74LS147

－Encode 10－Line Decimal to 4－Line BCD
－Applications Include：
－Keyboard Encoding
－Range Selection

74LS148
－Encode 8 Data Lines to 3－Line Binary （Octal）
－Applications Include：
－n－Bit Encoding
－Code Converters and Generators

XL74LS 148 SOP16 / XD74LS 148 DIP16 / XD74LS 147 DIP16

description/ordering information

These TTL encoders feature priority decoding of the inputs to ensure that only the highest-order data line is encoded. The 74LS147 devices encode nine data lines to four-line (8-4-2-1) BCD. The implied decimal zero condition requires no input condition, as zero is encoded when all nine data lines are at a high logic level. The '148 and 'LS148 devices encode eight data lines to three-line (4-2-1) binary (octal). Cascading circuitry (enable input El and enable output EO) has been provided to allow octal expansion without the need for external circuitry. For all types, data inputs and outputs are active at the low logic level. All inputs are buffered to represent one normalized Series 54/74 or 54/74LS load, respectively.

ORDERING INFORMATION

$\mathrm{T}_{\mathbf{A}}$	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	PDIP - N	Tube	74LS148	74LS148
	SOIC - D	Tube	74LS148	74LS148
		Tape and reel	74LS148	
	SOP - NS	Tape and reel	74LS148	74LS148

FUNCTION TABLE - 74LS147

INPUTS									OUTPUTS			
1	2	3	4	5	6	7	8	9	D	C	B	A
H	H	H	H	H	H	H	H	H	H	H	H	H
X	X	X	X	X	X	X	X	L	L	H	H	L
X	X	X	X	X	X	X	L	H	L	H	H	H
X	X	X	X	X	X	L	H	H	H	L	L	L
X	X	X	X	X	L	H	H	H	H	L	L	H
X	X	X	X	L	H	H	H	H	H	L	H	L
X	X	X	L	H	H	H	H	H	H	L	H	H
X	X	L	H	H	H	H	H	H	H	H	L	L
X	L	H	H	H	H	H	H	H	H	H	L	H
L	H	H	H	H	H	H	H	H	H	H	H	L

$H=$ high logic level, $L=$ low logic level, $X=$ irrelevant
FUNCTION TABLE - 74LS148

INPUTS									OUTPUTS				
El	0	1	2	3	4	5	6	7	A2	A1	A0	GS	EO
H	X	X	X	X	X	X	X	X	H	H	H	H	H
L	H	H	H	H	H	H	H	H	H	H	H	H	L
L	X	X	X	X	X	X	X	L	L	L	L	L	H
L	X	X	X	X	X	X	L	H	L	L	H	L	H
L	X	X	X	X	X	L	H	H	L	H	L	L	H
L	X	X	X	X	L	H	H	H	L	H	H	L	H
L	X	X	X	L	H	H	H	H	H	L	L	L	H
L	X	X	L	H	H	H	H	H	H	L	H	L	H
L	X	L	H	H	H	H	H	H	H	H	L	L	H
L	L	H	H	H	H	H	H	H	H	H	H	L	H

$H=$ high logic level, $L=$ low logic level, $X=$ irrelevant

74LS147 logic diagram (positive logic)

Pin numbers shown are for $\mathrm{D}, \mathrm{J}, \mathrm{N}$, and W packages.

74LS148 logic diagram (positive logic)

Pin numbers shown are for $\mathrm{D}, \mathrm{J}, \mathrm{N}, \mathrm{NS}$, and W packages.

schematics of inputs and outputs

74LS148/74LS148

XL74LS 148 SOP16 / XD74LS 148 DIP16 / XD74LS 147 DIP16

absolute maximum ratings over operating free-air temperature (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Supply voltage, } \mathrm{V}_{\mathrm{CC}} \text { (see Note 1) .. } 7 \text {. } 7 \\
& \text { Input voltage, } \mathrm{V}_{\mathrm{I}}: 74 \mathrm{LS} 147,74 \mathrm{LS} 148 \text {... } 5.5 \mathrm{~V} \\
& \text { 74LS147,74LS148 ... } 7 \text { V } \\
& \text { Inter-emitter voltage: ' } 148 \text { only (see Note 2) .. } 5.5 \mathrm{~V} \\
& \text { Package thermal impedance } \theta_{\mathrm{JA}} \text { (see Note 3): D package ... } 73^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { N package .. } 67^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { NS package ... } 64^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { Storage temperature range, } \mathrm{T}_{\text {stg }} \\
& \dagger \text { Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and } \\
& \text { functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not } \\
& \text { implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. } \\
& \text { NOTES: 1. Voltage values, except inter-emitter voltage, are with respect to the network ground terminal. } \\
& \text { 2. This is the voltage between two emitters of a multiple-emitter transistor. For 74LS148 circuits, this rating applies between any two } \\
& \text { of the eight data lines, } 0 \text { through } 7 \text {. } \\
& \text { 3. The package thermal impedance is calculated in accordance with JESD 51-7. }
\end{aligned}
$$

recommended operating conditions (see Note 4)

	74LS			74LS			74LS			74LS			UNIT
	MIN	NOM	MAX										
$\mathrm{V}_{\text {CC }}$ Supply voltage	4.5	5	5.5	4.75	5	5.25	4.5	5	5.5	4.75	5	5.25	V
IOH High-level output current			-800			-800			-400			-400	$\mu \mathrm{A}$
IOL Low-level output current			16			16			4			8	mA
T_{A} Operating free-air temperature	-55		125	0		70	-55		125	0		70	${ }^{\circ} \mathrm{C}$

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

XL74LS 148 SOP16 / XD74LS 148 DIP16 / XD74LS 147 DIP16

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS \dagger			74LS14			74LS1		UNIT		
			MIN	TYP\#	MAX	MIN	TYP \ddagger	MAX					
V_{IH}	High-level input voltage						2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage						0.8			0.8	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$			-1.5			-1.5	V		
V_{OH}	High-level output voltage		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{IOH}=-800 \mu \mathrm{~A} \end{aligned}$	2.4	3.3		2.4	3.3		V		
V ${ }_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{IOL}=16 \mathrm{~mA} \end{aligned}$		0.2	0.4		0.2	0.4	V		
I	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1			1	mA		
IIH	High-level input current	0 input	$V_{C C}=$ MAX	$\mathrm{V}=2.4 \mathrm{~V}$						40	$\mu \mathrm{A}$		
		Any input except 0					40			80			
IIL	Low-level input current	0 input	$V_{C C}=$ MAX,	V I $=0.4 \mathrm{~V}$						-1.6	mA		
		Any input except 0					-1.6			-3.2			
los	Short-circuit output current§		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-35		-85	-35		-85	mA		
ICC	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { MAX } \\ & \text { (See Note 5) } \end{aligned}$	Condition 1		50	70		40	60	mA		
			Condition 2		42	62		35	55				

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time.
NOTE 5: For 74LS147, I CC (Condition 1) is measured with input 7 grounded, other inputs and outputs open; ICC (Condition 2) is measured with all inputs and outputs open. For 74LS148 ICC (Condition 1) is measured with inputs 7 and El grounded, other inputs and outputs open; ICC (Condition 2) is measured with all inputs and outputs open.

74 LS 147 switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see Figure 1)

74LS148 switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see Figure 1)

PARAMETER \dagger	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH	1-7	A0, A1, or A2	In-phase output	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$	10	15	ns
tPHL					9	14	
tPLH	1-7	A0, A1, or A2	Out-of-phase output		13	19	ns
tPHL					12	19	
tPLH	0-7	EO	Out-of-phase output		6	10	ns
tPHL					14	25	
tPLH	0-7	GS	In-phase output		18	30	ns
tPHL					14	25	
tPLH	El	A0, A1, or A2	In-phase output		10	15	ns
tPHL					10	15	
tPLH	El	GS	In-phase output		8	12	ns
tphL					10	15	
tPLH	El	EO	In-phase output		10	15	ns
tPHL					17	30	

\dagger tpLH $=$ propagation delay time, low-to-high-level output.
tPHL = propagation delay time, high-to-low-level output.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS \dagger		74LS			74LS			UNIT		
			MIN	TYP\#	MAX	MIN	TYP\#	MAX					
V_{IH}	High-level input voltage						2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage						0.7			0.8	V		
VIK	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}=-18 \mathrm{~mA}$			-1.5			-1.5	V		
V_{OH}	High-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{IOH}=-400 \mu \mathrm{~A} \end{aligned}$	2.5	3.4		2.7	3.4		V		
V_{OL}	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \mathrm{MAX} \\ & \hline \end{aligned}$	$\mathrm{IOL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
			$\mathrm{IOL}=8 \mathrm{~mA}$					0.35	0.5				
1	Input current at maximum input voltage	74LS148 inputs 1-7		$V_{C C}=M A X$,	$\mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.2			0.2	mA	
		All other inputs					0.1			0.1			
${ }^{\text {IIH }}$	High-level input current	74LS148 inputs 1-7	$V_{C C}=M A X$,	$\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			40			40	$\mu \mathrm{A}$		
		All other inputs					20			20			
IIL	Low-level input current	74LS148 inputs 1-7	$V_{C C}=$ MAX,	$\mathrm{V}=0.4 \mathrm{~V}$			-0.8			-0.8	mA		
		All other inputs					-0.4			-0.4			
Ios	Short-circuit output current§		$V_{C C}=$ MAX		-20		-100	-20		-100	mA		
ICC	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { MAX } \\ & \text { (See Note 6) } \end{aligned}$	Condition 1		12	20		12	20	mA		
			Condition 2		10	17		10	17				

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time.
NOTE 6: For 74LS147, ICC(Condition 1) is measured with input 7 grounded, other inputs and outputs open; ICC (Condition 2) is measured with all inputs and outputs open. For 74LS148, ICC (Condition 1) is measured with inputs 7 and El grounded, other inputs and outputs open; ICC (Condition 2) is measured with all inputs and outputs open.

74 LS 147 switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Any	Any	In-phase output	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$		12	18	ns
tPHL						12	18	
tPLH	Any	Any	Out-of-phase output			21	33	ns
tPHL						15	23	

74LS148 switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see Figure 2)

PARAMETER \dagger	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	1-7	A0, A1, or A2	In-phase output	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$		14	18	ns
tPHL						15	25	
tPLH	1-7	A0, A1, or A2	Out-of-phase output			20	36	ns
tPHL						16	29	
tPLH	0-7	EO	Out-of-phase output			7	18	ns
tpHL						25	40	
tPLH	0-7	GS	In-phase output			35	55	ns
tPHL						9	21	
tPLH	El	A0, A1, or A2	In-phase output			16	25	ns
tPHL						12	25	
tPLH	El	GS	In-phase output			12	17	ns
tPHL						14	36	
tPLH	El	EO	In-phase output			12	21	ns
tPHL						23	35	

\dagger tPLH $=$ propagation delay time, low-to-high-level output
tPHL = propagation delay time, high-to-low-level output

PARAMETER MEASUREMENT INFORMATION

SERIES 54/74 DEVICES

LOAD CIRCUIT
FOR OPEN-COLLECTOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All diodes are 1 N3064 or equivalent.
C. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
D. S1 and S2 are closed for tPLH, tPHL, tPHZ, and tPLZ; S1 is open, and S2 is closed for tPZH; S1 is closed, and S2 is open for tPZL.
E. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}} \approx 50 \Omega$; t_{r} and $\mathrm{t}_{\mathrm{f}} \leq 7 \mathrm{~ns}$ for Series $54 / 74$ devices and t_{r} and $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$ for Series 74LS devices.
F. The outputs are measured one at a time, with one input transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION
SERIES 74LS DEVICES

NOTES: A. C_{L} includes probe and jig capacitance.
B. All diodes are 1 N3064 or equivalent.
C. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
D. S1 and S2 are closed for tpLH, tpHL, tPHZ, and tpLZ; S1 is open, and S2 is closed for tpZH; S1 is closed, and S2 is open for tpZL.
E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
F. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}} \approx 50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 1.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.6 \mathrm{~ns}$.
G. The outputs are measured one at a time, with one input transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms

APPLICATION INFORMATION

Figure 3．Priority Encoder for 16 Bits
Because the 74LS147 and 74LS148 devices are combinational logic circuits，wrong addresses can appear during input transients．Moreover，for the 74LS148 devices，a change from high to low at El can cause a transient low on GS when all inputs are high．This must be considered when strobing the outputs．

以上信息仅供参考．如需帮助联系客服人员。谢谢 XINLUDA

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switch ICs - Various category:
Click to view products by XINLUDA manufacturer:

Other Similar products are found below :
BCM56226B0IPBG LC824206XA-VH 80HCPS1432RM FSA806UMX BCM56152A0IFSBLG 80HCPS1432CHMHI MAX4936ACTO+ 80HSPS1616CHMGI NL3S325FCT2G BCM56152A0KFSBLG BCM56150A0KFSBLG BCM56024B0KPBG CPC7583BA NC7SZ157P6X ACST12-7CG-TR FSA9280AUMX MAX14626ETT+T NL7SZ19DFT2G SRC0CS25D MAX14808ETK MAX4937CTN+ DG2788ADN-T1-GE4 DGQ2788AEN-T1-GE4 LTC6943IGN\#PBF MCZ33999EKR2 LTC1471CS\#PBF LTC1472CS\#PBF LTC1043CSW\#PBF PI4MSD5V9548ALEX NCX8200UKZ LTC6943HGN\#PBF PI3CH480QE HT1204 89H48T12G2ZCBLG PI3C3245QE ADG409BRZREEL7 ADG5462FBRUZ-RL7 ADN4604ASVZ LTC1043CN LTC1043CN\#PBF LTC1470ES8\#PBF PI4MSD5V9548AZDEX AP2280-2FMG-7 AZV5001RA4-7 PI3B3253QEX PI3CH480QEX 74HC4053N 74HC139N 74HC138N XD74LS138

