{aligned}$	${ }_{\text {t }}^{\text {th }}$ ($\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
$\begin{aligned} & \text { Output Fall Time } \\ & \mathrm{t}_{\mathrm{THL}}=(1.35 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+33 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.60 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.40 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \end{aligned}$	${ }_{\text {t }}^{\text {HLL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \\ & 80 \end{aligned}$	ns
$\begin{aligned} & \text { Propagation Delay Time } \\ & \text { A or B to } \mathrm{Q} \text { or } \overline{\mathrm{Q}} \\ & \text { t } \mathrm{t}_{\mathrm{LLH}}, \mathrm{t}_{\text {PHL }}=(0.90 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+255 \mathrm{~ns} \\ & \text { t }_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(0.36 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+132 \mathrm{~ns} \\ & \mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=(0.26 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+87 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \\ & 100 \end{aligned}$	$\begin{aligned} & 600 \\ & 300 \\ & 220 \end{aligned}$	ns
```Reset to Q or \overline{Q} tPLH, tPLH, tPHL = (0.36 ns/pF) C C + 107 ns tPLH, tPHL = (0.26 ns/pF) CL + 82 ns```		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 250 \\ 125 \\ 95 \end{gathered}$	$\begin{aligned} & 500 \\ & 250 \\ & 190 \end{aligned}$	ns
Input Rise and Fall Times Reset	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$	-	-	$\begin{gathered} \hline 15 \\ 5 \\ 4 \end{gathered}$	us
B Input		$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$		$\begin{aligned} & 300 \\ & 1.2 \\ & 0.4 \end{aligned}$	$\begin{gathered} \hline 1.0 \\ 0.1 \\ 0.05 \end{gathered}$	ms
A Input		$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$	No Limit			-
Input Pulse Width   A, B, or Reset	$t_{W H}$, twL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 170 \\ & 90 \\ & 80 \end{aligned}$	$\begin{aligned} & 85 \\ & 45 \\ & 40 \end{aligned}$	-	ns
Retrigger Time	$\mathrm{trr}^{\text {r }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		-	ns
Output Pulse Width — Q or $\bar{Q}$ Refer to Figures 8 and 9 $C_{X}=0.002 \mu F, R_{X}=100 \mathrm{k} \Omega$	T	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 198 \\ & 200 \\ & 202 \end{aligned}$	$\begin{aligned} & 210 \\ & 212 \\ & 214 \end{aligned}$	$\begin{aligned} & 230 \\ & 232 \\ & 234 \end{aligned}$	us
$\mathrm{C}_{\mathrm{X}}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{X}}=100 \mathrm{k} \Omega$		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 9.3 \\ & 9.4 \\ & 9.5 \end{aligned}$	$\begin{gathered} 9.86 \\ 10 \\ 10.14 \end{gathered}$	$\begin{aligned} & \hline 10.5 \\ & 10.6 \\ & 10.7 \end{aligned}$	ms
$\mathrm{C}_{\mathrm{X}}=10 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{X}}=100 \mathrm{k} \Omega$		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0.91 \\ & 0.92 \\ & 0.93 \end{aligned}$	$\begin{gathered} \hline 0.965 \\ 0.98 \\ 0.99 \end{gathered}$	$\begin{aligned} & 1.03 \\ & 1.04 \\ & 1.06 \end{aligned}$	s
Pulse Width Match between circuits in the same package. $C_{X}=0.1 \mu F, R_{X}=100 \mathrm{k} \Omega$	$\begin{gathered} 100 \\ {\left[\left(T_{1}-T_{2}\right) / T_{1}\right]} \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \pm 1.0 \\ & \pm 1.0 \\ & \pm 1.0 \end{aligned}$	$\begin{aligned} & \pm 5.0 \\ & \pm 5.0 \\ & \pm 5.0 \end{aligned}$	\%

4. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
5. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

## OPERATING CONDITIONS

External Timing Resistance	$\mathrm{R}_{\mathrm{X}}$	-	5.0	-	$($ Note 6$)$
External Timing Capacitance	$\mathrm{C}_{\mathrm{X}}$	-	0	-	No Limit   (Note 7 )

6. The maximum usable resistance $R_{X}$ is a function of the leakage of the capacitor $C_{X}$, leakage of the $X D 14538$, and leakage due to board layout and surface resistance. Susceptibility to externally induced noise signals may occur for $R_{X}>1 \mathrm{M} \Omega$..
7. If $C_{X}>15 \mu \mathrm{~F}$, use discharge protection diode per Fig. 11.


Figure 1. Logic Diagram (1/2 of Device Shown)


Figure 2. Power Dissipation Test Circuit and Waveforms


Figure 3. Switching Test Circuit


Figure 4. Switching Test Waveforms


Figure 5. Typical Normalized Distribution of Units for Output Pulse Width



Figure 6. Typical Pulse Width Variation as a Function of Supply Voltage $V_{D D}$

FUNCTION TABLE

Inputs			Outputs
Reset	A	B	Q $\quad \mathbf{Q}$
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\widetilde{\mathrm{L}}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{Z} \end{aligned}$	
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\Gamma_{\mathrm{H}}^{2}$		Not Triggered Not Triggered
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \mathrm{L}, \mathrm{H}, \mathrm{Z} \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} \hline \mathrm{H} \\ \mathrm{~L}, \mathrm{H}, \Gamma \end{gathered}$	Not Triggered Not Triggered
	$\begin{aligned} & X \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	L H

Figure 7. Typical Total Supply Current versus Output Duty Cycle


Figure 8. Typical Error of Pulse Width Equation versus Temperature


Figure 9. Typical Error of Pulse Width Equation versus Temperature

THEORY OF OPERATION


Figure 10. Timing Operation

## TRIGGER OPERATION

The block diagram of the XD14538 is shown in Figure 1, with circuit operation following.

As shown in Figure 1 and 10, before an input trigger occurs, the monostable is in the quiescent state with the Q output low, and the timing capacitor $\mathrm{C}_{\mathrm{X}}$ completely charged to $\mathrm{V}_{\mathrm{DD}}$. When the trigger input A goes from $\mathrm{V}_{\mathrm{SS}}$ to $\mathrm{V}_{\mathrm{DD}}$ (while inputs B and Reset are held to $\mathrm{V}_{\mathrm{DD}}$ ) a valid trigger is recognized, which turns on comparator C 1 and N -channel transistor $\mathrm{N} 1{ }^{(1)}$. At the same time the output latch is set. With transistor N 1 on, the capacitor $\mathrm{C}_{\mathrm{X}}$ rapidly discharges toward $\mathrm{V}_{\mathrm{SS}}$ until $\mathrm{V}_{\text {ref1 }}$ is reached. At this point the output of comparator C 1 changes state and transistor N 1 turns off. Comparator C1 then turns off while at the same time comparator C2 turns on. With transistor N1 off, the capacitor $\mathrm{C}_{\mathrm{X}}$ begins to charge through the timing resistor, $\mathrm{R}_{\mathrm{X}}$, toward $V_{D D}$. When the voltage across $C_{X}$ equals $V_{\text {ref } 2}$, comparator C 2 changes state, causing the output latch to reset ( Q goes low) while at the same time disabling comparator C2 (2). This ends at the timing cycle with the monostable in the quiescent state, waiting for the next trigger.

In the quiescent state, $\mathrm{C}_{\mathrm{X}}$ is fully charged to $\mathrm{V}_{\mathrm{DD}}$ causing the current through resistor $\mathrm{R}_{\mathrm{X}}$ to be zero. Both comparators are "off" with total device current due only to reverse junction leakages. An added feature of the XD14538 is that the output latch is set via the input trigger without regard to the capacitor voltage. Thus, propagation delay from trigger to Q is independent of the value of $\mathrm{C}_{\mathrm{X}}, \mathrm{R}_{\mathrm{X}}$, or the duty cycle of the input waveform.

## RETRIGGER OPERATION

The XD14538 is retriggered if a valid trigger occurs (3) followed by another valid trigger (4) before the Q output has returned to the quiescent (zero) state. Any retrigger, after the timing node voltage at pin 2 or 14 has begun to rise from $\mathrm{V}_{\text {ref 1 }}$, but has not yet reached $\mathrm{V}_{\text {ref 2 }}$, will cause an increase in output pulse width T . When a valid retrigger is initiated (4), the voltage at $\mathrm{C}_{\mathrm{X}} / \mathrm{R}_{\mathrm{X}}$ will again drop to $\mathrm{V}_{\text {ref }} 1$ before progressing along the RC charging curve toward $\mathrm{V}_{\mathrm{DD}}$. The Q output will remain high until time T , after the last valid retrigger.

## RESET OPERATION

TheXD14538 may be reset during the generation of the output pulse. In the reset mode of operation, an input pulse
on $\overline{\text { Reset }}$ sets the reset latch and causes the capacitor to be fast charged to $\mathrm{V}_{\mathrm{DD}}$ by turning on transistor P1 (5). When the voltage on the capacitor reaches $\mathrm{V}_{\text {ref 2 }}$, the reset latch will clear, and will then be ready to accept another pulse. It the $\overline{\text { Reset }}$ input is held low, any trigger inputs that occur will be inhibited and the Q and $\overline{\mathrm{Q}}$ outputs of the output latch will not change. Since the Q output is reset when an input low level is detected on the $\overline{\text { Reset input, the output pulse } T \text { can be made }}$ significantly shorter than the minimum pulse width specification.

## POWER-DOWN CONSIDERATIONS

Large capacitance values can cause problems due to the large amount of energy stored. When a system containing the XD14538 is powered down, the capacitor voltage may discharge from $\mathrm{V}_{\mathrm{DD}}$ through the standard protection diodes at pin 2 or 14. Current through the protection diodes should be limited to 10 mA and therefore the discharge time of the $\mathrm{V}_{\mathrm{DD}}$ supply must not be faster than $\left(\mathrm{V}_{\mathrm{DD}}\right)$. $(\mathrm{C}) /(10 \mathrm{~mA})$. For example, if $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$ and $\mathrm{C}_{\mathrm{X}}=10 \mu \mathrm{~F}$, the $\mathrm{V}_{\mathrm{DD}}$ supply should discharge no faster than $(10 \mathrm{~V}) \times(10 \mu \mathrm{~F}) /(10 \mathrm{~mA})$ $=10 \mathrm{~ms}$. This is normally not a problem since power supplies are heavily filtered and cannot discharge at this rate.
When a more rapid decrease of $\mathrm{V}_{\mathrm{DD}}$ to zero volts occurs, the XD14538 can sustain damage. To avoid this possibility use an external clamping diode, $\mathrm{D}_{\mathrm{X}}$, connected as shown in Fig. 11.


Figure 11. Use of a Diode to Limit Power Down Current Surge

## TYPICAL APPLICATIONS



Figure 12．Retriggerable Monostables Circuitry


Figure 13．Non－Retriggerable Monostables Circuitry


Figure 14．Connection of Unused Sections

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Counter Shift Registers category:
Click to view products by XINLUDA manufacturer:
Other Similar products are found below :
5962-8956101EA MC10E446FNG 74HC195N 74HC4516N 74HCT182N HEF4021BD HEF4534BP MC144111P NLV74HC165ADTR2G
5962-9172201M2A MC74HC597ADG MC100EP142MNG MC100EP016AMNG 5962-9172201MFA MC74HC164BDR2G
TC74HC165AP(F) 74AHC164T14-13 MC74LV594ADR2G NLV14094BDTR2G NLV74HC595ADTG MC74HC165AMNTWG
TPIC6C595PWG4 74VHC164MTCX CD74HC195M96 CD4073BM96 CD4053BM96 MM74HC595MTCX 74HCT164T14-13
74HCT164S14-13 74HC4094D-Q100J NLV14014BFELG NLV74HC165ADR2G NLV74HC589ADTR2G NPIC6C595D-Q100, 11 NPIC6C595PW,118 NPIC6C596ADJ NPIC6C596APW-Q100J NPIC6C596D-Q100,11 BU4094BCF-E2 BU4094BCFV-E2 74HC164D14

74HC164T14-13 TPIC6C596PWRG4 STPIC6D595MTR STP08CP05MTR CD74HC123E 74HC164D.653 74HC165D.653
74HCT165D.652 74HCT164D. 652

