

The 4-bit register features parallel and serial inputs, parallel outputs, mode control, and two clock inputs. The register has three mode operation:

- Parallel (broadside) load
- Shift right (the direction Q_A toward Q_D)
- Shift left (the direction Q_D toward Q_A)

Parallel loading is accomplished by applying the four bits of data and taking the mode control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-low transition of the clock-2 input. During loading, the entry of serial data is inhibited. Shift right is accomplished on the high-to-low transition of clock-1 when the mode control is low; shift left is accomplished on the high-to-low transition of clock-2 when the mode control is high by connecting the output of each flip-flop to the parallel input of the previous flip-flop (Q_D to input C, etc.) and serial data is entered at input D. The clock input may be applied commonly to clock-1 and clock-2 if both modes can be clocked from the same source. Changes at the mode control inputs are low; however, conditions described in the last three lines of the function table will also ensure that register contents are protected.

Pin Arrangement

(Top view)

Function Table

			Inpu	uts				Outputs				
Mode	Clocks		Sorial		Par	allel		0.	0	0	•	
control	2(L)	1(R)	Serial	Α	В	С	D	QΑ	ωB	чc	ναD	
Н	Н	Х	Х	Х	Х	Х	Х	Q _{AO}	Q_{BO}	Q _{CO}	Q _{DO}	
Н	\downarrow	Х	Х	а	b	С	d	а	b	С	d	
Н	\downarrow	Х	Х	Q _B *	Q _C *	Q _D *	d	Q_Bn	Q _{Cn}	Q_{Dn}	d	
L	L	Н	Х	Х	Х	Х	Х	Q _{AO}	Q_{BO}	Q _{CO}	Q _{DO}	
L	Х	\downarrow	Н	Х	Х	Х	Х	Н	Q _{An}	Q_Bn	Q _{Cn}	
L	Х	\downarrow	L	Х	Х	Х	Х	L	Q_{An}	Q_Bn	Q _{Cn}	
\uparrow	L	L	Х	Х	Х	Х	Х	Q _{AO}	Q_{BO}	Q _{co}	Q _{DO}	
\downarrow	L	L	Х	Х	Х	Х	Х	Q _{AO}	Q_{BO}	Q _{co}	Q _{DO}	
\downarrow	L	Н	Х	Х	Х	Х	Х	Q _{AO}	Q_{BO}	Q _{co}	Q _{DO}	
\uparrow	Н	L	Х	Х	Х	Х	Х	Q _{AO}	Q _{BO}	Q _{CO}	Q _{DO}	
↑	Н	Н	Х	Х	Х	Х	Х	Q _{AO}	Q _{BO}	Q _{co}	Q _{DO}	

Notes: 1. H; high level, L; low level, X; irrelevant

- 2. \uparrow ; transition from low to high level
- 3. \downarrow ; transition from high to low level
- 4. a to d; the level of steady-state input at inputs A, B, C, or D, respectively.
- 5. Q_{AO} to Q_{DO}; the level of Q_A, Q_B, Q_C, or Q_D, respectively, before the indicated steady-state input conditions were established.
- 6. Q_{An} to Q_{Dn} ; the level of Q_A , Q_B , Q_C , or Q_D , respectively, before the most-recent (1) transition of the clock.
- 7. *; Shifting left require external connection of QB to A, QC to B, and QD to C. Serial data is entered at input D.

Block Diagram

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Supply voltage	V _{CC}	7	V
Input voltage	V _{IN}	7	V
Power dissipation	P _T	400	mW
Storage temperature	Tstg	-65 to +150	°C

Note: Voltage value, unless otherwise noted, are with respect to network ground terminal.

Recommended Operating Conditions

Item	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	4.75	5.00	5.25	V
	I _{OH}	—	—	-400	μΑ
Ouput current	I _{OL}	—	—	8	mA
Operating temperature	Topr	-20	25	75	°C
Clock frequency	f _{clock}	0	—	25	MHz
Clock pulse width	t _{w (CK)}	20	—	—	ns
Setup time	t _{su}	20	—		ns
Hold time	t _h	10	—		ns
Enable time 1	t _{enable 1}	20	—	—	ns
Enable time 2	t _{enable 2}	20	—	—	ns
Inhibit time 1	t _{inhibit 1}	20	_		ns
Inhibit time 2	t _{inhibit 2}	20	_		ns

Electrical Characteristics

 $(Ta = -20 \text{ to } +75 \ ^{\circ}\text{C})$

Item	Symbol	min.	typ.*	max.	Unit	Condition
	V _{IH}	2.0	—	—	V	
input voltage	V _{IL}	—	—	0.8	V	
Output voltage	V _{OH}	2.7	—	—	V	$\label{eq:VCC} \begin{split} V_{CC} &= 4.75 \ \text{V}, \ V_{\text{IH}} = 2 \ \text{V}, \ V_{\text{IL}} = 0.8 \ \text{V}, \\ I_{OH} &= -400 \ \mu\text{A} \end{split}$
Output voltage	Max	—	—	0.4	V	$I_{OL} = 4 \text{ mA}$ $V_{CC} = 4.75 \text{ V}, V_{IH} = 2 \text{ V},$
	VOL	_	—	0.5	v	$I_{OL} = 8 \text{ mA}$ $V_{IL} = 0.8 \text{ V}$
	I _{IH}	_	_	20	μΑ	$V_{CC} = 5.25 \text{ V}, \text{ V}_{I} = 2.7 \text{ V}$
Input current	IIL	_	_	-0.4	mA	$V_{CC} = 5.25 \text{ V}, \text{ V}_{I} = 0.4 \text{ V}$
	I _I	_	_	0.1	mA	$V_{CC} = 5.25 \text{ V}, \text{ V}_{I} = 7 \text{ V}$
Short-circuit output current	I _{OS}	-20	_	-100	mA	V _{CC} = 5.25 V
Supply current**	I _{CC}	_	13	21	mA	V _{CC} = 5.25 V
Input clamp voltage	V _{IK}	_	_	-1.5	V	$V_{CC} = 4.75 \text{ V}, \text{ I}_{IN} = -18 \text{ mA}$

Notes: * V_{CC} = 5 V, Ta = 25°C ** I_{CC} is measured with all outputs and serial input open; A, B, C, and D inputs grounded; mode control at 4.5 V; and momentary 3 V, then ground, applied both clock inputs.

Switching Characteristics

$(V_{CC} = 5 V, Ta = 2$

ltem	Symbol	min.	typ.	max.	Unit	Condition
Maximum clock frequency	f _{max}	25	36		MHz	
Propagation dolay time	t _{PLH}		18	27	ns	$C_L = 15 \text{ pF}, R_L = 2 \text{ k}\Omega$
Fropagation delay time	t _{PHL}		21	32	ns	

Clock Enable / Inhibit Times

Testing Method

Test Circuit

Notes: 1. C_{L} includes probe and jig capacitance. 2. All diodes are 1S2074(H).

	From				Input	S				Outputs			
ltem	input to output	CK-1	CK-2	Mode control	Serial Inputs	Α	В	С	D	Q _A	Q _B	Qc	\mathbf{Q}_{D}
f _{max}	$CK-1 \rightarrow Q$	IN	4.5 V	0 V	IN	4.5 V	4.5 V	4.5 V	4.5 V	OUT	OUT	OUT	OUT
	$CK-2 \rightarrow Q$	4.5 V	IN	4.5 V	4.5 V	IN	IN	IN	IN	OUT	OUT	OUT	OUT
t _{PLH}	$CK-1 \rightarrow Q$	IN	4.5 V	0 V	IN	4.5 V	4.5 V	4.5 V	4.5 V	OUT	OUT	OUT	OUT
t _{PHL}	$CK-2 \rightarrow Q$	4.5 V	IN	4.5 V	4.5 V	IN	IN	IN	IN	OUT	OUT	OUT	OUT

Testing Table

Waveform

Note: Input pulse; t_{TLH} , $t_{THL} \le 10$ ns, Data PRR = 500 kHz, Clock PRR = 1 MHz,

Package Dimensions

以上信息仅供参考.如需帮助联系客服人员。谢谢 XINLUDA

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Counter Shift Registers category:

Click to view products by XINLUDA manufacturer:

Other Similar products are found below :

 5962-8956101EA
 MC10E446FNG
 74HC195N
 74HC4516N
 74HCT182N
 HEF4021BD
 HEF4534BP
 MC144111P
 NLV74HC165ADTR2G

 5962-9172201M2A
 MC74HC597ADG
 MC100EP142MNG
 MC100EP016AMNG
 5962-9172201MFA
 MC74HC164BDR2G

 TC74HC165AP(F)
 74AHC164T14-13
 MC74LV594ADR2G
 NLV14094BDTR2G
 NLV74HC595ADTG
 MC74HC165AMNTWG

 TPIC6C595PWG4
 74VHC164MTCX
 CD74HC195M96
 CD4073BM96
 CD4053BM96
 MM74HC595MTCX
 74HCT164T14-13

 74HCT164S14-13
 74HC4094D-Q100J
 NLV14014BFELG
 NLV74HC165ADR2G
 NLV74HC589ADTR2G
 NPIC6C595D-Q100,11

 NPIC6C595PW,118
 NPIC6C596ADJ
 NPIC6C596APW-Q100J
 NPIC6C596D-Q100,11
 BU4094BCFV-E2
 74HC164D14

 74HC164T14-13
 TPIC6C596PWRG4
 STPIC6D595MTR
 STP08CP05MTR
 CD74HC123E
 74HC164D.653
 74HC165D.653

 74HCT165D.652
 74HCT164D.652

 STPIC6D595MTR
 STP08CP05MTR
 CD74HC123E
 74HC164D.653
 74HC165D.653