

DESCRIPTION

XD54562 are eight-circuit output-sourcing

Darlington transistor arrays. The circuits are made of PNP and NPN transistors. Both the semiconductor integrated circuits perform high-current driving with extremely low inputcurrent supply.

FEATURES

- High breakdown voltage (BVcEo ≥ 50V)
- High-current driving (lo(max) = -500mA)
- With output clamping diodes
- Driving available with PMOS IC output of 6 ~ 16V or with TTL output
- Wide operating temperature range (Ta = -20 to $+75^{\circ}$ C)
- Output current-sourcing type

PIN CONFIGURATION

CIRCUIT DIAGRAM

APPLICATION

Drives of relays, printers, LEDs, fluorescent display tubes and lamps, and interfaces between MOS-bipolar logic systems and relays, solenoids, or small motors

The eight circuits share the Vs and GND.

The diode, indicated with the dotted line, is parasitic, and cannot be used.

Unit : Ω

FUNCTION

The XD54562 each have eight circuits,

which are made of input inverters and current-sourcing outputs. The outputs are made of PNP transistors and NPN Darlington transistors. The PNP transistor base current is constant. A spike-killer clamping diode is provided between each output and GND. Vs and GND are used commonly among the eight circuits.

The inputs have resistance of $8.5 k\Omega$, and voltage of up to 30V is applicable. Output current is 500mA maximum. Supply voltage Vs is 50V maximum.

The XD54562 is enclosed in a molded small flat package, enabling space-saving design.

ABSOLUTE MAXIMUM RATINGS (Unless otherwise noted, Ta = -20 ~ +75°C)

Symbol	Parameter	Conditions	Ratings	Unit
VCEO #	Collector-emitter voltage	Output, L	-0.5 ~ +50	V
Vs	Supply voltage		50	V
VI	Input voltage		-0.5 ~ +30	V
lo	Output current	Current per circuit output, H	-500	mA
lF	Clamping diode forward current		-500	mA
Vr #	Clamping diode reverse voltage		50	V
Pd	Power dissipation	Ta = 25° C, when mounted on board	1.79(P)/1.10(FP)	W
Topr	Operating temperature		-20 ~ +75	°C
Tstg	Storage temperature		-55 ~ +125	°C

: Unused I/O pins must be connected to GND.

RECOMMENDED OPERATING CONDITIONS (Unless otherwise noted, Ta = -20 ~ +75°C)

Cumhal	Parameter			1.1		
Symbol			min	typ	max	Unit
Vs	Supply voltage	Supply voltage		—	50	V
	Output current (Current per 1 cir- cuit when 8 circuits are coming on si- multaneously)	Duty Cycle P : no more than 8% FP : no more than 5%	0		-350	mA
		Duty Cycle P : no more than 55% FP : no more than 30%	0	_	-100	
Vih	"H" input voltage		2.4	5	30	V
VIL	"L" input voltage		0	—	0.2	V

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, Ta = $-20 \sim +75^{\circ}$ C)

Symbol	Parameter	Test conditions	Limits			Linit
			min	typ*	max	Unit
IS (leak) #	Supply leak current	VS = 50V, VI = 0.2V	—	—	100	μA
VCE (sat)	Collector-emitter saturation voltage	Vs = 10V, VI = 2.4V, IO = -350mA	—	1.75	2.4	V
		Vs = 10V, VI = 2.4V, IO = -100mA	—	1.50	2.0	
li	Input current	VI = 5V	—	0.48	0.75	mA
		VI = 25V	—	2.8	4.7	
Is	Supply current	Vs = 50V, VI = 5V (all input)	_	5.6	15.0	mA
VF	Clamping diode forward voltage	IF = -350mA	—	-1.2	-2.4	V
IR #	Clamping diode reverse current	VR = 50V	—	—	100	μA

* : The typical values are those measured under ambient temperature (Ta) of 25°C. There is no guarantee that these values are obtained under any conditions.
 # : Unused I/O pins must be connected to GND.

SWITCHING CHARACTERISTICS (Unless otherwise noted, Ta = 25°C)

Symbol	Parameter	Test conditions	Limits			1.1.0.14
			min	typ	max	
ton	Turn-on time		_	110	_	ns
toff	Turn-off time	$O_L = 15PF(note T)$		5200	_	ns

NOTE 1 TEST CIRCUIT

- (1) Pulse generator (PG) characteristics : PRR = 1kHz, tw = 10 μ s, tr = 6ns, tf = 6ns, Zo = 50 Ω VI = 0 to 2.4V
- (2) Input-output conditions : $RL = 30\Omega$, VS = 10V
- (3) Electrostatic capacity CL includes floating capacitance at connections and input capacitance at probes

TYPICAL CHARACTERISTICS

TIMING DIAGRAM

Output saturation voltage VCE (sat) (V)

DIP

以上信息仅供参考.如需帮助联系客服人员。谢谢 XINLUDA

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Darlington Transistors category:

Click to view products by XINLUDA manufacturer:

Other Similar products are found below :

 281287X
 SMMBT6427LT1G
 2N7371
 BDV64B
 JANTXV2N6287
 028710A
 SMMBTA64LT1G
 2N6350
 2SB1214-TL-E

 SMMBTA14LT1G
 SBSP52T1G
 NJVMJD117T4G
 Jantx2N6058
 2N6353
 LB1205-L-E
 500-00005
 2N6053
 NJVMJD112G
 Jan2N6350

 Jantx2N6352
 Jantx2N6350
 BULN2803LVS
 ULN2001N
 2SB1383
 2SB1560
 2SB852KT146B
 TIP112TU
 TIP122TU
 BCV27
 MMBTA13

 TP
 MMBTA14-TP
 MMSTA28T146
 BSP50H6327XTSA1
 KSH122TF
 NTE2557
 NJVNJD35N04T4G
 TIP115
 MPSA29-D26Z
 MJD127T4

 FJB102TM
 BCV26E6327HTSA1
 BCV46E6327HTSA1
 BCV47E6327HTSA1
 BSP61H6327XTSA1
 BU941ZPFI
 2SB1316TL
 2SD1980TL

 NTE2350
 NTE245
 NTE245
 NTE246
 ME246
 ME246
 ME246