1 Features

－Wide Operating Voltage Range from 2 V to 6 V
－High－Current 3－State Outputs Drive Bus Lines Directly up to 15 LSTTL Loads
－Low Power Consumption：80－$\mu \mathrm{A}$ Maximum I I_{CC}
－Typical $\mathrm{t}_{\mathrm{pd}}=21 \mathrm{~ns}$
－± 6－mA Output Drive at 5 V
－Low Input Current： $1 \mu \mathrm{~A}$（Maximum）
－Bus－Structured Pinout

2 Applications

－Buffer Registers
－Bidirectional Bus Drivers
－Working Registers

3 Description

The 74 HC 573 devices are octal transparent D－type latches that feature 3 －state outputs designed specifically for driving highly capacitive or relatively low－impedance loads．They are particularly suitable for implementing buffer registers，I／O ports， bidirectional bus drivers，and working registers．
While the latch－enable（LE）input is high，the Q outputs respond to the data（D）inputs．When LE is low，the outputs are latched to retain the data that was set up．

4 Logic Diagram（Positive Logic）

5 Pin Configuration and Functions

Pin Functions

PIN		I/O	DESCRIPTION
NO.	NAME		
1	$\overline{\mathrm{OE}}$	1	Output enable
2	1D	1	1D input
3	2D	1	2D input
4	3D	1	3D input
5	4D	1	4D input
6	5D	1	5D input
7	6D	1	6D input
8	7D	1	7D input
9	8D	1	8D input
10	GND	-	Ground
11	LE	1	Latch enable input
12	8Q	0	8Q output
13	7Q	0	7Q output
14	6Q	0	6Q output
15	5Q	0	5Q output
16	4Q	0	4Q output
17	3Q	0	3Q output
18	2Q	0	2Q output
19	1Q	0	1Q output
20	V_{CC}	-	Power pin

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

			MIN	MAX	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage		-0.5	7	V
I_{IK}	Input clamp current ${ }^{(2)}$	$\mathrm{V}_{1}<0$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}$		± 20	mA
lok	Output clamp current ${ }^{(2)}$	$\mathrm{V}_{\mathrm{O}}<0$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$		± 20	mA
10	Continuous output current	$\mathrm{V}_{\mathrm{O}}=0$ to V_{CC}		± 35	mA
	Continuous current through V_{CC} or GND			± 70	mA
T_{J}	Junction temperature			150	${ }^{\circ} \mathrm{C}$
	Storage temperature		-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

6.2 ESD Ratings

$\mathrm{V}_{(E S D)} \quad$ Electrostatic discharge		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ${ }^{(1)}$	VALUE
UNIT			
	Charged-device model (CDM), per JEDEC specification JESD22-C101 ${ }^{(2)}$	± 3500	V

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

			MIN	NOM MAX	UNIT
V_{CC}	Supply voltage		2	56	V
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	1.5		
V_{IH}	High-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15		V
		$\mathrm{V}_{C C}=6 \mathrm{~V}$	4.2		
		$\mathrm{V}_{C C}=2 \mathrm{~V}$		0.5	
V_{IL}	Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		1.35	V
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$		1.8	
V_{1}	Input voltage		0	V_{CC}	V
V_{O}	Output voltage		0	V_{CC}	V
		$\mathrm{V}_{C C}=2 \mathrm{~V}$		1000	
t_{t}	Input transition (rise and fall) time	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		500	ns
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$		400	
T_{A}	Operating free-air temperature	74HC573	-40	85	${ }^{\circ} \mathrm{C}$

6.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		74HC573		UNIT
		$\begin{gathered} \text { DW } \\ \text { (SOIC) } \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \text { (PDIP) } \end{gathered}$	
		20 PINS	20 PINS	
$\mathrm{R}_{\theta \mathrm{JA}}$	Junction-to-ambient thermal resistance	78.3	49.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \text { JC(top) }}$	Junction-to-case (top) thermal resistance	42.8	35.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \text { JB }}$	Junction-to-board thermal resistance	46.2	30	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\psi_{\text {JT }}$	Junction-to-top characterization parameter	18	22.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ψ_{JB}	Junction-to-board characterization parameter	45.7	29.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT		
V_{OH}		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or V_{IL}	$\mathrm{I}_{\mathrm{OH}}=-20 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	1.9	1.998		V		
				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	4.4	4.499				
				$\mathrm{V}_{C C}=6 \mathrm{~V}$	5.9	5.999				
			$\mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3.98	4.3				
				74HC573	3.84					
			$\mathrm{l}_{\mathrm{OH}}=-7.8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5.48	5.8				
				74HC573	5.34					
$\mathrm{V}_{\text {OL }}$		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or V_{IL}	$\mathrm{l}_{\mathrm{OL}}=20 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$		0.002	0.1	V		
				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		0.001	0.1			
				$\mathrm{V}_{\text {CC }}=6 \mathrm{~V}$		0.001	0.1			
			$\mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.17	0.26			
				74HC573			0.33			
			$\mathrm{l}_{\mathrm{OL}}=7.8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.15	0.26			
				74HC573			0.33			
1		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or $0, \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		± 0.1	± 100	nA		
		74HC573			± 1000					
loz				$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or $0, \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		± 0.01	± 0.5	$\mu \mathrm{A}$
		74HC573					± 5			
Icc		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or $0, \mathrm{l}_{\mathrm{O}}=0, \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			8	$\mu \mathrm{A}$		
		74HC573			80					
C_{i}				$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$ to 6 V				3	10	pF
C_{pd}	Power dissipation capacitance per latch			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, no load			50			pF

6.6 Timing Requirements

over operating free-air temperature range (unless otherwise noted)

6.7 Switching Characteristics

over operating free-air temperature range (unless otherwise noted; see Figure 2)

PARAMETER	TEST CONDITIONS			MIN TYP	MAX	UNIT
t_{pd}	$C_{L}=50 \mathrm{pF}$, from D (input) to Q (output)	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	77	175	ns
			74HC573		220	
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	26	35	
			74HC573	44		
		$\mathrm{V}_{C C}=6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	23	30	
			74HC573	38		
	$C_{L}=50 \mathrm{pF}$, from LE (input) to any Q (output)	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	87 175 220		
			74HC573			
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	27	35	
			74HC573	44		
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	23	30	
			74HC573	38		

Switching Characteristics (continued)

over operating free-air temperature range (unless otherwise noted; see Figure 2)

PARAMETER	TEST CONDITIONS			MIN TYP	MAX	UNIT
ten	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, from $\overline{\mathrm{OE}}$ (input) to any Q (output)	$\mathrm{V}_{C C}=2 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	68	150	ns
			74HC573		190	
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	24	30	
			74HC573		38	
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	21	26	
			74HC573		32	
$\mathrm{t}_{\text {dis }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, from $\overline{\mathrm{OE}}$ (input) to any Q (output)	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	47	150	ns
			74HC573		190	
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	23	30	
			74HC573		38	
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	21	26	
			74HC573		32	
t_{t}	$C_{L}=50 \mathrm{pF}$ to any Q (output)	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	28	60	ns
			74HC573		75	
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	8	12	
			74HC573		15	
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	6	10	
			74HC573		13	
t_{pd}	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \text {, from } \mathrm{D} \text { (input) } \\ & \text { to } \mathrm{Q} \text { (output) } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	95	200	ns
			74HC573		250	
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	33	40	
			74HC573		50	
		$\mathrm{V}_{C C}=6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	21	34	
			74HC573	43		
	$C_{\mathrm{L}}=150 \mathrm{pF}$, from LE (input) to any Q (output)	$\mathrm{V}_{C C}=2 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	103	225	
			74HC573		285	
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	33	45	
			74HC573		57	
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	29	40	
			74HC573		50	

Switching Characteristics (continued)

over operating free-air temperature range (unless otherwise noted; see Figure 2)

PARAMETER	TEST CONDITIONS			MIN TYP	MAX	UNIT
$\mathrm{t}_{\text {en }}$	$C_{L}=150 \mathrm{pF}$, from $\overline{\mathrm{OE}}$ (input) to any Q (output)	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	85	200	ns
			74HC573		250	
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	29	40	
			74HC573	50		
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	26	34	
			74HC573		43	
t_{t}	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$ to any Q (output)	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	60	210	ns
			74HC573		265	
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	17	42	
			74HC573	53		
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	14	36	
			74HC573	45		

6.8 Typical Characteristics

Figure 1. Maximum Propagation Delay Curves

7 Parameter Measurement Information

LOAD CIRCUIT

VOLTAGE WAVEFORMS

PROPAGATION DELAY AND OUTPUT TRANSITION TIMES

PARAMETER		RL	C_{L}	S1	S2
$t_{\text {en }}$	tPZH	$1 \mathrm{k} \Omega$	$\begin{gathered} 50 \mathrm{pF} \\ \text { or } \\ 150 \mathrm{pF} \end{gathered}$	Open	Closed
	tPZL			Closed	Open
$\mathrm{t}_{\text {dis }}$	tPHZ	$1 \mathrm{k} \Omega$	50 pF	Open	Closed
	tPLZ			Closed	Open
$t_{p d}$ or t_{t}		--	$\begin{gathered} 50 \mathrm{pF} \\ \text { or } \\ 150 \mathrm{pF} \end{gathered}$	Open	Open

VOLTAGE WAVEFORMS
SETUP AND HOLD AND INPUT RISE AND FALL TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS
A. C_{L} includes probe and test-fixture capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$.
D. The outputs are measured one at a time with one input transition per measurement.
E. $t_{\text {PLZ }}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. $\quad t_{\text {PZL }}$ and $t_{\text {PZH }}$ are the same as $t_{e n}$.
G. $t_{P L H}$ and $t_{P H L}$ are the same as $t_{p d}$.

Figure 2. Load Circuit and Voltage Waveforms

XD74HC573 DIP－20
 XL74HC573 SOP－20

8 Detailed Description

8．1 Overview

The 74HC573 devices are octal transparent D－type latches that feature 3－state outputs designed specifically for driving highly capacitive or relatively low－impedance loads．A buffered output－enable（OE）input can be used to place the eight outputs in either a normal logic state（high or low logic levels）or the high－impedance state．In the high－impedance state，the outputs neither load nor drive the bus lines significantly．The high－impedance state and increased drive provide the capability to drive bus lines without interface or pullup components．
To ensure the high－impedance state during power up or power down，$\overline{\mathrm{OE}}$ must be tied to V_{CC} through a pullup resistor；the minimum value of the resistor is determined by the current－sinking capability of the driver．
$\overline{\mathrm{OE}}$ does not affect the internal operations of the latches．Old data can be retained or new data can be entered while the outputs are in the high－impedance state．

8．2 Functional Block Diagram

Figure 3．Logic Diagram（Positive Logic）

8．3 Feature Description

The 74 HC 573 is a high current 3 －state output device which can drive bus lines directly or up to 15 LSTTL loads．It has low power consumption up to $80-\mu \mathrm{A}$ maximum I_{Cc} ．The high speed CMOS family has typical propagation delay of 21 ns with $\pm 6-\mathrm{mA}$ output drive at 5 V ．The input leakage current is a very low $1-\mu \mathrm{A}$ （maximum）．

8．4 Device Functional Modes

Table 1 lists the functional modes of the 74 HC 573
Table 1．Function Table（Each Latch）

INPUTS			OUTPUT
$\overline{\mathbf{O E}}$	$\mathbf{L E}$	\mathbf{D}	
L	H	H	H
L	H	L	L
L	L	X	Q_{0}
H	X	X	$\mathrm{Hi}-\mathrm{Z}$

以上信息仅供参考．如需帮助联系客服人员。谢谢 XINLUDA

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Buffers \& Line Drivers category:
Click to view products by XINLUDA manufacturer:

Other Similar products are found below :
5962-9217601MSA 634810D 875140G HEF4022BP HEF4043BP NL17SG125DFT2G NL17SZ126P5T5G NLU1GT126CMUTCG NLU3G16AMX1TCG NLV27WZ125USG MC74HCT365ADTR2G BCM6306KMLG 54FCT240CTDB Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB 065312DB 091056E 098456D NL17SG07DFT2G NL17SG17DFT2G NL17SG34DFT2G NL17SZ07P5T5G NL17SZ125P5T5G NLU1GT126AMUTCG NLV27WZ16DFT2G 5962-8982101PA 5962-9052201PA 74LVC07ADR2G MC74VHC1G125DFT1G NL17SH17P5T5G NL17SZ125CMUTCG NLV17SZ07DFT2G NLV37WZ17USG NLVHCT244ADTR2G NC7WZ17FHX 74HCT126T14-13 NL17SH125P5T5G NLV14049UBDTR2G NLV37WZ07USG 74VHC541FT(BE) RHFAC244K1 74LVC1G17FW4-7 74LVC1G126FZ4-7 BCM6302KMLG 74LVC1G07FZ4-7 74LVC1G125FW4-7

