－Very Low Power Consumption
1 mW Typ at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
－Capable of Operation in Astable Mode
－CMOS Output Capable of Swinging Rail to Rail
－High Output－Current Capability
Sink 100 mA Typ
Source 10 mA Typ
－Output Fully Compatible With CMOS，TTL， and MOS
－Low Supply Current Reduces Spikes During Output Transitions
－Single－Supply Operation From 1 V to 15 V
functional block diagram


RESET can override TRIG，which can override THRES．


## description

The XDXL551 is a monolithic timing circuit fabricated using LinCMOS ${ }^{\text {TM }}$ process．The timer is fully compatible with CMOS，TTL，and MOS logic and operates at frequencies up to 2 MHz ．Compared to the XL555 timer，this device uses smaller timing capacitors because of its high input impedance．As a result， more accurate time delays and oscillations are possible．Power consumption is low across the full range of power supply voltage．

Like the XL555，the XDXL551 has a trigger level equal to approximately one－third of the supply voltage and athreshold level equal to approximately two－thirds of the supply voltage．These levels can be altered by use ofthe control voltage terminal（CONT）．When the trigger input（TRIG）falls below the trigger level，the flip－flop isset and the output goes high．If TRIG is above the trigger level and the threshold input（THRES）is above thethreshold level，the flip－flop is reset and the output is low．The reset input（RESET）can override all other inputsand can be used to initiate a new timing cycle．If RESET is low，the flip－flop is reset and the output is low．Whenever the output is low，a low－impedance path is provided between DISCH and GND．All unused inputsshould be tied to an appropriate logic level to prevent false triggering．

While the CMOS output is capable of sinking over 100 mA and sourcing over 10 mA ，the XDXL551 exhibits greatlyreduced supply－current spikes during output transitions．This minimizes the need for the large decouplingcapacitors required by the XL555．
The XDXL551C is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ．

FUNCTION TABLE

| RESET <br> vOLTAGE $\dagger$ | TRIGGER <br> vOLTAGE $\dagger$ | THRESHOLD <br> VOLTAGE $\dagger$ | OUTPUT | DISCHARGE <br> SWITCH |
| :---: | :---: | :---: | :---: | :---: |
| $<$ MIN | Irrelevant | Irrelevant | Low | On |
| $>$ MAX | $<$ MIN | Irrelevant | High | Off |
| $>$ MAX | $>$ MAX | $>$ MAX | Low | On |
| $>M A X$ | $>M A X$ | $<M I N$ | As previously established |  |

$\dagger$ For conditions shown as MIN or MAX, use the appropriate value specified under electrical characteristics.

## XL551 chip information

This chip, when properly assembled, displays characteristics similar to the XL551. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.


RESET can override TRIG, which can override THRES.


## absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\dagger$

| pply voltage, $\mathrm{V}_{\text {DD }}$ (see Note 1) | 18 V |
| :---: | :---: |
| Input voltage range, $\mathrm{V}_{\mathrm{I}}$ (any input) | -0.3 to $\mathrm{V}_{\mathrm{DD}}$ |
| Sink current, discharge or output | 150 mA |
| Source current, output, Io | 15 mA |
| Continuous total power dissipation | See Dissipation Rating Table |
| Operating free-air temperature range | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |
| Storage temperature range | $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ |
| Lead temperature 1,6 mm (1/16 inch) | ... $260^{\circ} \mathrm{C}$ |

$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values are with respect to network GND.
DISSIPATION RATING TABLE

| PACKAGE | $\mathbf{T}_{\mathbf{A}} \leq \mathbf{2 5}{ }^{\circ} \mathrm{C}$ <br> POWER RATING | DERATING FACTOR <br> ABOVE $\mathbf{T A}_{\mathbf{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$ | $\mathbf{T}_{\mathbf{A}}=70^{\circ} \mathbf{C}$ <br> POWER RATING |
| :---: | :---: | :---: | :---: |
| D | 725 mW | $5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ | 464 mW |

recommended operating conditions

|  | MIN | MAX | UNIT |
| :---: | :---: | :---: | :---: |
| Supply voltage, $\mathrm{V}_{\text {DD }}$ | 1 | 15 | V |
| Operating free-air temperature range, $\mathrm{T}_{\mathrm{A}}$ | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |

XD551 DI P8
XL551 SOP8
electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{DD}}=1 \mathrm{~V}$

|  | PARAMETER | TEST CONDITIONS | $\mathrm{T}_{\text {A }}{ }^{\text {d }}$ | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VIT | Threshold voltage |  | $25^{\circ} \mathrm{C}$ | 0.475 | 0.67 | 0.85 | V |
|  |  |  | Full range | 0.45 |  | 0.875 |  |
| IIT | Threshold current |  | $25^{\circ} \mathrm{C}$ |  | 10 |  | pA |
|  |  |  | $70^{\circ} \mathrm{C}$ |  | 75 |  |  |
| $\mathrm{V}_{\text {I(TRIG }}$ | Trigger voltage |  | $25^{\circ} \mathrm{C}$ | 0.15 | 0.33 | 0.425 | V |
|  |  |  | Full range | 0.1 |  | 0.45 |  |
| I/(TRIG) | Trigger current |  | $25^{\circ} \mathrm{C}$ |  | 10 |  | pA |
|  |  |  | $70^{\circ} \mathrm{C}$ |  | 75 |  |  |
| $V_{l}$ (RESET) | Reset voltage |  | $25^{\circ} \mathrm{C}$ | 0.4 | 0.7 | 1 | V |
|  |  |  | Full range | 0.3 |  | 1 |  |
| I/(RESET) | Reset current |  | $25^{\circ} \mathrm{C}$ |  | 10 |  | pA |
|  |  |  | $70^{\circ} \mathrm{C}$ |  | 75 |  |  |
|  | Control voltage (open circuit) as a percentage of supply voltage |  | $70^{\circ} \mathrm{C}$ |  | 66.7\% |  |  |
| Discharge switch on-stage voltage |  | $\mathrm{l} \mathrm{OL}=100 \mu \mathrm{~A}$ | $25^{\circ} \mathrm{C}$ |  | 0.02 | 0.15 | V |
|  |  | Full range |  |  | 0.2 |  |
| Discharge switch off-stage voltage |  |  |  | $25^{\circ} \mathrm{C}$ |  | 0.1 |  | nA |
|  |  |  | $70^{\circ} \mathrm{C}$ |  | 0.5 |  |  |  |
| VOH | High-level output voltage | $\mathrm{IOH}=-10 \mu \mathrm{~A}$ | $25^{\circ} \mathrm{C}$ | 0.6 | 0.98 |  | V |  |
|  |  |  | Full range | 0.6 |  |  |  |  |
| VOL | Low-level output voltage | $\mathrm{IOL}=100 \mu \mathrm{~A}$ | $25^{\circ} \mathrm{C}$ |  | 0.03 | 0.2 | V |  |
|  |  |  | Full range |  |  | 0.25 |  |  |
| IDD | Supply current | See Note 2 | $25^{\circ} \mathrm{C}$ |  | 15 | 100 | $\mu \mathrm{A}$ |  |
|  |  |  | Full range |  |  | 150 |  |  |

$\dagger$ Full range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
NOTE 2: These values apply for the expected operating configurations in which THRES is connected directly to DISCH or to TRIG.

XD551 DI P8

## electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{DD}}=2 \mathrm{~V}$

|  | PARAMETER | TEST CONDITIONS | $\mathrm{T}_{\mathbf{A}}{ }^{\text { }}$ | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VIT | Threshold voltage |  | $25^{\circ} \mathrm{C}$ | 0.95 | 1.33 | 1.65 | V |
|  |  |  | Full range | 0.85 |  | 1.75 |  |
| IIT | Threshold current |  | $25^{\circ} \mathrm{C}$ |  | 10 |  | pA |
|  |  |  | $70^{\circ} \mathrm{C}$ |  | 75 |  |  |
| $\mathrm{V}_{\mathrm{I}}$ (TRIG) | Trigger voltage |  | $25^{\circ} \mathrm{C}$ | 0.4 | 0.67 | 0.95 | V |
|  |  |  | Full range | 0.3 |  | 1.05 |  |
| II(TRIG) | Trigger current |  | $25^{\circ} \mathrm{C}$ |  | 10 |  | pA |
|  |  |  | $70^{\circ} \mathrm{C}$ |  | 75 |  |  |
| $V_{l(R E S E T)}$ | Reset voltage |  | $25^{\circ} \mathrm{C}$ | 0.4 | 1.1 | 1.5 | V |
|  |  |  | Full range | 0.3 |  | 1.8 |  |
| 1 I(RESET) | Reset current |  | $25^{\circ} \mathrm{C}$ |  | 10 |  | pA |
|  |  |  | $70^{\circ} \mathrm{C}$ | 75 |  |  |  |
|  | Control voltage (open circuit) as a percentage of supply voltage |  | $70^{\circ} \mathrm{C}$ |  | 66.7\% |  |  |
| Discharge switch on-stage voltage |  | $\mathrm{lOL}=1 \mathrm{~mA}$ | $25^{\circ} \mathrm{C}$ |  | 0.03 | 0.2 | V |
|  |  | Full range |  |  | 0.25 |  |
| Discharge switch off-stage voltage |  |  |  | $25^{\circ} \mathrm{C}$ |  | 0.1 |  | nA |
|  |  |  | $70^{\circ} \mathrm{C}$ |  | 0.5 |  |  |  |
| VOH | High-level output voltage | $\mathrm{IOH}=-300 \mu \mathrm{~A}$ | $25^{\circ} \mathrm{C}$ | 1.5 | 1.9 |  | V |  |
|  |  |  | Full range | 1.5 |  |  |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low-level output voltage | $\mathrm{lOL}=1 \mathrm{~mA}$ | $25^{\circ} \mathrm{C}$ |  | 0.07 | 0.3 | V |  |
|  |  |  | Full range |  |  | 0.35 |  |  |
| IDD | Supply current | See Note 2 | $25^{\circ} \mathrm{C}$ |  | 65 | 250 | $\mu \mathrm{A}$ |  |
|  |  |  | Full range |  |  | 400 |  |  |

$\dagger$ Full range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
NOTE 2: These values apply for the expected operating configurations in which THRES is connected directly to DISCH or to TRIG.
electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$

| PARAMETER |  | TEST CONDITIONS | $\mathrm{T}_{\mathrm{A}}{ }^{\dagger}$ | MIN | TYP | MAX | $\frac{\text { UNIT }}{\mathrm{V}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VIT | Threshold voltage |  | $25^{\circ} \mathrm{C}$ | 2.8 | 3.3 | 3.8 |  |
|  |  |  | Full range | 2.7 |  | 3.9 |  |
| IIT | Threshold current |  | $25^{\circ} \mathrm{C}$ |  | 10 |  | pA |
|  |  |  | $70^{\circ} \mathrm{C}$ |  | 75 |  |  |
| $\mathrm{V}_{\text {I(TRIG }}$ | Trigger voltage |  | $25^{\circ} \mathrm{C}$ | 1.36 | 1.66 | 1.96 | V |
|  |  |  | Full range | 1.26 |  | 2.06 |  |
| II(TRIG) | Trigger current |  | $25^{\circ} \mathrm{C}$ |  | 10 |  | pA |
|  |  |  | $70^{\circ} \mathrm{C}$ |  | 75 |  |  |
| $V_{\text {I(RESET }}$ | Reset voltage |  | $25^{\circ} \mathrm{C}$ | 0.4 | 1.1 | 1.5 | V |
|  |  |  | Full range | 0.3 |  | 1.8 |  |
| I/(RESET) | Reset current |  | $25^{\circ} \mathrm{C}$ |  | 10 |  | pA |
|  |  |  | $70^{\circ} \mathrm{C}$ |  | 75 |  |  |
|  | Control voltage (open circuit) as a percentage of supply voltage |  | $70^{\circ} \mathrm{C}$ |  | 66.7\% |  |  |
| Discharge switch on-stage voltage |  | $\mathrm{lOL}=10 \mathrm{~mA}$ | $25^{\circ} \mathrm{C}$ |  | 0.14 | 0.5 | V |
|  |  | Full range |  |  | 0.6 |  |
| Discharge switch off-stage voltage |  |  |  | $25^{\circ} \mathrm{C}$ |  | 0.1 |  | nA |
|  |  |  | $70^{\circ} \mathrm{C}$ |  | 0.5 |  |  |  |
| V OH | High-level output voltage | $\mathrm{IOH}=-1 \mathrm{~mA}$ | $25^{\circ} \mathrm{C}$ | 4.1 | 4.8 |  | V |  |
|  |  |  | Full range | 4.1 |  |  |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low-level output voltage | $\mathrm{l} \mathrm{OL}=8 \mathrm{~mA}$ | $25^{\circ} \mathrm{C}$ |  | 0.21 | 0.4 | V |  |
|  |  |  | Full range |  |  | 0.5 |  |  |
|  |  | $\mathrm{lOL}=5 \mathrm{~mA}$ | $25^{\circ} \mathrm{C}$ |  | 0.13 | 0.3 |  |  |
|  |  |  | Full range |  |  | 0.4 |  |  |
|  |  | $\mathrm{lOL}=3.2 \mathrm{~mA}$ | $25^{\circ} \mathrm{C}$ |  | 0.08 | 0.3 |  |  |
|  |  |  | Full range |  |  | 0.35 |  |  |
| IDD | Supply current | See Note 2 | $25^{\circ} \mathrm{C}$ |  | 170 | 350 | $\mu \mathrm{A}$ |  |
|  |  |  | Full range |  |  | 500 |  |  |

$\dagger$ Full range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
NOTE 2: These values apply for the expected operating configurations in which THRES is connected directly to DISCH or to TRIG.
electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$

$\dagger$ Full range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
NOTE 2: These values apply for the expected operating configurations in which THRES is connected directly to DISCH or to TRIG.
operating characteristics, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

|  | PARAMETER | TEST CONDITIONS |  | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Initial error of timing interval $\ddagger$ | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \text { to } 15 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{T}}=0.1 \mu \mathrm{~F}, \end{aligned}$ | $R_{A}=R_{B}=1 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$, See Note 3 |  | 1\% | 3\% |  |
|  | Supply voltage sensitivity of timing interval |  |  |  | 0.1 | 0.5 | \%/V |
| $\mathrm{t}_{\mathrm{r}}$ | Rise time, output pulse | $\mathrm{R}_{\mathrm{L}}=10 \mathrm{M} \Omega$, | $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ |  | 20 | 75 | ns |
| $\mathrm{tf}_{f}$ | Fall time, output pulse |  |  |  | 15 | 60 |  |
| ${ }^{\text {f max }}$ | Maximum frequency in astable mode | $\begin{aligned} & \mathrm{R}_{\mathrm{A}}=470 \Omega, \\ & \mathrm{C}_{\mathrm{T}}=200 \mathrm{pF} \end{aligned}$ | $\mathrm{R}_{\mathrm{B}}=200 \Omega,$ <br> See Note 3 | 1.2 | 1.8 |  | MHz |

$\ddagger$ Timing interval error is defined as the difference between the measured value and the average value of a random sample from each process run.
NOTE 3: $R_{A}, R_{B}$, and $C_{T}$ are as defined in Figure 3.
electrical characteristics at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| PARAMETER |  | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IT }}$ | Threshold voltage |  | 2.8 | 3.3 | 3.8 | V |
| IIT | Threshold current |  |  | 10 |  | pA |
| $\mathrm{V}_{\text {I (TRIG) }}$ | Trigger voltage |  | 1.36 | 1.66 | 1.96 | V |
| II(TRIG) | Trigger current |  |  | 10 |  | pA |
| $\mathrm{V}_{1}$ (RESET) | Reset voltage |  | 0.4 | 1.1 | 1.5 | V |
| I/(RESET) | Reset current |  |  | 10 |  | pA |
|  | Control voltage (open circuit) as a percentage of supply voltage |  |  | 66.7\% |  |  |
|  | Discharge switch on-state voltage | $\mathrm{l} \mathrm{OL}=10 \mathrm{~mA}$ |  | 0.14 | 0.5 | V |
|  | Discharge switch off-state current |  |  | 0.1 |  | nA |
| $\mathrm{V}_{\mathrm{OH}}$ | High-level output voltage | $\mathrm{IOH}=-1 \mathrm{~mA}$ | 4.1 | 4.8 |  | V |
| VOL | Low-level output voltage | $\mathrm{l} \mathrm{OL}=8 \mathrm{~mA}$ |  | 0.21 | 0.4 | V |
|  |  | $\mathrm{l} \mathrm{OL}=5 \mathrm{~mA}$ |  | 0.13 | 0.3 |  |
|  |  | $\mathrm{IOL}=3.2 \mathrm{~mA}$ |  | 0.08 | 0.3 |  |
| IDD | Supply current | See Note 2 |  | 170 | 350 | $\mu \mathrm{A}$ |

NOTE 2: These values apply for the expected operating configurations in which THRES is connected directly to DISCH or to TRIG.

## DISCHARGE SWITCH ON-STATE RESISTANCE

vs
FREE-AIR TEMPERATURE


Figure 1

PROPAGATION DELAY TIMES (TO DISCHARGE OUTPUT FROM TRIGGER AND THRESHOLD SHORTED TOGETHER) vs
SUPPLY VOLTAGE

$\ddagger$ The effects of the load resistance on these values must be taken into account separately.

Figure 2

## APPLICATION INFORMATION



CIRCUIT


TRIGGER AND THRESHOLD VOLTAGE WAVEFORM

Figure 3. Astable Operation
Connecting TRIG to THRES, as shown in Figure 3, causes the timer to run as a multivibrator. The capacitor $\mathrm{C}_{\boldsymbol{T}}$ charges through $R_{A}$ and $R_{B}$ to the threshold voltage level (approximately $0.67 \mathrm{~V}_{D D}$ ) and then discharges through $R_{B}$ only to the value of the trigger voltage level (approximately $0.33 \mathrm{~V}_{\mathrm{DD}}$ ). The output is high during the charging cycle $\left(\mathrm{t}_{\mathrm{c}(\mathrm{H})}\right)$ and low during the discharge cycle $\left(\mathrm{t}_{\mathrm{C}}(\mathrm{L})\right.$ ). The duty cycle is controlled by the values of $\mathrm{R}_{\mathrm{A}}$, and $\mathrm{R}_{\mathrm{B}}$, and $\mathrm{C}_{\mathrm{T}}$, as shown in the equations below.

$$
\begin{aligned}
& { }_{t_{c(H)}} \approx C_{T}\left(R_{A}+R_{B}\right) \ln 2(\ln 2=0.693) \\
& t_{c(L)} \approx C_{T} R_{B} \ln 2 \\
& \text { Period }=t_{c(H)}+t_{c(L)} \approx C_{T}\left(R_{A}+2 R_{B}\right) \ln 2 \\
& \text { Output driver duty cycle }=\frac{t_{c(L)}}{t_{c(H)}+t_{c(L)}} \approx 1-\frac{R_{B}}{R_{A}+2 R_{B}} \\
& \text { Output waveform duty cycle }=\frac{t_{c(H)}}{t_{c(H)}+t_{c(L)}} \approx \frac{R_{B}}{R_{A}+2 R_{B}}
\end{aligned}
$$

The $0.1-\mu \mathrm{F}$ capacitor at CONT in Figure 3 decreases the period by about $10 \%$.
The formulas shown above do not allow for any propagation delay times from TRIG and THRES to DISCH. These delay times add directly to the period and create differences between calculated and actual values that increase with frequency. In addition, the internal on-state resistance $r_{\text {on }}$ during discharge adds to $R_{B}$ to provide another source of timing error in the calculation when $R_{B}$ is very low or $r_{o n}$ is very high.

## APPLICATION INFORMATION

The equations below provide better agreement with measured values.

$$
\begin{aligned}
& t_{c(H)}=C_{T}\left(R_{A}+R_{B}\right) \ln \left[3-\exp \left(\frac{-t_{P L H}}{C_{T}\left(R_{B}+r_{o n}\right)}\right)\right]+t_{P H L} \\
& t_{c(L)}=C_{T}\left(R_{B}+r_{o n}\right) \ln \left[3-\exp \left(\frac{-t_{P H L}}{C_{T}\left(R_{A}+R_{B}\right)}\right)\right]+t_{P L H}
\end{aligned}
$$

These equations and those given earlier are similar in that a time constant is multiplied by the logarithm of a number or function. The limit values of the logarithmic terms must be between In 2 at low frequencies and $\ln 3$ at extremely high frequencies. For a duty cycle close to $50 \%$, an appropriate constant for the logarithmic terms can be substituted with good results. Duty cycles less than $50 \% \frac{t_{c(H)}}{t_{c(H)}+t_{c(L)}}$ require that $\frac{t_{c(H)}}{t_{c(L)}}<1$ and possibly $R_{A} \leq r_{\text {on }}$. These conditions can be difficult to obtain.

In monostable applications, the trip point of the trigger input can be set by a voltage applied to CONT. An input voltage between $10 \%$ and $80 \%$ of the supply voltage from a resistor divider with at least $500-\mu \mathrm{A}$ bias provides good results.


NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.

Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $.006[0.15]$ per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
$P(R-P D I P-T 8)$
PLASTIC DUAL－IN－LINE PACKAGE
DIP


NOTES：A．All linear dimensions are in inches（millimeters）．
B．This drawing is subject to change without notice．
C．Falls within JEDEC MS－001 variation BA．

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Timers \& Support Products category.
Click to view products by XINLUDA manufacturer:
Other Similar products are found below :
NLV14541BDR2G MIC1557YD5-TR Z84C3010AEG MIC1555YMU-TR NLV14541BDG MAX7375AXR365+T MIC1555YD5-TR PT8A2515TAEX PT8A2514APE S-35710M01I-E8T3U LTC6992CDCB-2\#TRMPBF SY87700ALZG LM555CM LMC555CM FT8010UMX FTL11639UCX MAX809TEUR+ MAX809MEUR+ MAX7375AXR185+T MAX7375AXR105+T MAX3634ETM+ FTL75939UCX NA555S-13 NB7N017MMNG NJM555D 82P33731ABAG TLC555MJG MAX7375AXR405+T Z84C3006PEG SA555S13 MAX7375AXR805T IS82C54-10Z96 SY87701ALHG MCP130-475HI/TO S-1410G28-K8T2U4 VSC8115XYA-05-T VSC8115XYA-06-T LTC6992CS6-3\#TRMPBF NLV14541BDTR2G 636058D S-1410H30-K8T2U4 S-35710C01I-K8T2U S-35770E01I-K8T2U S-35720C01I-K8T2U S-35720C02I-K8T2U S-35730C01I-K8T2U S-35740C01I-K8T2U ALD1502SAL ALD2502SBL ALD4501PEL

