－Full－Carry Look－Ahead Across the Four Bits
－Systems Achieve Partial Look－Ahead Performance with the Economy of Ripple Carry
－Supply Voltage and Ground on Corner Pins to Simplify P．C Board Layout

TYPICAL ADD TIMES

|  | TWO | TWO | TYPICAL POWER |
| :---: | :---: | :---: | :---: |
|  | 8－BIT | 16－BIT | DISSIPATION |
| TYPE | WORDS | WORDS | PER ADDER |

## description

The＇LS283 adders are electrically and
functionally identical to the＇LS83
respectively；only the arrangement of the terminals has been changed．The＇LS283 high performance versions are also functionally identical．

These improved full adders perform the addition of two 4－bit binary words．The sum（ $\Sigma$ ）outputs are provided for each bit and the resultant carry（C4）is obtained from the fourth bit．These adders feature full internal look－ahead across all four bits generating the carry term in ten nanoseconds，typically，for the ＇LS283，and 7.5 nanoseconds for the＇S283．
This capability provides the system designer with partial look－ahead performance at the economy and reduced package count of a ripple－carry implementation．

The adder logic，including the carry，is implemented in its true form．End around carry can be accomplish－ ed without the need for logic or level inversion．

Series 74 S circuits are characterized for $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ operation．


## XD74LS283 DIP-16

logic symbol ${ }^{\dagger}$


Pin numbers shown are for D, J, N, and W packages.
logic diagram (positive logic)


Pin numbers shown are for D, J, N, and W packages.
schematics of inputs and outputs
EQUIVALENT OF
EACH INPUT
CO input: $R_{\text {eq }}=4 \mathrm{kS}$ NOM
Any $A$ or $\mathrm{B}: \mathrm{R}_{\mathrm{eq}}=3.5 \mathrm{kS} 2 \mathrm{NOM}$
'LS283

'S283

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

```
Supply voltage, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V
Input voltage: 'LS2837V
```

Interemitter voltage (see Note 2) ..... 5.5 V
Operating free-air temperature range: XD74LS283 ..... $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage temperature range ..... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

```
NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal
2. This is the voltage between two emitters of a multiple-emitter transistor. This rating applies for the ' 283 and 'S283 onty between the following pairs: A1 and B1, A2 and B2, A3 and B3, A4 and B4.
```


## XD74LS283 DIP-16

## recommended operating conditions

|  | XD74LS283 |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: |
|  | MIN | NOM | MAX |  |
| Supply voltage, $\mathrm{V}_{\text {CC }}$ | 4.75 | 5 | 5.25 | V |
| High-level output current, IOH |  |  | -400 | $\mu \mathrm{A}$ |
| Low-level output current, IOL |  |  |  | mA |
| Operating free-air temperature, $\mathrm{T}_{\mathbf{A}}$ | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ${ }^{\ddagger}$ All typicat values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Only one output should be shorted at a time and duration of the short-circult should not exceed one second.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

| PARAMETER ${ }^{\text {I }}$ | FROM (INPUT) | TO (OUTPUT) | TEST CONDITIONS |  | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| tPLH | CO | Any $\mathbf{\Sigma}$ | $\begin{array}{ll} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \text { See Note } 3 \end{array}$ |  |  | 16 | 24 | ns |
| tPHL |  |  |  |  |  | 15 | 24 |  |
| tPLH | $\mathbf{A}_{\boldsymbol{i}}$ or $\mathbf{B}_{\mathbf{i}}$ | $\Sigma_{i}$ |  |  |  | 15 | 24 | ns |
| tPHL |  |  |  |  |  | 15 | 24 |  |
| tPLH | C0 | C4 |  |  |  | 11 | 17 | ns |
| tPHL |  |  |  |  |  | 11 | 22 |  |
| tPLH | $\mathrm{A}_{\boldsymbol{i}}$ or $\mathrm{B}_{\mathrm{i}}$ | C4 |  |  |  | 11 | 17 | ns |
| tPHL |  |  |  |  |  | 12 | 17 |  |

[^0]

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Buffers \& Line Drivers category:
Click to view products by XINLUDA manufacturer:

Other Similar products are found below :
5962-9217601MSA 634810D 875140G HEF4022BP HEF4043BP NL17SG125DFT2G NL17SZ126P5T5G NLU1GT126CMUTCG NLU3G16AMX1TCG NLV27WZ125USG MC74HCT365ADTR2G BCM6306KMLG 54FCT240CTDB Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB 065312DB 091056E 098456D NL17SG07DFT2G NL17SG17DFT2G NL17SG34DFT2G NL17SZ07P5T5G NL17SZ125P5T5G NLU1GT126AMUTCG NLV27WZ16DFT2G 5962-8982101PA 5962-9052201PA 74LVC07ADR2G MC74VHC1G125DFT1G NL17SH17P5T5G NL17SZ125CMUTCG NLV17SZ07DFT2G NLV37WZ17USG NLVHCT244ADTR2G NC7WZ17FHX 74HCT126T14-13 NL17SH125P5T5G NLV14049UBDTR2G NLV37WZ07USG 74VHC541FT(BE) RHFAC244K1 74LVC1G17FW4-7 74LVC1G126FZ4-7 BCM6302KMLG 74LVC1G07FZ4-7 74LVC1G125FW4-7


[^0]:    $\mathrm{I}_{\text {tpLH }}=$ propagation delay time, low-to-high-level output
    tPHL $=$ propagation delay time, high-to-low-level output
    NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

