Synchronous operation is provided by having all flip－flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the steering logic．This mode of operation eliminates the output counting spikes normally associated with asynchronous（ripple clock）counters．

The outputs of the four master－slave flip－flops are triggered on a low－to－high－level transition of the clock input if the enable input is low．A high at the enable input inhibits counting．Level changes at the enable input should be made only when the clock input is high．The direction of the count is determined by the level of the down／up input．When low，the counter counts up and when high，it counts down．Level changes at the down／up input should be made only when the clock input is high．This counter is fully programmable；that is，the outputs may be preset to either level by placing a low on the load input and entering the desired data at the data inputs．The output will change to agree with the data inputs independently of the level of the clock input．This feature allows the counters to be used as modulo－N dividers by simply modifying the count length with the preset inputs．The clock，down／up，and load inputs are buffered to lower the drive requirement which significantly reduces the number of clock drivers，etc．，required for long parallel words．

Two outputs have been made available to perform the cascading function：ripple clock and maximum／minimum count． The latter output produces a high－level output pulse with a duration approximately equal to one complete cycles to the clock when the counter overflows or underflows．The ripple clock output produces a low－level output pulse equal in width to the low－level portion of the clock input when an overflow or underflow conditions exists．

The counters can be easily cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used，or to the clock input if parallel enabling is used．The maximum／minimum count output can be used to accomplish look－ahead for high－speed operation．

Pin Arrangement

Block Diagram

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Supply voltage	V_{CC}	7	V
Input voltage	V_{IN}	7	V
Power dissipation	P_{T}	400	mW
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$

Note: Voltage value, unless otherwise noted, are with respect to network ground terminal.

Recommended Operating Conditions

Item	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.75	5.00	5.25	V
Output current	I_{OH}	-	-	-400	$\mu \mathrm{~A}$
	I_{oL}	-	-	8	mA
Operating temperature	$\mathrm{T}_{\text {opr }}$	-20	25	75	${ }^{\circ} \mathrm{C}$
Clock frequency	$f_{\text {clock }}$	0	-	20	MHz
Clock pulse width	$\mathrm{t}_{\mathrm{w} \text { (CK) }}$	25	-	-	ns
Load pulse width	$\mathrm{t}_{\mathrm{w} \text { (Load) }}$	35	-	-	ns
Setup time	$\mathrm{t}_{\text {su }}$	20	-	-	ns
Hold time	$\mathrm{t}_{\mathrm{h} \text { (data) }}$	3	-	-	ns
Enable time	$\mathrm{t}_{\text {enable }}$	40	-	-	ns

Electrical Characteristics

$\left(\mathrm{Ta}=-20\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$

Item		Symbol	min.	typ.*	max.	Unit		Condition		
Input voltage		V_{IH}	2.0	-	-	V				
		V_{IL}	-	-	0.8	V				
Output voltage		$\mathrm{V}_{\text {OH }}$	2.7	-	-	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$			
		VoL	-	-	0.4	V	$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$		
		-	-	0.5	$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$					
Input current	Enable		$\mathrm{I}_{\mathbf{H}}$	-	-	60	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=2.7 \mathrm{~V}$		
	Others	-		-	20					
	Enable	IIL	-	-	-1.2	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {I }}=0.4 \mathrm{~V}$			
	Others		-	-	-0.4					
	Enable	1	-	-	0.3	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=7 \mathrm{~V}$			
	Others		-	-	0.1					
Short-circuit output current		los	-20	-	-100	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$			
Supply current**		Icc	-	20	35	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$			
Input clamp voltage		$\mathrm{V}_{\text {IK }}$	-	-	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{l}_{\mathrm{IN}}=-18 \mathrm{~mA}$			

Notes: * $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$
** I_{Cc} is measured with all outputs open and all inputs grounded.

Switching Characteristics

Item	Symbol	Inputs	Outputs	min.	typ.	max.	Unit	Condition
Maximum clock frequency	$f_{\text {max }}$	Clock	$\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{D}}$	20	25	-	MHz	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$
Propagation delay time	$t_{\text {PLH }}$	Load	$\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{D}}$	-	22	33	ns	
	tPHL			-	33	50		
	tplh	$\begin{aligned} & \mathrm{A}, \mathrm{~B}, \\ & \mathrm{C}, \mathrm{D} \end{aligned}$	$\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{D}}$	-	20	32	ns	
	tPHL			-	27	40		
	tplH	Clock	Ripple Clock	-	13	20	ns	
	$\mathrm{t}_{\text {PHL }}$			-	16	24		
	tPLH	Clock	$\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{c}}, \mathrm{Q}_{\mathrm{D}}$	-	16	24	ns	
	tPHL			-	24	36		
	tplh	Clock	Max / Min	-	28	42	ns	
	$\mathrm{t}_{\text {PHL }}$			-	37	52		
	tpLH	Down / Up	Ripple Clock	-	30	45	ns	
	tPHL			-	30	45		
	tplh	Down / Up	Max / Min	-	21	33	ns	
	$\mathrm{t}_{\text {PHL }}$			-	22	33		
	tplh	Enable	Ripple Clock	-	21	33	ns	
	$\mathrm{t}_{\text {PHL }}$			-	22	33		

Count Sequences

Illustrated below is the following sequence:

1. Load (preset) to BCD seven.
2. Count up to eight, nine (maximum), zero, one and two.
3. Inhibit
4. Count down to one, zero (minimum), nine, eight, and seven.

Testing Method

Test Circuit

Notes: 1. C_{L} includes probe and jig capacitance.
2. All diodes are 1S2074(H).

Waveforms 1

Note: Input pulse: $\mathrm{t}_{\text {TLH }}, \mathrm{t}_{\text {THL }} \leq 10 \mathrm{~ns}$, PRR $=1 \mathrm{MHz}$, duty cycle $\leq 50 \%$

Waveforms 2

Load \rightarrow Q, Data \rightarrow Q

Note: Conditions on other inputs are irrelevant.

Waveforms 3

$\mathrm{G} \rightarrow$ Ripple CK, CK \rightarrow Ripple CK, Down / Up \rightarrow Ripple CK, Down / Up \rightarrow Max / Min

Note: All data inputs are low.

Waveforms 4

Notes: 1. When test the Q_{A}, Q_{B}, and Q_{C} outputs, data inputs A, B and C are shown by the solid line, and data input D is shown by the dashed line.
2. When test the Q_{D} output, data inputs A and D are shown by the solid line, and data inputs B and C are held at the low logic level.

Waveforms 5

Note: Data inputs B and C are shown by the dashed line. Data input D is shown by the solid line.

Package Dimensions

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Counter ICs category:
Click to view products by XINLUDA manufacturer:
Other Similar products are found below :
HEF4516BT 069748E 569054R 634844F 74HC40102N 74HCT4024N NLV14040BDR2G TC74HC4040AF(EL,F) TC74VHC4040F(E,K,F 74VHC163FT XD4059 CD4015BF3A 74HC193PW,118 74VHC163FT(BJ) SN54HC4024J 74HC4017D.652 74HC4020D.652 74HC393D.652 74HC4040D.652 74HC4040D.653 74HC4060D.653 74HCT393D.652 74HCT4040D.653 74HC191D.652 74HC4060D.652 74HCT4040D. 652 HEF4040BT. 652 HEF4060BT. 653 HEF4521BT. 652 HEF4518BT. 652 HEF4520BT. 652 HEF4017BT. 652 74VHC4020FT(BJ) 74HCT4040PW,118 74HCT193PW,118 74HC393BQ-Q100X SN74AS161NSR 74HC390DB,112 74HC4060DQ100,118 74HC160D,652 74HC390DB,118 TC74HC7292AP(F) SN74ALS169BDR HEF4060BT-Q100J 74HC4017BQ-Q100X 74HC163PW. 112 74HC191PW. 112 74HC390PW. 112 74HC393DB. 118 74HC4024D. 652

