1．General description

The XD4069 is a general purpose hex unbuffered inverter．Each inverter has a single stage．

It operates over a recommended $V_{D D}$ power supply range of 3 V to 15 V referenced to V_{SS} （usually ground）．Unused inputs must be connected to $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$ ，or another input．

2．Features and benefits

－Fully static operation
－ 5 V ， 10 V ，and 15 V parametric ratings
－Standardized symmetrical output characteristics
－Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
■ Complies with JEDEC standard JESD 13－B

3．Applications

－Oscillator

4．Functional diagram

Fig 1．Functional diagram

Fig 2．Schematic diagram（one inverter）

5. Pinning information

5.1 Pinning

Fig 3. Pin configuration

5.2 Pin description

Table 1. Pin description

Symbol	Pin	Description
1 A to 6 A	$1,3,5,9,11,13$	input
1 Y to 6 Y	$2,4,6,8,10,12$	output
$\mathrm{V}_{\text {SS }}$	7	ground $(0 \mathrm{~V})$
V_{DD}	14	supply voltage

6. Limiting values

Table 2. Limiting values
In accordance with the Absolute Maximum Rating System .

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		-0.5	+18	V
I_{K}	input clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$	-	± 10	mA
$\mathrm{~V}_{\mathrm{I}}$	input voltage		-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
I_{OK}	output clamping current	$\mathrm{V}_{\mathrm{O}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$	-	± 10	mA
$\mathrm{I}_{I / \mathrm{O}}$	input/output current		-	± 10	mA
I_{DD}	supply current		-	50	mA
$\mathrm{~T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	ambient temperature		-40	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }}=-40^{\circ}{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
		DIP-14	$\underline{11]}$	-	500
P	power dissipation	per output	-	100	mW

[1] DIP-14 packages: above $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}, \mathrm{P}_{\text {tot }}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$.

7. Recommended operating conditions

Table 3. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{DD}	supply voltage		3	-	15	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage		0	-	V_{DD}	V
$\mathrm{T}_{\mathrm{amb}}$	ambient temperature	in free air	-40	-	+125	${ }^{\circ} \mathrm{C}$

8. Static characteristics

Table 4. Static characteristics
$V_{S S}=0 V ; V_{I}=V_{S S}$ or $V_{D D}$; unless otherwise specified.

Symbol	Parameter	Conditions	V_{DD}	$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$		$\mathrm{Tamb}=+85^{\circ} \mathrm{C}$		$\mathrm{T}_{\text {amb }}=+125^{\circ} \mathrm{C}$		Unit
				Min	Max	Min	Max	Min	Max	Min	Max	
V_{IH}	HIGH-level input voltage	$\left\|\left\|\mathrm{I}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A}\right.$	5 V	4	-	4	-	4	-	4	-	V
			10 V	8	-	8	-	8	-	8	-	V
			15 V	12.5	-	12.5	-	12.5	-	12.5	-	V
V_{IL}	LOW-level input voltage	$\left\|\mathrm{IO}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A}$	5 V	-	1	-	1	-	1	-	1	V
			10 V	-	2	-	2	-	2	-	2	V
			15 V	-	2.5	-	2.5	-	2.5	-	2.5	V
V_{OH}	HIGH-level output voltage	$\mid \mathrm{I}_{\mathrm{O}} \mathrm{l}<1 \mu \mathrm{~A}$	5 V	4.95	-	4.95	-	4.95	-	4.95	-	V
			10 V	9.95	-	9.95	-	9.95	-	9.95	-	V
			15 V	14.95	-	14.95	-	14.95	-	14.95	-	V
VoL	LOW-level output voltage	$\mid \mathrm{lo} \mathrm{l}^{\text {< }} 1 \mu \mathrm{~A}$	5 V	-	0.05	-	0.05	-	0.05	-	0.05	V
			10 V	-	0.05	-	0.05	-	0.05	-	0.05	V
			15 V	-	0.05	-	0.05	-	0.05	-	0.05	V
I_{OH}	HIGH-level output current	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	5 V	-	-1.7	-	-1.4	-	-1.1	-	-1.1	mA
		$\mathrm{V}_{\mathrm{O}}=4.6 \mathrm{~V}$	5 V	-	-0.64	-	-0.5	-	-0.36	-	-0.36	mA
		$\mathrm{V}_{\mathrm{O}}=9.5 \mathrm{~V}$	10 V	-	-1.6	-	-1.3	-	-0.9	-	-0.9	mA
		$\mathrm{V}_{\mathrm{O}}=13.5 \mathrm{~V}$	15 V	-	-4.2	-	-3.4	-	-2.4	-	-2.4	mA
loL	LOW-level output current	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$	5 V	0.64	-	0.5	-	0.36	-	0.36	-	mA
		$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$	10 V	1.6	-	1.3	-	0.9	-	0.9	-	mA
		$\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$	15 V	4.2	-	3.4	-	2.4	-	2.4	-	mA
I,	input leakage current		15 V	-	± 0.1	-	± 0.1	-	± 1.0	-	± 1.0	$\mu \mathrm{A}$
I_{DD}	supply current	all valid input combinations; $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}$	5 V	-	0.25	-	0.25	-	7.5	-	7.5	$\mu \mathrm{A}$
			10 V	-	0.5	-	0.5	-	15.0	-	15.0	$\mu \mathrm{A}$
			15 V	-	1.0	-	1.0	-	30.0	-	30.0	$\mu \mathrm{A}$
Cl_{1}	input capacitance	digital inputs		-	-	-	7.5	-	-	-	-	pF

9. Dynamic characteristics

Table 5. Dynamic characteristics
$T_{\text {amb }}=25^{\circ} \mathrm{C}$; for waveforms see Figure 4; for test circuit see Figure 5.

Symbol	Parameter	Conditions	V_{DD}	Extrapolation formula ${ }^{[1]}$	Min	Typ	Max	Unit
$\mathrm{t}_{\text {PHL }}$	HIGH to LOW propagation delay	$n A$ to n ;	5 V	$18 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	45	90	ns
			10 V	$9 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	20	40	ns
			15 V	$7 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	15	25	ns
tpLH	LOW to HIGH propagation delay	nA to nY	5 V	$13 \mathrm{~ns}+(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	40	80	ns
			10 V	$9 \mathrm{~ns}+(0.23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	20	40	ns
			15 V	$7 \mathrm{~ns}+(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	15	30	ns
$\mathrm{t}_{\text {THL }}$	HIGH to LOW output transition time	output nY	5 V	$10 \mathrm{~ns}+(1.00 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	60	120	ns
			10 V	$9 \mathrm{~ns}+(0.42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	30	60	ns
			15 V	$6 \mathrm{~ns}+(0.28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	20	40	ns
$\mathrm{t}_{\text {tin }}$	LOW to HIGH output transition time	output nY	5 V	$10 \mathrm{~ns}+(1.00 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	60	120	ns
			10 V	$9 \mathrm{~ns}+(0.42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	30	60	ns
			15 V	$6 \mathrm{~ns}+(0.28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}$	-	20	40	ns

[1] The typical value of the propagation delay and output transition time can be calculated with the extrapolation formula (C_{L} in pF).

Table 6. Dynamic power dissipation
$V_{S S}=0 \mathrm{~V} ; t_{r}=t_{f} \leq 20 \mathrm{~ns} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	V_{DD}	Typical formula	Where
P_{D}	dynamic power dissipation	5 V	$\mathrm{P}_{\mathrm{D}}=600 \times \mathrm{f}_{\mathrm{i}}+\Sigma\left(\mathrm{f}_{0} \times \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}(\mu \mathrm{~W})$	$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ; $\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz; $C_{L}=$ output load capacitance in pF ; $\Sigma\left(\mathrm{f}_{\mathrm{O}} \times \mathrm{C}_{\mathrm{L}}\right)=$ sum of the outputs; $\mathrm{V}_{\mathrm{DD}}=$ supply voltage in V .
		10 V	$\mathrm{P}_{\mathrm{D}}=4000 \times \mathrm{f}_{\mathrm{i}}+\Sigma\left(\mathrm{f}_{\mathrm{o}} \times \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}(\mu \mathrm{~W})$	
		15 V	$\mathrm{P}_{\mathrm{D}}=22000 \times \mathrm{f}_{\mathrm{i}}+\Sigma\left(\mathrm{f}_{0} \times \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\text {DD }}{ }^{2}(\mu \mathrm{~W})$	

10. Waveforms

Measurement points: $\mathrm{V}_{\mathrm{M}}=0.5 \mathrm{~V}_{\mathrm{DD}}$.
Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.
Fig 4. Propagation delay and transition times

Definitions for test circuit:
$C_{L}=$ load capacitance including jig and probe capacitance;
$R_{T}=$ termination resistance should be equal to the output impedance Z_{o} of the pulse generator;
For test data refer to Table 7.
Fig 5. Test circuit for measuring switching times

Table 7. Test data

Supply voltage	Input	Load	
V_{DD}	$\mathrm{V}_{\mathbf{l}}$	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	C_{L}
5 V to 15 V	$\leq 20 \mathrm{~ns}$	50 pF	

10.1 Transfer characteristics

a. $V_{D D}=5 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}$

b. $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}$

c. $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}$
(1) $\mathrm{V}_{\mathrm{O}}=$ output voltage.
(2) $I_{D}=$ drain current.

Fig 6. Typical transfer characteristics

11. Application information

Some examples of applications for the XD4069.
Figure 7 shows an astable relaxation oscillator using two HEF4069UB inverters and 2 BAW62 diodes. The oscillation frequency is mainly determined by R1 $\times \mathrm{C} 1$, provided $\mathrm{R} 1 \ll \mathrm{R} 2$ and $\mathrm{R} 2 \times \mathrm{C} 2 \ll \mathrm{R} 1 \times \mathrm{C} 1$.

The function of R2 is to minimize the influence of the forward voltage across the protection diodes on the frequency; C 2 is a stray (parasitic) capacitance.

The period T_{p} is given by $T_{p}=T_{1}+T_{2}$,
where:

$$
\begin{aligned}
& T_{1}=\text { R1C1In } \frac{V_{D D}+V_{S T}}{V_{S T}} \\
& T_{2}=\text { R1C1In } \frac{2 V_{D D}-V_{S T}}{V_{D D}-V_{S T}}
\end{aligned}
$$

$\mathrm{V}_{\mathrm{ST}}=$ the signal threshold level of the inverter.
The period is fairly independent of $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{ST}}$ and temperature. The duty factor, however, is influenced by V_{ST}.

Fig 7. Astable relaxation oscillator

Figure 8 shows a crystal oscillator for frequencies up to 10 MHz using two HEF4069UB inverters. The second inverter amplifies the oscillator output voltage to a level sufficient to drive other Local Oxidation CMOS (LOCMOS) circuits.

The output inverter is used to amplify the oscillator output voltage to a level sufficient to drive other LOCMOS circuits.
Fig 8. Crystal oscillator

Figure 9 and Figure 10 show voltage gain and supply current. Figure 11 shows the test set-up and an example of an analog amplifier using one XD4069.

Fig 9. Typical voltage gain as a function of supply voltage

Fig 10. Typical supply current as a function of supply voltage

Fig 11. Test set-up

Figure 12 shows typical forward transconductance and Figure 13 shows the test set－up．

（1）Average $+2 \sigma$ ；where：＇σ＇is the standard deviation．
（2）Average．
（3）Average -2σ ；where：＇σ＇is the standard deviation．

Fig 12．Typical forward transconductance as a function of supply voltage at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

$g_{f s}=\frac{d I_{o}}{d V_{i}}$ at V_{O} is constant．
$\mathrm{f}_{\mathrm{i}}=1 \mathrm{kHz}$
Fig 13．Test set－up

DIP14

DIMENSIONS ARE IN INCHES
DIMENSIONS IN：TOR REFERELCE OMLY

以上信息仅供参考．如需帮助联系客服人员。谢谢 XINLUDA

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by XINLUDA manufacturer:
Other Similar products are found below :
LV5065VB-TLM-H LV5066V-TLM-H LV5725JAZ-AH 633888R MP2908AGF AZ7500EP-E1 NCP1012AP133G NCP1217P133G
NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP1587GDR2G NCP6153MNTWG
NCP81005MNTWG NCP81101BMNTXG NCP81205MNTXG HV9123NG-G-M934 IR35207MTRPBF ISL6367HIRZ CAT874-80ULGT3
SJ6522AG SJE6600 TLE63893GV50XUMA1 IR35215MTRPBF SG3845DM NCP1216P133G NCP1236DD65R2G NCP1247BD100R2G
NCP1250BP65G NCP4202MNR2G NCP4204MNTXG NCP6132AMNR2G NCP81141MNTXG NCP81142MNTXG NCP81172MNTXG NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UC3845ADM UBA2051C IR35201MTRPBF MAX8778ETJ+ MAX17500AAUB+T MAX17411GTM+T MAX16933ATIR/V+ NCP1010AP130G NCP1063AD100R2G NCP1216AP133G NCP1217AP100G

