## 1．General description

The XD74LS154 is a 4－to－16 line deco der／demultiplexer．It decodes four binary weighted address inputs（ A 0 to A 3 ）to sixteen mutually exclusive outputs（ $\overline{\mathrm{YO}}$ to $\overline{\mathrm{Y} 15}$ ）．The device features two input enable（ $\overline{\mathrm{EO}}$ and $\overline{\mathrm{E} 1}$ ）inputs．A HIGH on either of the input enables forces the outputs HIGH．The device can be used as a 1－to－16 demultiplexer by using one of the enable inputs as the multiplexed data input．When the other enable input is LOW the addressed output will follow the state of the applied data．Inputs include clamp diodes．This enables the use of current limiting resistors to interface inputs to voltages in excess of $\mathrm{V}_{\mathrm{cc}}$ ．

## 2．Features and benefits

■ 16－line demultiplexing capability
■ Decodes 4 binary－coded inputs into 16 mutually－exclusive outputs
■ Complies with JEDEC standard no．7A
－Input levels：
－For XD74LS154：CMOS level

■ ESD protection：
－HBM JESD22－A114F exceeds 2000 V
－MM JESD22－A115－A exceeds 200 V
－Multiple package options
－Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

## 3. Functional diagram



Fig 1. Functional diagram


Fig 2. Logic symbol


Fig 3. IEC logic symbol


Fig 4. Logic diagram
4. Pinning information

### 4.1 Pinning



Fig 5. DIP24

### 4.2 Pin description

Table 1. Pin description

| Symbol | Pin | Description |
| :---: | :---: | :---: |
| $\frac{Y 0,}{Y 10} \frac{Y 1,}{Y 11}, \frac{Y}{Y}, \frac{Y 3}{Y 12}, \frac{Y}{Y}, \frac{Y}{Y}, \frac{Y}{Y 14}, \frac{Y}{Y 15}, \overline{Y 8}, Y 9,$ | $\begin{aligned} & 1,2,3,4,5,6,7,8,9,10,11,13,14,15, \\ & 16,17 \end{aligned}$ | data output (active LOW) |
| GND | 12 | ground (0 V) |
| E0, $\overline{\mathrm{E} 1}$ | 18, 19 | enable input (active LOW) |
| A0, A1, A2, A3 | 23, 22, 21, 20 | address input |
| $\mathrm{V}_{\mathrm{Cc}}$ | 24 | supply voltage |

## 5. Functional description

Table 2. Function table[1]

| Input |  |  |  |  |  | Output |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E0 | E1 | AO | A1 | A2 | A3 | YO | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | Y8 | Y9 | Y10 | Y11 | Y12 | Y13 | Y14 | Y15 |
| H | H | X | X | X | X | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H |
| H | L | X | X | X | X | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H |
| L | H | X | X | X | X | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H |
| L | L | L | L | L | L | L | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H |
|  |  | H | L | L | L | H | L | H | H | H | H | H | H | H | H | H | H | H | H | H | H |
|  |  | L | H | L | L | H | H | L | H | H | H | H | H | H | H | H | H | H | H | H | H |
|  |  | H | H | L | L | H | H | H | L | H | H | H | H | H | H | H | H | H | H | H | H |
|  |  | L | L | H | L | H | H | H | H | L | H | H | H | H | H | H | H | H | H | H | H |
|  |  | H | L | H | L | H | H | H | H | H | L | H | H | H | H | H | H | H | H | H | H |
|  |  | L | H | H | L | H | H | H | H | H | H | L | H | H | H | H | H | H | H | H | H |
|  |  | H | H | H | L | H | H | H | H | H | H | H | L | H | H | H | H | H | H | H | H |
|  |  | L | L | L | H | H | H | H | H | H | H | H | H | L | H | H | H | H | H | H | H |
|  |  | H | L | L | H | H | H | H | H | H | H | H | H | H | L | H | H | H | H | H | H |
|  |  | L | H | L | H | H | H | H | H | H | H | H | H | H | H | L | H | H | H | H | H |
|  |  | H | H | L | H | H | H | H | H | H | H | H | H | H | H | H | L | H | H | H | H |
|  |  | L | L | H | H | H | H | H | H | H | H | H | H | H | H | H | H | L | H | H | H |
|  |  | H | L | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | L | H | H |
|  |  | L | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | L | H |
|  |  | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | H | L |

[1] $\mathrm{H}=\mathrm{HIGH}$ voltage level
L = LOW voltage level
X = don't care.

## 6. Limiting values

Table 3. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

| Symbol | Parameter | Conditions |  | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{cc}}$ | supply voltage |  |  | -0.5 | +7.0 | V |
| $\mathrm{I}_{\mathrm{IK}}$ | input clamping current | $\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ | [1] | - | $\pm 20$ | mA |
| lok | output clamping current | $\mathrm{V}_{\mathrm{O}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ | [1] | - | $\pm 20$ | mA |
| Io | output current | $-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ | [1] | - | $\pm 25$ | mA |
| ICc | supply current |  | [1] | - | 50 | mA |
| IGND | ground current |  | [1] | - | -50 | mA |
| $\mathrm{T}_{\text {stg }}$ | storage temperature |  |  | -65 | +150 | ${ }^{\circ} \mathrm{C}$ |
| P tot | total power dissipation | $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | [2] | - | 300 | mW |

The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

## 7. Recommended operating conditions

Table 4. Recommended operating conditions
Voltages are referenced to GND (ground $=0 \mathrm{~V}$ )

| Symbol | Parameter | Conditions | XD74LS154 |  |  | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max |
|  |  |  |  |  |  |  |  |
|  |  | 2.0 | 5.0 | 6.0 | V |
| $\mathrm{~V}_{\mathrm{CC}}$ | supply voltage |  | 0 | - | $\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{V}_{\mathrm{I}}$ | input voltage |  | 0 | - | $\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{V}_{\mathrm{O}}$ | output voltage |  | -40 | +25 | +125 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{amb}}$ | ambient temperature |  |  |  |  |  |
| $\Delta \mathrm{t} / \Delta \mathrm{V}$ | input transition rise and fall rate | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | - | 625 | $\mathrm{~ns} / \mathrm{V}$ |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 1.67 | 139 | $\mathrm{~ns} / \mathrm{V}$ |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 83 | $\mathrm{~ns} / \mathrm{V}$ |

## 8. Static characteristics

Table 5. Static characteristics XD74LS154
At recommended operating conditions; voltages are referenced to GND (ground = 0 V ).

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{amb}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH-level input voltage | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | 1.5 | 1.2 | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | 3.15 | 2.4 | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | 4.2 | 3.2 | - | V |
| $\mathrm{V}_{\text {IL }}$ | LOW-level input voltage | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | 0.8 | 0.5 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 2.1 | 1.35 | V |
|  |  | $\mathrm{V}_{\mathrm{cc}}=6.0 \mathrm{~V}$ | - | 2.8 | 1.8 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | HIGH-level output voltage | $\mathrm{V}_{1}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A}$ | 1.9 | 2.0 | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A}$ | 4.4 | 4.5 | - | V |
|  |  | $\mathrm{V}_{C C}=6.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A}$ | 5.9 | 6.0 | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=-4.0 \mathrm{~mA}$ | 3.98 | 4.32 | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=-5.2 \mathrm{~mA}$ | 5.48 | 5.81 | - | V |
| $\mathrm{V}_{\mathrm{OL}}$ | LOW-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A}$ | - | 0 | 0.1 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A}$ | - | 0 | 0.1 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{O}}=20 \mu \mathrm{~A}$ | - | 0 | 0.1 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=4.0 \mathrm{~mA}$ | - | 0.15 | 0.26 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=5.2 \mathrm{~mA}$ | - | 0.16 | 0.26 | V |
| $1 /$ | input leakage current | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND | - | - | $\pm 0.1$ | $\mu \mathrm{A}$ |
| ICC | supply current | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}$ | - | - | 8.0 | $\mu \mathrm{A}$ |
| $\mathrm{C}_{1}$ | input capacitance |  | - | 3.5 | - | pF |
| $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH-level input voltage | $\mathrm{V}_{\mathrm{cc}}=2.0 \mathrm{~V}$ | 1.5 | - | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | 3.15 | - | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | 4.2 | - | - | V |
| VIL | LOW-level input voltage | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | - | 0.5 | V |
|  |  | $\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$ | - | - | 1.35 | V |
|  |  | $\mathrm{V}_{\mathrm{cc}}=6.0 \mathrm{~V}$ | - | - | 1.8 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | HIGH-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A}$ | 1.9 | - | - | V |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A}$ | 4.4 | - | - | V |
|  |  | $\mathrm{V}_{C C}=6.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A}$ | 5.9 | - | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=-4.0 \mathrm{~mA}$ | 3.84 | - | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{O}}=-5.2 \mathrm{~mA}$ | 5.34 | - | - | V |

Table 6. Static characteristics XD74LS154 ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V ).

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OL }}$ | LOW-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{O}}=20 \mu \mathrm{~A}$ | - | - | 0.1 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A}$ | - | - | 0.1 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{O}}=20 \mu \mathrm{~A}$ | - | - | 0.1 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=4.0 \mathrm{~mA}$ | - | - | 0.33 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=5.2 \mathrm{~mA}$ | - | - | 0.33 | V |
| $1{ }_{1}$ | input leakage current | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND | - | - | $\pm 1.0$ | $\mu \mathrm{A}$ |
| ICC | supply current | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}$ | - | - | 80 | $\mu \mathrm{A}$ |
| $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to +125 ${ }^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH-level input voltage | $\mathrm{V}_{\mathrm{cc}}=2.0 \mathrm{~V}$ | 1.5 | - | - | V |
|  |  | $\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$ | 3.15 | - | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | 4.2 | - | - | V |
| VIL | LOW-level input voltage | $\mathrm{V}_{\mathrm{cc}}=2.0 \mathrm{~V}$ | - | - | 0.5 | V |
|  |  | $\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$ | - | - | 1.35 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 1.8 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | HIGH-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}}$ |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A}$ | 1.9 | - | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A}$ | 4.4 | - | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A}$ | 5.9 | - | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=-4.0 \mathrm{~mA}$ | 3.7 | - | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=-5.2 \mathrm{~mA}$ | 5.2 | - | - | V |
| $\mathrm{V}_{\mathrm{OL}}$ | LOW-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}}$ |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A}$ | - | - | 0.1 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{O}}=20 \mu \mathrm{~A}$ | - | - | 0.1 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A}$ | - | - | 0.1 | V |
|  |  | $\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=4.0 \mathrm{~mA}$ | - | - | 0.4 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{O}}=5.2 \mathrm{~mA}$ | - | - | 0.4 | V |
| $1{ }_{1}$ | input leakage current | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND | - | - | $\pm 0.1$ | $\mu \mathrm{A}$ |
| Icc | supply current | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{GND} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}$ | - | - | 160 | $\mu \mathrm{A}$ |

## 9. Dynamic characteristics

Table 7. Dynamic characteristics
GND (ground = 0 V ); $C_{L}=50 \mathrm{pF}$ unless otherwise specified; for test circuit, see Figure8.

| Symbol | Parameter | Conditions |  | $25^{\circ} \mathrm{C}$ |  |  | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Unit |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max | Min | $\begin{gathered} \operatorname{Max} \\ \left(85^{\circ} \mathrm{C}\right) \end{gathered}$ |  |
| XD74LS154 |  |  |  |  |  |  |  |  |  |
| $\mathrm{t}_{\mathrm{pd}}$ | propagation delay | An to $\overline{\mathrm{Yn}}$; see Figure6 |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{cc}}=2.0 \mathrm{~V}$ |  | - | 36 | 150 | - | 190 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ |  | - | 13 | 30 | - | 38 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | - | 11 | - | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ |  | - | 10 | 26 | - | 33 | ns |
|  |  | $\overline{\overline{\mathrm{En}} \text { to } \overline{\mathrm{Yn}} \text {; see Figure7 }}$ |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ |  | - | 39 | 150 | - | 190 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ |  | - | 14 | 30 | - | 38 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | - | 11 | - | - | - | ns |
|  |  | $\mathrm{V}_{\text {cc }}=6.0 \mathrm{~V}$ |  | - | 11 | 26 | - | 33 | ns |
| $\mathrm{t}_{\mathrm{t}}$ | transition time | see Figure6 and $\underline{7}$ | [2] |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ |  | - | 19 | 75 | - | 95 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ |  | - | 7 | 15 | - | 19 | ns |
|  |  | $\mathrm{V}_{\mathrm{Cc}}=6.0 \mathrm{~V}$ |  | - | 6 | 13 | - | 16 | ns |
| $\mathrm{C}_{\text {PD }}$ | power dissipation capacitance | per gate; $\mathrm{V}_{\mathrm{I}}=$ GND to $\mathrm{V}_{\mathrm{CC}}$ | [3] | - | 60 | - | - | - | pF |

[1] $t_{p d}$ is the same as $t_{\text {pLH }}$ and $t_{\text {PHL }}$
[2] $t_{t}$ is the same as $t_{T L H}$ and $t_{T H L}$
[3] $\mathrm{C}_{\mathrm{PD}}$ is used to determine the dynamic power dissipation ( $\mathrm{P}_{\mathrm{D}}$ in $\mu \mathrm{W}$ ).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V ;
$\mathrm{N}=$ number of load switching outputs;
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of the outputs.

## 10. Waveforms



Measurement points are given in Table 9.


Measurement points are given in Table 9.
Fig 7. Propagation delay enable input $(\overline{\mathrm{En}})$ to output (Yn) and transition time output (Yn)

Table 8. Measurement points

| Type | Input | Output |
| :--- | :--- | :--- |
|  | $\mathrm{V}_{\mathbf{M}}$ | $\mathrm{V}_{\mathbf{M}}$ |
| XD74LS154 | $0.5 \mathrm{~V}_{\mathrm{CC}}$ | $0.5 \mathrm{~V}_{\mathrm{CC}}$ |



Test data is given in Table 10
Definitions for test circuit:
$R_{T}=$ Termination resistance; should be equal to output impedance $Z_{o}$ of the pulse generator.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$\mathrm{R}_{\mathrm{L}}=$ Load resistor.
S1 = Test selection switch.
Fig 8. Test circuit for measuring switching times

Table 9. Test data

| Type | Input | Load | S1 position |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{V}_{\mathbf{I}}$ | $\mathrm{t}_{\mathbf{r}}, \mathbf{t}_{\mathbf{f}}$ | $\mathrm{C}_{\mathrm{L}}$ | $\mathbf{R}_{\mathrm{L}}$ | $\mathbf{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathrm{PLH}}$ |
| XD74LS154 | $\mathrm{c} \times$ | 6 ns | $15 \mathrm{pF}, 50 \mathrm{pF}$ | $1 \mathrm{k} \Omega$ | open |

## 11．Application information



Fig 9．1－of－16 decoder；LOW level output selected


Fig 10．1－of－16 demultiplexer；logic level on selected outputs follow the logic level on the data input


| PIMS＊ | 24 | 28 | 32 | 40 | 48 | 52 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A MAX | 1.270 <br> $(32,26)$ | 1.450 <br> $(36,83)$ | 1.650 <br> $(41,91)$ | 2.090 <br> $(53,09)$ | 2.450 <br> $(62,23)$ | 2.650 <br> $(67,31)$ |
| A MIN | 1.230 <br> $(31,24)$ | 1.410 <br> $(35,81)$ | 1.610 <br> $(40,89)$ | 2.040 <br> $(51,82)$ | 2.390 <br> $(60,71)$ | 2.590 <br> $(65,79)$ |

以上信息仅供参考．如需帮助联系客服人员。谢谢 XINLUDA

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Encoders, Decoders, Multiplexers \& Demultiplexers category:

## Click to view products by XINLUDA manufacturer:

Other Similar products are found below :
M38510/01406BEA MC74HC163ADTG 74HC253N 74HCT356N HMC854LC5TR NLV74VHC1G01DFT1G NLVHC4851ADTR2G NLVHCT4851ADTR2G PI3B33X257BE M74HCT4052ADTR2G TC74AC138P(F) MC74LVX4051MNTWG HMC855LC5TR NLV14028BDR2G NLV14051BDR2G NLV74HC238ADTR2G 715428X 74HCT354N COMX-CAR-210 5962-8607001EA 59628756601EA MAX3783UCM+D PI5C3253QEX 8CA3052APGGI8 TC74HC4051AF(EL,F) TC74VHC138F(EL,K,F PI3B3251LE PI5C3309UEX PI5C3251QEX PI3B3251QE 74VHC4052AFT(BJ) NLVHCT4852ADTR2G PI3PCIE3415AZHEX NLV74HC4851AMNTWG MC74LVX257DG M74HC151YRM13TR M74HC151YTTR PI5USB31213XEAEX M74HCT4851ADWR2G XD74LS154 QS3VH251QG8 QS4A201QG HCS301T-ISN HCS500-I/SM MC74HC151ADTG TC4066BP(N,F) 74ACT11139PWR 74VHC238FT(BJ) 74VHC4066AFT(BJ) 74VHCT138AFT(BJ)

