The 4－bit register features parallel and serial inputs，parallel outputs，mode control，and two clock inputs．The register has three mode operation：
－Parallel（broadside）load
－Shift right（the direction Q_{A} toward Q_{D} ）
－Shift left（the direction Q_{D} toward Q_{A} ）
Parallel loading is accomplished by applying the four bits of data and taking the mode control input high．The data is loaded into the associated flip－flops and appears at the outputs after the high－to－low transition of the clock－2 input． During loading，the entry of serial data is inhibited．Shift right is accomplished on the high－to－low transition of clock－1 when the mode control is low；shift left is accomplished on the high－to－low transition of clock－2 when the mode control is high by connecting the output of each flip－flop to the parallel input of the previous flip－flop（ Q_{D} to input C ，etc．）and serial data is entered at input D ．The clock input may be applied commonly to clock－ 1 and clock－ 2 if both modes can be clocked from the same source．Changes at the mode control inputs are low；however，conditions described in the last three lines of the function table will also ensure that register contents are protected．

Pin Arrangement

Function Table

Inputs								Outputs			
Mode control	Clocks		Serial	Parallel				$Q_{\text {A }}$	Q_{B}	Q_{c}	$Q_{\text {D }}$
	2(L)	1(R)		A	B	C	D				
H	H	X	X	X	X	X	X	Q_{AO}	$\mathrm{Q}_{\text {BO }}$	$Q_{\text {co }}$	$Q_{\text {DO }}$
H	\downarrow	X	X	a	b	C	d	a	b	c	d
H	\downarrow	X	X	$\mathrm{QB}^{*}{ }^{\text {a }}$	$\mathrm{Q}_{\mathrm{C}}{ }^{\text {* }}$	$Q_{D}{ }^{*}$	d	$Q_{B n}$	Q_{cn}	$Q_{\text {Dn }}$	d
L	L	H	X	X	X	X	X	Q_{AO}	Q_{BO}	Q_{co}	$Q_{\text {DO }}$
L	X	\downarrow	H	X	X	X	X	H	$Q_{\text {An }}$	$Q_{\text {Bn }}$	$Q_{c n}$
L	X	\downarrow	L	X	X	X	X	L	$Q_{\text {An }}$	QBn	$Q_{C n}$
\uparrow	L	L	X	X	X	X	X	$Q_{\text {AO }}$	Q $\mathrm{Q}_{\text {о }}$	Qco	$Q_{\text {do }}$
\downarrow	L	L	X	X	X	X	X	$Q_{\text {AO }}$	Q ${ }_{\text {во }}$	Q_{co}	$Q_{\text {Do }}$
\downarrow	L	H	X	X	X	X	X	$Q_{\text {AO }}$	$Q_{\text {во }}$	$Q_{\text {co }}$	$Q_{\text {Do }}$
\uparrow	H	L	X	X	X	X	X	$\mathrm{Q}_{\text {AO }}$	Q BO	Q_{co}	$Q_{\text {Do }}$
\uparrow	H	H	X	X	X	X	X	Q_{AO}	$\mathrm{Q}_{\text {BO }}$	Q_{co}	$Q_{\text {DO }}$

Notes: 1. H; high level, L; low level, X; irrelevant
2. \uparrow; transition from low to high level
3. \downarrow; transition from high to low level
4. a to d; the level of steady-state input at inputs A, B, C, or D, respectively.
5. $Q_{A O}$ to $Q_{D O}$; the level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, before the indicated steady-state input conditions were established.
6. $Q_{A n}$ to $Q_{D n}$; the level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, before the most-recent (\uparrow) transition of the clock. 7. *; Shifting left require external connection of Q_{B} to A, Q_{C} to B, and Q_{D} to C. Serial data is entered at input D.

Block Diagram

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Supply voltage	V_{CC}	7	V
Input voltage	$\mathrm{V}_{\mathbb{N}}$	7	V
Power dissipation	P_{T}	400	mW
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$

Note: Voltage value, unless otherwise noted, are with respect to network ground terminal.
Recommended Operating Conditions

Item	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.75	5.00	5.25	V
Output current	l_{OH}	-	-	-400	$\mu \mathrm{~A}$
	l_{OL}	-	-	8	mA
Operating temperature	Topr	-20	25	75	${ }^{\circ} \mathrm{C}$
Clock frequency	$\mathrm{f}_{\text {clock }}$	0	-	25	MHz
Clock pulse width	$\mathrm{t}_{\mathrm{w}(\mathrm{CK})}$	20	-	-	ns
Setup time	$\mathrm{t}_{\text {su }}$	20	-	-	ns
Hold time	t_{h}	10	-	-	ns
Enable time 1	tenable 1	20	-	-	ns
Enable time 2	$\mathrm{t}_{\text {enable } 2}$	20	-	-	ns
Inhibit time 1	$\mathrm{t}_{\text {inhibit } 1}$	20	-	-	ns
Inhibit time 2	$\mathrm{t}_{\text {inhibit } 2}$	20	-	-	ns

Electrical Characteristics

$\left(\mathrm{Ta}=-20\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$

Notes: * $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$
${ }^{* *} \mathrm{I}_{\mathrm{CC}}$ is measured with all outputs and serial input open; $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D inputs grounded; mode control at 4.5 V ; and momentary 3 V , then ground, applied both clock inputs.

Switching Characteristics

Item	Symbol	min.	typ.	max.	Unit	Condition
Maximum clock frequency	$\mathrm{f}_{\max }$	25	36	-	MHz	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$
Propagation delay time	$\mathrm{t}_{\mathrm{PLH}}$	-	18	27	ns	
	$\mathrm{t}_{\mathrm{PH} \mathrm{L}}$	-	21	32	ns	

Clock Enable / Inhibit Times

Testing Method

Test Circuit

Notes: 1. C_{L} includes probe and jig capacitance.
2. All diodes are $1 \mathrm{~S} 2074(\mathrm{H})$.

Testing Table

Item	From input to output	Inputs								Outputs			
		CK-1	CK-2	Mode control	Serial Inputs	A	B	C	D	$Q_{\text {A }}$	Q_{B}	Q_{C}	Q_{D}
$\mathrm{f}_{\text {max }}$	CK-1 \rightarrow Q	IN	4.5 V	0 V	IN	4.5 V	4.5 V	4.5 V	4.5 V	OUT	OUT	OUT	OUT
	CK-2 \rightarrow Q	4.5 V	IN	4.5 V	4.5 V	IN	IN	IN	IN	OUT	OUT	OUT	OUT
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\text {PHLL }} \end{aligned}$	CK-1 \rightarrow Q	IN	4.5 V	0 V	IN	4.5 V	4.5 V	4.5 V	4.5 V	OUT	OUT	OUT	OUT
	CK-2 \rightarrow Q	4.5 V	IN	4.5 V	4.5 V	IN	IN	IN	IN	OUT	OUT	OUT	OUT

Waveform

Note: Input pulse; $\mathrm{t}_{\text {TH, }}, \mathrm{t}_{\text {THL }} \leq 10 \mathrm{~ns}$, Data $\operatorname{PRR}=500 \mathrm{kHz}$, Clock PRR $=1 \mathrm{MHz}$,

Package Dimensions

以上信息仅供参考．如需帮助联系客服人员。谢谢 XINLUDA

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Counter Shift Registers category:
Click to view products by XINLUDA manufacturer:
Other Similar products are found below :
5962-8956101EA MC10E446FNG 74HC195N 74HC4516N 74HCT182N HEF4021BD HEF4534BP MC144111P NLV74HC165ADTR2G
5962-9172201M2A MC74HC597ADG MC100EP142MNG MC100EP016AMNG 5962-9172201MFA MC74HC164BDR2G
TC74HC165AP(F) 74AHC164T14-13 MC74LV594ADR2G NLV14094BDTR2G NLV74HC595ADTG MC74HC165AMNTWG
TPIC6C595PWG4 74VHC164MTCX CD74HC195M96 CD4073BM96 CD4053BM96 MM74HC595MTCX 74HCT164T14-13
74HCT164S14-13 74HC4094D-Q100J NLV14014BFELG NLV74HC165ADR2G NLV74HC589ADTR2G NPIC6C595D-Q100, 11 NPIC6C595PW,118 NPIC6C596ADJ NPIC6C596APW-Q100J NPIC6C596D-Q100,11 BU4094BCF-E2 BU4094BCFV-E2 74HC164D14

74HC164T14-13 TPIC6C596PWRG4 STPIC6D595MTR STP08CP05MTR CD74HC123E 74HC164D.653 74HC165D.653
74HCT165D.652 74HCT164D. 652

