

description

The 74LS279 offers 4 basic $\overline{S} \cdot \overline{R}$ flip-flop latches in one 16-pin, 300-mil package. Under conventional operation, the $\overline{S} \cdot \overline{R}$ inputs are normally held high. When the \overline{S} input is pulsed low, the Ω output will be set high. When \overline{R} is pulsed low, the Ω output will be reset low. Normally, the $\overline{S} \cdot \overline{R}$ inputs should not be taken low simultaneously. The Ω output will be unpredictable in this condition.

FUNCTION TABLE (each latch)

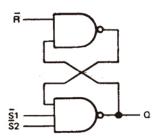
INP	STU	OUTPUT
St	R	α
н	Н	α ₀
L	н	н
н	L	L
L	L	н‡

H = high level

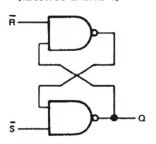
L = low level

[†]For latches with double S inputs:

Q₀ = the level of Q before the indicated input conditions were established.

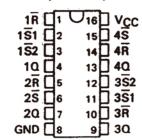

[‡] This configuration is nonstable: that is, it may not persist when the \overline{S} and \overline{R} inputs return to their inactive (high) level.

H = both \$\overline{S}\$ inputs high

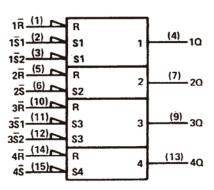

L = one or both \$\overline{S}\$ inputs low

logic diagram (positive logic)

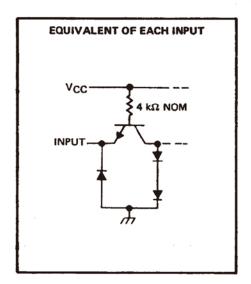
(latches 1 and 3)

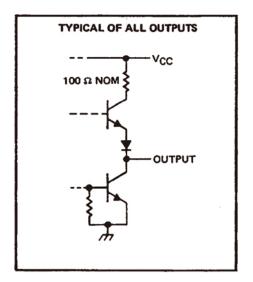


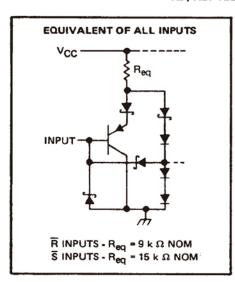
(latches 2 and 4)

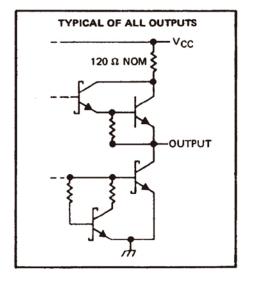

XD74LS279 ... JOR W PACKAGE XL74LS279 ... JOR W PACKAGE

(TOP VIEW)


XD/XL74LS279 ... FK PACKAGE (TOP VIEW)


logic symbol§


schematics of inputs and outputs


279 CIRCUITS

XD/XL74LS279 CIRCUITS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)		7 V
Input voltage: '279		5.5 V
' LS279		7 V
Operating free-air temperature range:	XD54' TYPES	- 55°C to 125°C
	XD74' TYPES	0°C to 70°C
Storage temperature range		- 65°C to 150°C

recommended operating conditions

		XD	XD74LS279			XL74LS279			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	٧	
VIH	High-level input voltage	2			2			V	
VIL	Low-level input voltage			0.8			0.8	V	
ЮН	High-level output current			- 0.8			- 0.8	mA	
OL	Low-level output current			16			16	mA	
tw	Pulse duration, low	20			20			ns	
TA	Operating free-air temperature	- 55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER VIK	TEST CONDITIONS T		XC	XD74LS279			XL74LS279			
			MIN	TYP\$	MAX	MIN	TYP‡	MAX	UNIT	
	V _{CC} = MIN,	I _I = - 12 mA				- 1.5			- 1.5	٧
Voн	VCC = MIN,	V _{IL} = 0.8 V,	t _{OH} = - 0.8 mA	2.4	3.4		2.4	3.4		٧
VOL	V _{CC} = MIN,	V _{1H} = 2 V,	10L = 16 mA		0.2	0.4		0.2	0.4	V
11	V _{CC} = MAX,	V _I = 5.5 V				1			1	mA
ЧН	V _{CC} = MAX,	V1 = 2.4 V				40			40	μΑ
IIL	V _{CC} = MAX,	V _I = 0.4 V				- 1.6			- 1.6	mA
IOS\$	V _{CC} = MAX			- 18		- 55	- 18		- 57	mA
1cc	VCC = MAX,	See Note 2			18	30		18	30	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE1: I_{CC} is measured with all R inputs grounded, all S inputs at 4.5 V, and all outputs open.

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	MIN	TYP	MAX	UNIT	
tPLH	5	a				12	22	ns
tPHL t			$R_L = 400 \Omega$,	CL = 15 pF		9	15	","
tPHL .	Ř	a				15	27	ns

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

^{\$} Ali typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{C}$.

Not more than one output should be shorted at a time.

recommended operating conditions

		XD	XD74LS279			XL74LS279			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	٧	
VIH	High-level input voltage	2			2			V	
VIL	Low-level input voltage			0.7			0.8	V	
ЮН	High-level output current			0.4			- 0.4	mA	
IOL	Low-level output current			4			8	mA	
t _W	Pulse duration, low	20	. 4 500.0	No months	20			ns	
TA	Operating free-air temperature	– 55		125	0		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS†		XD	XD74LS279			XL74LS279			
		1EST CONDIT	IONSI	MIN	TYP#	MAX	MIN	TYP#	MAX	UNIT
VIK	VCC = MIN,	I _I = - 18 mA				1.5			- 1.5	٧
Voн	V _{CC} = MIN,	VIL = MAX,	I _{OH} = ~ 0.4 mA	2.5	3.4		2.7	3.4		V
V	V _{CC} = MIN,	V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	٧
VOL	VCC = MIN,	V _{IH} = 2 V,	IOL = 8 mA					0.25	0.5	
11	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	mA
1н	V _{CC} = MAX,	V ₁ = 2.7 V				20			20	μА
IIL	V _{CC} = MAX,	V _I = 0.4 V				- 0.2			- 0.2	mA
los§	V _{CC} = MAX			- 20		- 100	- 20		- 100	mA
¹cc	V _{CC} = MAX,	See note 2			3.8	7		3.8	7	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 1: I_{CC} is measured with all R inputs grounded, all S inputs at 4.5 V, and all outputs open.

switching characteristics, VCC = 5 V, TA = 25°C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	MIN	TYP	MAX	UNIT	
tPLH	-	0				12	22	ns
tPHL	3	$R_L = 2 k\Omega$	C _L = 15 pF		13	21		
tPHL	R	Ω				15	27	ns

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

以上信息仅供参考. 如需帮助联系客服人员。谢谢 XINLUDA

^{\$} All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{C}$.

[§] Not more than one output should be shorted at a time, and the duration of the short-circuit should be less than one second.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by XINLUDA manufacturer:

Other Similar products are found below:

5962-9217601MSA 634810D 875140G HEF4022BP HEF4043BP NL17SG125DFT2G NL17SZ126P5T5G NLU1GT126CMUTCG
NLU3G16AMX1TCG NLV27WZ125USG MC74HCT365ADTR2G BCM6306KMLG 54FCT240CTDB Le87401NQC Le87402MQC
028192B 042140C 051117G 070519XB 065312DB 091056E 098456D NL17SG07DFT2G NL17SG17DFT2G NL17SG34DFT2G
NL17SZ07P5T5G NL17SZ125P5T5G NLU1GT126AMUTCG NLV27WZ16DFT2G 5962-8982101PA 5962-9052201PA 74LVC07ADR2G
MC74VHC1G125DFT1G NL17SH17P5T5G NL17SZ125CMUTCG NLV17SZ07DFT2G NLV37WZ17USG NLVHCT244ADTR2G
NC7WZ17FHX 74HCT126T14-13 NL17SH125P5T5G NLV14049UBDTR2G NLV37WZ07USG 74VHC541FT(BE) RHFAC244K1
74LVC1G17FW4-7 74LVC1G126FZ4-7 BCM6302KMLG 74LVC1G07FZ4-7 74LVC1G125FW4-7