Pin Arrangement

Function Table

Input			Output		
Preset	Clear	Clock	\mathbf{D}	\mathbf{Q}	$\overline{\mathbf{Q}}$
L	H	X	X	H	L
H	L	X	X	L	H
L	L	X	X	H^{*}	H^{*}
H	H	\uparrow	H	H	L
H	H	\uparrow	L	L	H
H	H	L	X	Q_{0}	$\overline{\mathrm{Q}}_{0}$

H；high level，L；low level，X；irrelevant，\uparrow ；transition from low to high level，
Q_{0} ；level of Q before the indicated steady－state input conditions were established．
\bar{Q}_{0} ；complement of \bar{Q}_{0} or level of Q before the indicated steady－state input conditions were established．
＊；This configuration is nonstable，that is，it will not persist when preset and clear inputs return to their inactive（high）level．

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Supply voltage	V_{CC}	7	V
Input voltage	V_{IN}	7	V
Power dissipation	P_{T}	400	mW
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$

Note: Voltage value, unless otherwise noted, are with respect to network ground terminal.

Recommended Operating Conditions

Item		Symbol	Min	Typ	Max	Unit
Supply voltage		$\mathrm{V}_{\text {CC }}$	4.75	5.00	5.25	V
Output current		IOH	-	-	-400	$\mu \mathrm{A}$
		loL	-	-	8	mA
Operating temperature		Topr	-20	25	75	${ }^{\circ} \mathrm{C}$
Clock frequency		$\mathrm{f}_{\text {clock }}$	0	-	25	MHz
Pulse width	Clock High	t_{w}	25	-	-	ns
	Clear Preset	$\mathrm{t}_{\text {w }}$	25	-	-	
Setup time	"H" Data	$\mathrm{t}_{\text {su }}$	$20 \uparrow$	-	-	ns
	"L" Data	$\mathrm{t}_{\text {su }}$	$20 \uparrow$	-	-	
Hold time		t_{n}	$5 \uparrow$	-	-	ns

Note: \uparrow; The arrow indicates the rising edge.

Electrical Characteristics

Item		Symbol	min.	typ.*	max.	Unit		Condition		
Input voltage		V_{IH}	2.0	-	-	V				
		$\mathrm{V}_{\text {IL }}$	-	-	0.8	V				
Output voltage		$\mathrm{V}_{\text {OH }}$	2.7	-	-	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$			
		VoL	-	-	0.5	V	$\mathrm{loL}=8 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \end{aligned}$		
		-	-	0.4	$\mathrm{loL}=4 \mathrm{~mA}$					
Input current	D		I_{H}	-	-	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=2.7 \mathrm{~V}$		
	Clear	-		-	40					
	Preset	-		-	40					
	Clock	-		-	20					
	D	$1 / L$	-	-	-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V}$			
	Clear		-	-	-0.8					
	Preset		-	-	-0.8					
	Clock		-	-	-0.4					
	D	1	-	-	0.1	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=7 \mathrm{~V}$			
	Clear		-	-	0.2					
	Preset		-	-	0.2					
	Clock		-	-	0.1					
Short-circuit output current		los	-20	-	-100	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$			
Supply current		$\mathrm{ICC}^{* *}$	-	4	8	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$			
Input clamp voltage		$\mathrm{V}_{\text {IR }}$	-	-	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$			

Notes: * $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$
** With all output open, $I_{c c}$ is measured with the Q and \bar{Q} outputs high in turn. At the time of measurement, the clock input is grounded.

Switching Characteristics

$$
\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)
$$

Item	Symbol	Inputs	Outputs	min.	typ.	max.	Unit	Condition
Maximum clock frequency	$\mathrm{f}_{\text {max }}$			25	33		MHz	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$
Propagation delay time	tplh	Clear, Clock or Preset	Q, $\overline{\mathrm{Q}}$	-	13	25	ns	
	tpHL			-	25	40	ns	

Timing Definition

Testing Method

Test Circuit

1. $f_{\text {max }}, \mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}($ Clock $\rightarrow \mathrm{Q}, \overline{\mathrm{Q}})$

Notes: 1. Test is put into the each flip-flop.
2. C_{L} includes probe and jig capacitance.
3. All diodes are $1 \mathrm{~S} 2074(\mathrm{H})$.
2. $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}($ Clear or Preset $\rightarrow \mathrm{Q}, \overline{\mathrm{Q}})$

Notes: 1. Test is put into the each flip-flop.
2. C_{L} includes probe and jig capacitance.
3. All diodes are 1S2074(H).

Waveforms 1

Note: Clock input pulse; $\mathrm{t}_{\mathrm{TLH}} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{THL}} \leq 6 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}$, duty cycle $=50 \%$ and for $\mathrm{f}_{\max }$, $\mathrm{t}_{\mathrm{TLH}}=\mathrm{t}_{\mathrm{THL}} \leq 2.5 \mathrm{~ns}$

Waveforms 2

Note: Crear and presel input pulse; $\mathrm{t}_{\mathrm{TLH}} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{THL}} \leq 6 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}$,

DIP14

DUMENSIONS ARE IN INCHES
DIMENSIONS IT I I FOR REFEREHCE OHLY

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Flip Flops category:
Click to view products by XINLUDA manufacturer:
Other Similar products are found below :
5962-8955201EA MC74HC11ADTG MC10EP29MNG MC74HC11ADTR2G NLV14013BDTR2G NLV14027BDG NLX1G74MUTCG 703557B 746431H 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA M38510/06102BFA M38510/06101B2A NLV74HC74ADR2G TC4013BP(N,F) NLV14013BDG NLV74AC32DR2G NLV74AC74DR2G MC74HC73ADG CY74FCT16374CTPACT MC74HC11ADR2G 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM 74ALVCH162374PAG TC7WZ74FK,LJ(CT CD54HCT273F HMC853LC3TR HMC723LC3CTR MM74HCT574MTCX MM74HCT273WM SN74LVC74APW SN74LVC74AD MC74HC73ADTR2G MC74HC11ADG SN74ALVTH16374GR M74HCT273B1R M74HC377RM13TR M74HC374RM13TR M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74AUP1G74DC,125 74VHC374FT(BJ) 74VHC9273FT(BJ) NLV14013BCPG

