WWW．XINLUDA．COM 信路达

1．General description

TheXD4066 provides four single－pole，si ngle－throw analog switch functions．Each switch has two input／output terminals（ $n Y$ and $n Z$ ）and an active HIGH enable input（ $n E$ ）． When nE is LOW，the analog switch is turned off．

The XD4066 is pin compatible with the XD4016 but exhibits a much lower ON resistance．In addition the ON resistance is relatively constant over the full input signal range．

2．Features and benefits

－Fully static operation
－ $5 \mathrm{~V}, 10 \mathrm{~V}$ ，and 15 V parametric ratings
■ Standardized symmetrical output characteristics
■ Inputs and outputs are protected against electrostatic effects
－Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

3．Applications

－Analog multiplexing and demultiplexing
－Digital multiplexing and demultiplexing
－Signal gating

4 Functional diagram

Fig 1．Functional diagram

Fig 2．Logic diagram（one switch）

Quad single-pole single-throw analog switch

5 Pinning information

Fig 3. Pin configuration

Table 2. Pin description

Symbol	Pin	Description
$1 Y, 2 Y, 3 Y, 4 Y$	$1,4,8,11$	independent input or output
$1 Z, 2 Z, 3 Z, 4 Z$	$2,3,9,10$	independent input or output
$1 E, 2 \mathrm{E}, 3 \mathrm{E}, 4 \mathrm{E}$	$13,5,6,12$	enable input (active HIGH$)$
V_{SS}	7	ground $(0 \mathrm{~V})$
V_{DD}	14	supply voltage

6 Functional description

Table 3. Function table[1]

Input nE	Switch
H	ON
L	OFF

[1] $H=$ HIGH voltage level; L = LOW voltage level.

7 Limiting values

Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{S S}=0 \mathrm{~V}$ (ground).

Symbol	Parameter	Conditions	Min	Max	Unit
VDD	supply voltage		-0.5	+18	V
I_{IK}	input clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$	-	± 10	mA
V_{1}	input voltage		-0.5	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
$l_{1 / O}$	input/output current	[1]	-	± 10	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	ambient temperature		-40	+125	${ }^{\circ} \mathrm{C}$
$P_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
		SO14 [2]	-	500	mW
P	power dissipation	per switch	-	100	mW

[1] To avoid drawing $V_{D D}$ current out of terminal $n Z$, when switch current flows into terminals $n Y$, the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminal $n Z$, no $V_{D D}$ current will flow out of terminals $n Y$, in this case there is no limit for the voltage drop across the switch, but the voltages at $n Y$ and $n Z$ may not exceed V_{DD} or V_{SS}.
[2] For SO14 packages: above $T_{\text {amb }}=70^{\circ} \mathrm{C}, \mathrm{P}_{\text {tot }}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$.

8 Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {D }}$	supply voltage		3	-	15	V
V_{1}	input voltage		0	-	V_{DD}	V
$\mathrm{T}_{\text {amb }}$	ambient temperature	in free air	-40	-	+125	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	-	3.75	$\mu \mathrm{s} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	-	-	0.5	$\mu \mathrm{s} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$	-	-	0.08	$\mu \mathrm{s} / \mathrm{V}$

9 Static characteristics

Table 6. Static characteristics
$V_{S S}=0 V ; V_{1}=V_{S S}$ or $V_{D D}$ unless otherwise specified.

Symbol	Parameter	Conditions	V_{DD}	$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{amb}}=8{ }^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$		Unit
				Min	Max	Min	Max	Min	Max	Min	Max	
V_{IH}	HIGH-level input voltage	$\left\|\left\|\mathrm{I}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A}\right.$	5 V	3.5	-	3.5	-	3.5	-	3.5	-	V
			10 V	7.0	-	7.0	-	7.0	-	7.0	-	V
			15 V	11.0	-	11.0	-	11.0	-	11.0	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mid \mathrm{lo} \mathrm{O}<1 \mu \mathrm{~A}$	5 V	-	1.5	-	1.5	-	1.5	-	1.5	V
			10 V	-	3.0	-	3.0	-	3.0	-	3.0	V
			15 V	-	4.0	-	4.0	-	4.0	-	4.0	V
1	input leakage current		15 V	-	± 0.1	-	± 0.1	-	± 1.0	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	per channel; see Figure 4	15 V	-	-	-	200	-	-	-	-	nA
I_{DD}	supply current	all valid input combinations	5 V	-	1.0	-	1.0	-	7.5	-	7.5	$\mu \mathrm{A}$
			10 V	-	2.0	-	2.0	-	15.0	-	15.0	$\mu \mathrm{A}$
			15 V	-	4.0	-	4.0	-	30.0	-	30.0	$\mu \mathrm{A}$
C_{1}	input capacitance	nE input	-	-	-	-	7.5	-	-	-	-	pF

Fig 4. Test circuit for measuring OFF-state leakage current

Quad single-pole single-throw analog switch

Table 7. ON resistance
$T_{\text {amb }}=25^{\circ} \mathrm{C}$; $I_{S W}=200 \mu \mathrm{~A} ; V_{S S}=0 \mathrm{~V}$.

Symbol	Parameter	Conditions	$V_{\text {DD }}$	Typ	Max	Unit
$\mathrm{R}_{\text {ON(}}$ (peak)	ON resistance (peak)	$\mathrm{V}_{1}=0 \mathrm{~V}$ to V_{DD}; see Figure 5 and Figure 6	5 V	350	2500	Ω
			10 V	80	245	Ω
			15 V	60	175	Ω
$\mathrm{R}_{\text {ON(rail) }}$	ON resistance (rail)	$\mathrm{V}_{1}=0 \mathrm{~V}$; see Figure 5 and Figure 6	5 V	115	340	Ω
			10 V	50	160	Ω
			15 V	40	115	Ω
		$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$; see Figure 5 and Figure 6	5 V	120	365	Ω
			10 V	65	200	Ω
			15 V	50	155	Ω
$\Delta \mathrm{R}_{\mathrm{ON}}$	ON resistance mismatch between channels	$\mathrm{V}_{1}=0 \mathrm{~V}$ to V_{DD}; see Figure 5	5 V	25	-	Ω
			10 V	10	-	Ω
			15 V	5	-	Ω

$\mathrm{R}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{SW}} / \mathrm{I}_{\mathrm{SW}}$.

Fig 5. Test circuit for measuring R_{ON}

$I_{\text {SW }}=200 \mu \mathrm{~A}$.
(1) $V_{D D}=5 \mathrm{~V}$
(2) $V_{D D}=10 \mathrm{~V}$
(3) $V_{D D}=15 \mathrm{~V}$

Fig 6. Typical R_{ON} as a function of input voltage

10. Dynamic characteristics

Table 8. Dynamic characteristics
$T_{\text {amb }}=25^{\circ} \mathrm{C}$; $V_{\text {SS }}=0 \mathrm{~V}$; for test circuit see Figure 9.

Symbol	Parameter	Conditions	$V_{\text {DD }}$	Typ	Max	Unit
$t_{\text {PHL }}$	HIGH to LOW propagation delay	nY, nZ to nZ, nY; see Figure 7	5 V	10	20	ns
			10 V	5	10	ns
			15 V	5	10	ns
		nY, nZ to nZ, nY; see Figure 7	5 V	10	20	ns
			10 V	5	10	ns
			15 V	5	10	ns
$\mathrm{t}_{\text {PHZ }}$	HIGH to OFF-state propagation delay	nE to nY, nZ; see Figure 8	5 V	80	160	ns
			10 V	65	130	ns
			15 V	60	120	ns
$t_{\text {PzH }}$	OFF-state to HIGH propagation delay	nE to nY, nZ; see Figure 8	5 V	40	80	ns
			10 V	20	40	ns
			15 V	15	30	ns
$t_{\text {PLZ }}$	LOW to OFF-state propagation delay	nE to nY, nZ; see Figure 8	5 V	80	160	ns
			10 V	70	140	ns
			15 V	70	140	ns
$\mathrm{t}_{\text {PzL }}$	OFF-state to LOW propagation delay	nE to nY, nZ; see Figure 8	5 V	45	90	ns
			10 V	20	40	ns
			15 V	15	30	ns

Table 9. Dynamic power dissipation P_{D}
P_{D} can be calculated from the formulas shown; $V_{S S}=0 \mathrm{~V} ; t_{r}=t_{f} \leq 20 \mathrm{~ns} ; T_{a m b}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	V_{DD}	Typical formula for $\mathrm{P}_{\mathrm{D}}(\mu \mathrm{W})$	where:
P_{D}	dynamic power dissipation	5 V	$\mathrm{P}_{\mathrm{D}}=2500 \times \mathrm{f}_{\mathrm{i}}+\Sigma\left(\mathrm{f}_{\mathrm{o}} \times \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\text {DD }}{ }^{2}$	$\begin{aligned} & \mathrm{f}_{\mathrm{i}}=\text { input frequency in } \mathrm{MHz} ; \\ & \mathrm{f}_{\mathrm{o}}=\text { output frequency in } \mathrm{MHz} ; \\ & \mathrm{C}_{\mathrm{L}}=\text { output load capacitance in } \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{DD}}=\text { supply voltage in } \mathrm{V} ; \\ & \Sigma\left(\mathrm{C}_{\mathrm{L}} \times \mathrm{f}_{0}\right)=\text { sum of the outputs. } \end{aligned}$
		10 V	$\mathrm{P}_{\mathrm{D}}=11500 \times \mathrm{f}_{\mathrm{i}}+\Sigma\left(\mathrm{f}_{0} \times \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\text {DD }}{ }^{2}$	
		15 V	$\mathrm{P}_{\mathrm{D}}=29000 \times \mathrm{f}_{\mathrm{i}}+\Sigma\left(\mathrm{f}_{0} \times \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\text {DD }}{ }^{2}$	

10.1 Waveforms and test circuit

Measurement points are given in Table 10.
Fig 7. $n Y$ or $n Z$ to $n Z$ or $n Y$ propagation delays

Measurement points are given in Table 10.
Fig 8. Enable and disable times

Table 10. Measurement points

Supply voltage	Input	Output
V_{DD}	V_{M}	V_{M}
5 V to 15 V	$0.5 \mathrm{~V}_{\mathrm{DD}}$	$0.5 \mathrm{~V}_{\mathrm{DD}}$

Test data is given in Table 11.
Definitions:
DUT = Device Under Test.
$R_{T}=$ Termination resistance should be equal to output impedance Z_{0} of the pulse generator.
$C_{L}=$ Load capacitance including test jig and probe.
$\mathrm{R}_{\mathrm{L}}=$ Load resistance.
Fig 9. Test circuit for measuring switching times
Table 11. Test data

Supply voltage	Input		Load		S1 position		
VD	$\mathrm{V}_{\mathbf{1}}$	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	C_{L}	R_{L}	$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	$\mathrm{t}_{\text {PzH }}, \mathrm{t}_{\text {PHZ }}$	$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$
5 V to 15 V	0 V or V_{DD}	$\leq 20 \mathrm{~ns}$	50 pF	$10 \mathrm{k} \Omega$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	V_{DD}

10.2 Additional dynamic parameters

Table 12. Additional dynamic characteristics
$V_{\text {SS }}=0 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	V_{DD}		Typ	Max	Unit
THD	total harmonic distortion	$\begin{aligned} & \text { see Figure } 10 ; R_{L}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \\ & \text { channel ON; } \mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}_{\mathrm{DD}}(\mathrm{p}-\mathrm{p}) ; \\ & \mathrm{f}_{\mathrm{i}}=1 \mathrm{kHz} \end{aligned}$	5 V	[1]	0.25	-	\%
			10 V	[1]	0.04	-	\%
			15 V	[1]	0.04	-	\%
V_{ct}	crosstalk voltage	$\begin{aligned} & \hline \text { nE input to switch; see Figure 11; } \\ & R_{L}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \\ & \mathrm{nE}=\mathrm{V}_{\mathrm{DD}} \text { (square-wave) } \end{aligned}$	10 V		50	-	mV

Table 12. Additional dynamic characteristics ...continued
$V_{S S}=0 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typ	Max	Unit		
Xtalk	crosstalk	between switches; see Figure 12; $\mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ;$ $\mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}_{\mathrm{DD}}(\mathrm{p}-\mathrm{p})$	10 V	$\underline{[1]}$	-50	-	dB
$\alpha_{\text {iso }}$	isolation (OFF-state)	see Figure $13 ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz;} \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ;$ $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}_{\mathrm{DD}}(\mathrm{p}-\mathrm{p})$	10 V	$\underline{[1]}$	-50	-	dB
$\mathrm{f}_{(-3 \mathrm{~dB})}$	-3 dB frequency response	see Figure $14 ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ;$ $\mathrm{V}_{\mathrm{I}}=\overline{0.5 \mathrm{~V}_{\mathrm{DD}}(\mathrm{p}-\mathrm{p})}$	10 V	$\underline{[1]}$	90	-	MHz

[1] f_{i} is biased at $0.5 \mathrm{~V}_{\mathrm{DD}}$.

10.2.1 Test circuits

Fig 10. Test circuit for measuring total harmonic distortion

a. Test circuit

b. Input and output pulse definitions

Fig 11. Test circuit for measuring crosstalk voltage between digital input and switch

Quad single-pole single-throw analog switch

$20 \log _{10}\left(\mathrm{~V}_{\mathrm{O} 2} / \mathrm{V}_{\mathrm{O} 1}\right)$ or $20 \log _{10}\left(\mathrm{~V}_{\mathrm{O} 1} / \mathrm{V}_{\mathrm{O} 2}\right)$.
Fig 12. Test circuit for measuring crosstalk between switches

Adjust f_{i} voltage to obtain 0 dBm level at input.

Fig 13. Test circuit for measuring isolation (OFF-state)

Adjust f_{i} voltage to obtain 0 dBm level at output. Increase f_{i} frequency until $d B$ meter reads $-3 d B$.

Fig 14. Test circuit for measuring frequency response

XD4066 DIP－14

DIP

A MINS＊＊	14	16	18	20
A MAX	0.775 $(19,69)$	0.775 $(19,69)$	0.920 $(23,37)$	1.060 $(26,92)$
A	0.745 $(18,92)$	0.745 $(18,92)$	0.850 $(21,59)$	0.940 $(23,88)$
MS－001 VARIATION	AA	BB	AC	AD

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by XINLUDA manufacturer:
Other Similar products are found below :
FSA3051TMX NLVAS4599DTT1G MAX4992EVB+T MAX4684ETB+T BCM6522IPBG BCM65300IFSBG MAX14764ETA+T TMUX1113RSVR TMUX1112RSVR ADG1436TRUZ-EP BL4684C PE423422A PE42359SCAA PE42540F RS550YUCM12 ADGS1414DBCCZ ADG658YRUZ-REEL7 RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 SP2526A-1EN-L/TR FSA4157P6X BA7603F-E2 MAX4702EUE+ MAX4617CUE+ MAX4599EUT+T MAX4066ESD+ MAX4052ACSE+ MAX396CAI+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ MAX4051AEEE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR TS3A4751PWR NCN1154MUTAG DG444DY-E3 NLAS4157DFT2G NLAS4599DFT2G NLAS7242MUTBG NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG403DY-T1-E3 MAX4714EXTT MAX392CPE BGSX22G2A10E6327XTSA1 ADG1611BRUZ-REEL7

