WWW．XINLUDA．COM 信路达
－Wide Operating Voltage Range of 2 V to 6 V
－High－Current 3－State True Outputs Can Drive Up To 15 LSTTL Loads
－Low Power Consumption，80－$\mu \mathrm{A}$ Max Icc
－Typical $\mathrm{t}_{\mathrm{pd}}=13 \mathrm{~ns}$
－ $\pm 6-\mathrm{mA}$ Output Drive at 5 V
－Low Input Current of $1 \mu \mathrm{~A}$ Max
－Eight High－Current Latches in a Single Package
－Full Parallel Access for Loading

74HC373
（TOP VIEW）

description／ordering information

These 8 －bit latches feature 3 －state outputs designed specifically for driving highly capacitive or relatively low－impedance loads．They are particularly suitable for implementing buffer registers，I／O ports，bidirectional bus drivers，and working registers．
The eight latches of the 74HC373 devices are transparent D－type latches．While the latch－enable（LE）input is high，the Q outputs follow the data（D）inputs．When LE is taken low，the Q outputs are latched at the levels that were set up at the D inputs．

description/ordering information (continued)

An output-enable ($\overline{\mathrm{OE})}$) input places the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.
$\overline{\mathrm{OE}}$ does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are off.

FUNCTION TABLE
(each latch)

INPUTS			OUTPUT
$\mathbf{~ O E ~}$	LE	D	Q
L	H	H	H
L	H	L	L
L	L	X	Q_{0}
H	X	X	Z

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

[^0]recommended operating conditions (see Note 3)

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		V_{CC}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			74HC373		UNIT	
			MIN	TYP	MAX	MIN	MAX			
V_{OH}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{IOH}=-20 \mu \mathrm{~A}$		2 V	1.9	1.998		1.9		V
			4.5 V	4.4	4.499		4.4			
			6 V	5.9	5.999		5.9			
		$\mathrm{OH}=-6 \mathrm{~mA}$	4.5 V	3.98	4.3		3.84			
		$\mathrm{IOH}=-7.8 \mathrm{~mA}$	6 V	5.48	5.8		5.34			
VOL	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{l} \mathrm{OL}=20 \mu \mathrm{~A}$	2 V		0.002	0.1		0.1	V	
			4.5 V		0.001	0.1		0.1		
			6 V		0.001	0.1		0.1		
		$\mathrm{IOL}=6 \mathrm{~mA}$	4.5 V		0.17	0.26		0.33		
		$\mathrm{IOL}=7.8 \mathrm{~mA}$	6 V		0.15	0.26		0.33		
1	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0		6 V		± 0.1	± 100		± 1000	nA	
l O	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or 0		6 V		± 0.01	± 0.5		± 5	$\mu \mathrm{A}$	
ICC	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or 0 ,	$\mathrm{I} \mathrm{O}=0$	6 V			8		80	$\mu \mathrm{A}$	
C_{i}			2 V to 6 V		3	10		10	pF	

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{C C}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			74HC373	UNIT
				MIN	TYP	MAX	MIN MAX	
${ }^{\text {tpd }}$	D	Q	2 V		58	150	190	ns
			4.5 V		15	30	38	
			6 V		13	26	32	
	LE	Any Q	2 V		73	175	220	
			4.5 V		18	35	44	
			6 V		15	30	38	
ten	$\overline{\mathrm{OE}}$	Any Q	2 V		65	150	190	ns
			4.5 V		17	30	38	
			6 V		14	26	32	
${ }^{\text {d }}$ dis	$\overline{O E}$	Any Q	2 V		50	150	190	ns
			4.5 V		15	30	38	
			6 V		13	26	32	
t_{t}		Any Q	2 V		28	60	75	ns
			4.5 V		8	12	15	
			6 V		6	10	13	

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	$V_{\text {cc }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			74HC373		UNIT
				MIN	TYP	MAX	MIN	MAX	
$t_{\text {tpd }}$	D	Q	2 V		82	200		250	ns
			4.5 V		22	40		50	
			6 V		19	34		43	
	LE	Any Q	2 V		100	225		285	
			4.5 V		24	45		57	
			6 V		20	38		48	
ten	$\overline{\mathrm{OE}}$	Any Q	2 V		90	200		250	ns
			4.5 V		23	40		50	
			6 V		19	34		43	
t_{t}		Any Q	2 V		45	210		265	ns
			4.5 V		17	42		53	
			6 V		13	36		45	

operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS	TYP	UNIT
C_{pd}	Power dissipation capacitance per latch	No load	100	pF

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

VOLTAGE WAVEFORMS PULSE DURATIONS

VOLTAGE WAVEFORMS
PROPAGATION DELAY AND OUTPUT TRANSITION TIMES

PARAMETER		R_{L}	C_{L}	S1	S2
ten	tPZH	$1 \mathrm{k} \Omega$		Open	Closed
	tPZL			Closed	Open
$\mathrm{t}_{\text {dis }}$	tPHZ	$1 \mathrm{k} \Omega$	50 pF	Open	Closed
	tPLZ			Closed	Open
${ }_{\text {tpd }}$ or t_{t}		-		Open	Open

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS

NOTES: A. C_{L} includes probe and test-fixture capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$.
D. The outputs are measured one at a time with one input transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. $t_{P Z L}$ and $t_{P Z H}$ are the same as ten.
G. $\mathrm{t}_{\mathrm{PLH}}$ and $\mathrm{t}_{\mathrm{PHL}}$ are the same as t_{pd}.

Figure 1. Load Circuit and Voltage Waveforms

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Latches category:
Click to view products by XINLUDA manufacturer:

Other Similar products are found below :
M38510/75403BSA 634674X 634752C ML4875CS-5 54FCT573ATDB 401639B 027063C 029314R 54FCT573CTLB NLV14043BDR2G 716165RB 74F373DW 74LVC373ADTR2G 74LVC573ADTR2G NL17SG373DFT2G NLV14044BDG 5962-8863901RA 5962-88639012A 2.PM30.006-30 MIC59P50YV NLV14042BDR2G 4.401.001 NLV14044BDR2G 2.L18.001-21 2.PM18.002-18 2.PM18.006-18 2.T18.00121 2.T18.002-18 2.T18.006-18 CQ/AA-KEY CQ/A-M22X1,5-45-28 CQ/A-M22X1,5-45-32 M22-2-D5-2-21-01-P CY74FCT2373CTSOC 421283 74ALVCH16260PAG 74FCT373CTQG MM74HC373WM MM74HC573MTCX MM74HC573WM 74LCX373MTC 74LVT16373MTDX 74VHC373MX KLD5.001-02 KLT9.001-02 Z-0233-827-15 74AHCT573D.112 74FCT16373CTPVG8 74FCT573ATQG 74LCX16373MTDX

[^0]: Supply voltage range, V_{CC} \qquad -0.5 V to 7 V
 Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right.$ or $\mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}}$) (see Note 1) $\pm 20 \mathrm{~mA}$ Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right.$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$) (see Note 1) $\pm 20 \mathrm{~mA}$

 Package thermal impedance, θ_{JA} (see Note 2) 74HC373 ... 690 C / W
 Storage temperature range, $T_{\text {stg }}$
 $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
 \dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
 2. The package thermal impedance is calculated in accordance with JESD 51-7.

