FEATURES

－3．3V 5．0V 12V ADJ and Adjustable Output Versions
－Adjustable Version Output Voltage Range，1．23V to 37 V （ 57 V for HV Version）$\pm 4 \%$ Max Over Line and Load Conditions
－Specified 3A Output Current
－Wide Input Voltage Range，40V Up to 60V for HV Version
－Requires Only 4 External Components
－ 52 kHz Fixed Frequency Internal Oscillator
－TTL Shutdown Capability，Low Power Standby Mode
－High Efficiency
－Uses Readily Available Standard Inductors
－Thermal Shutdown and Current Limit Protection
－P＋Product Enhancement Tested

APPLICATIONS

－Simple High－Efficiency Step－Down（Buck） Regulator
－Efficient Pre－Regulator for Linear Regulators
－On－Card Switching Regulators
－Positive to Negative Converter（Buck－Boost）

DESCRIPTION

The XH2576 series of regulators are monolithic integrated circuits that provide all the active functions for a step－down（buck）switching regulator，capable of driving 3A load with excellent line and load regulation． These devices are available in fixed output voltages of 3.3 V 5.0 V 12 V ADJ and an adjustable output version．

Requiring a minimum number of external components，these regulators are simple to use and include internal frequency compensation and a fixed－ frequency oscillator．

The XH2576 series offers a high－efficiency replacement for popular three－terminal linear regulators．It substantially reduces the size of the heat sink，and in some cases no heat sink is required．

A standard series of inductors optimized for use with the XH2576 are available from several different manufacturers．This feature greatly simplifies the design of switch－mode power supplies．
Other features include a specified $\pm 4 \%$ tolerance on output voltage within specified input voltages and output load conditions，and $\pm 10 \%$ on the oscillator frequency．External shutdown is included，featuring $50 \mu \mathrm{~A}$（typical）standby current．The output switch includes cycle－by－cycle current limiting，as well as thermal shutdown for full protection under fault conditions．

TYPICAL APPLICATION

（Fixed Output Voltage Versions）

Figure 1.

Block Diagram

$3.3 \mathrm{~V} 2=1.7 \mathrm{k}$
$5 \mathrm{~V}, \mathrm{R} 2=3.1 \mathrm{k}$
$12 \mathrm{~V}, \mathrm{R} 2=8.84 \mathrm{k}$
$15 \mathrm{~V}, \mathrm{R} 2=11.3 \mathrm{k}$
For ADJ. Version
$\mathrm{R} 1=$ Open, $\mathrm{R} 2=0 \Omega$
Patent Pending
ABSOLUTE MAXIMUM RATINGS ${ }^{\text {(1)(2) }}$

Maximum Supply Voltage	XH2576	45 V
$\overline{\text { ON } / \text { OFF Pin Input Voltage }}$	(Steady State)	$-0.3 \mathrm{~V} \leq \mathrm{V} \leq+\mathrm{V}_{\mathrm{IN}}$
Output Voltage to Ground	-1 V	
Power Dissipation	(C = $100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega)$	Internally Limited
Storage Temperature Range	(Soldering, 10 Seconds)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$	
Minimum ESD Rating	2 kV	
Lead Temperature	$260^{\circ} \mathrm{C}$	

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not ensured specific performance limits. For ensured specifications and test conditions, see ELECTRICAL CHARACTERISTICS ALL OUTPUT VOLTAGE VERSIONS.

OPERATING RATINGS

Temperature Range	XH2576	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$
Supply Voltage	XH2576	40 V
	XH2576	60 V

ELECTRICAL CHARACTERISTICS XH2576-3.3

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

| Symbol | Parameter | Conditions | | XH2576-3.3 | | Units
 (Limits) |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |

(1) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods.
(2) External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the XH2576 is used as shown in Figure 21 and Figure 22, system performance will be as shown in ELECTRICAL CHARACTERISTICS ALL OUTPUT VOLTAGE VERSIONS.

ELECTRICAL CHARACTERISTICS XH2576-5.0

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with Figure 21 and Figure 22 boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	XH2576-5.0		Units (Limits)
			Typ	Limit ${ }^{(1)}$	
SYSTEM PARAMETERS Figure 21 and Figure $22{ }^{(2)}$					
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{LOAD}}=0.5 \mathrm{~A} \\ & \text { Circuit of Figure } 21 \text { and Figure } 22 \end{aligned}$	5.0	$\begin{aligned} & 4.900 \\ & 5.100 \end{aligned}$	$\begin{gathered} V \\ V(\operatorname{Min}) \\ \text { V(Max) } \end{gathered}$
$\mathrm{V}_{\text {OUT }}$	Output Voltage XH2576	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, \\ & 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \end{aligned}$ Circuit of Figure 21 and Figure 22	5.0	$\begin{aligned} & 4.800 / 4.750 \\ & 5.200 / 5.250 \end{aligned}$	V V (Min) $\mathrm{V}(\mathrm{Max})$
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 3 \mathrm{~A}, \\ & 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V} \end{aligned}$ Circuit of Figure 21 and Figure 22	5.0	$\begin{aligned} & 4.800 / 4.750 \\ & 5.225 / 5.275 \end{aligned}$	V V(Min) V(Max)
η	Efficiency	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}$ LOAD $=3 \mathrm{~A}$	77		\%

(1) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods.
(2) External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the XH2576 is used as shown in Figure 21 and Figure 22, system performance will be as shown in ELECTRICAL CHARACTERISTICS ALL OUTPUT VOLTAGE VERSIONS.

ELECTRICAL CHARACTERISTICS XH2576-12

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	XH2576-12		Units(Limits)
			Typ	Limit ${ }^{(1)}$	
SYSTEM PARAMETERS Test Circuit Figure 21 and Figure 22 ${ }^{(2)}$					
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{LOAD}}=0.5 \mathrm{~A}$ Circuit of Figure 21 and Figure 22	12	$\begin{aligned} & 11.76 \\ & 12.24 \end{aligned}$	V V(Min) V (Max)
$\mathrm{V}_{\text {OUT }}$	Output Voltage XH2576	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 3 \mathrm{~A}, \\ & 15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \end{aligned}$ Circuit of Figure 21 and Figure 22 and	12	$\begin{aligned} & 11.52 / 11.40 \\ & 12.48 / 12.60 \end{aligned}$	V V (Min) V (Max)
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 3 \mathrm{~A}, \\ & 15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V} \end{aligned}$ Circuit of Figure 21 and Figure 22	12	$\begin{aligned} & 11.52 / 11.40 \\ & 12.54 / 12.66 \end{aligned}$	V V (Min) V (Max)
η	Efficiency	$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	88		\%

(1) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods.
(2) External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the XH2576 is used as shown in Figure 21 and Figure 22, system performance will be as shown in ELECTRICAL
CHARACTERISTICS ALL OUTPUT VOLTAGE VERSIONS.

ELECTRICAL CHARACTERISTICS XH2576-ADJ

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	XH2576-ADJ		Units (Limits)
			Typ	Limit ${ }^{(1)}$	
SYSTEM PARAMETERS Test Circuit Figure 21 and Figure 22 ${ }^{(2)}$					
$\mathrm{V}_{\text {OUT }}$	Feedback Voltage	$\begin{aligned} & V_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \end{aligned}$ Circuit of Figure 21 and Figure 22	1.230	$\begin{aligned} & 1.217 \\ & 1.243 \end{aligned}$	V V(Min) V(Max)
$\mathrm{V}_{\text {OUT }}$	Feedback Voltage XH2576	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, \\ & 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \text { Circuit of Figure } 21 \text { and Figure } 22 \\ & \hline \end{aligned}$	1.230	$\begin{aligned} & 1.193 / 1.180 \\ & 1.267 / 1.280 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\operatorname{Min}) \\ \mathrm{V}(\mathrm{Max}) \\ \hline \end{gathered}$
$\mathrm{V}_{\text {OUT }}$	Feedback Voltage	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, \\ & 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \text { Circuit of Figure } 21 \text { and Figure } 22 \\ & \hline \end{aligned}$	1.230	$\begin{aligned} & 1.193 / 1.180 \\ & 1.273 / 1.286 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\operatorname{Min}) \\ \mathrm{V}(\mathrm{Max}) \end{gathered}$
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$	77		\%

(1) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods.
(2) External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the XH2576 is used as shown in Figure 21 and Figure 22, system performance will be as shown in ELECTRICAL
CHARACTERISTICS ALL OUTPUT VOLTAGE VERSIONS.

TYPICAL PERFORMANCE CHARACTERISTICS

(Circuit of Figure 21 and Figure 22)

Figure 2.

JUNCTION TEMPERATURE (${ }^{\circ} \mathrm{C}$)
Figure 4.

Figure 6.

Figure 3.

Junction temperature (${ }^{\circ} \mathrm{C}$)
Figure 5.

Figure 7.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

(Circuit of Figure 21 and Figure 22)

JUNCTION TEMPERATURE (${ }^{\circ} \mathrm{C}$)
Figure 8.

Figure 10.

Figure 12.

Figure 9.

Figure 11.

Figure 13.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

(Circuit of Figure 21 and Figure 22)

Figure 14.

Figure 16.

Figure 15.

JUNCTION TEMPERATURE (${ }^{\circ} \mathrm{C}$)
Figure 17.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

(Circuit of Figure 21 and Figure 22)

Maximum Power Dissipation

AMBIENT TEMPERATURE (${ }^{\circ} \mathrm{C}$)
If the DDPAK/TO-263 package is used, the thermal resistance can be reduced by increasing the PC board copper area thermally connected to the package. Using 0.5 square inches of copper area, θ_{JA} is $50^{\circ} \mathrm{C} / \mathrm{W}$, with 1 square inch of copper area, θ_{JA} is $37^{\circ} \mathrm{C} / \mathrm{W}$, and with 1.6 or more square inches of copper area, θ_{JA} is $32^{\circ} \mathrm{C} / \mathrm{W}$.

Figure 18.

$5 \mu \mathrm{~s} / \mathrm{div}$
$\mathrm{V}_{\text {OUT }}=15 \mathrm{~V}$
A: Output Pin Voltage, $50 \mathrm{~V} /$ div
B: Output Pin Current, 2A/div
C: Inductor Current, 2A/div
D: Output Ripple Voltage, $50 \mathrm{mV} / \mathrm{div}$,
AC-Coupled
Horizontal Time Base: $5 \mu \mathrm{~s} / \mathrm{div}$
Figure 19.

Figure 20.

XH2576 Series Buck Regulator Design Procedure

PROCEDURE (Fixed Output Voltage Versions)	EXAMPLE (Fixed Output Voltage Versions)
Given: $\mathrm{V}_{\text {OUT }}=$ Regulated Output Voltage (3.3V, 5 V , 12 V , or 15 V) $\mathrm{V}_{\mathrm{IN}}(\mathrm{Max})=$ Maximum Input Voltage LIOAD(Max) = Maximum Load Current	Given: $\begin{aligned} & \mathrm{V}_{\text {OUT }}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}(\operatorname{Max})=15 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}(\operatorname{Max})=3 \mathrm{~A} \end{aligned}$
1. Inductor Selection (L1) A. Select the correct Inductor value selection guide from Figure 23, Figure 24, Figure 25, or Figure 26. (Output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$ or 15 V respectively). For other output voltages, see the design procedure for the adjustable version. B. From the inductor value selection guide, identify the inductance region intersected by $\mathrm{V}_{\mathrm{IN}}(\mathrm{Max})$ and $\mathrm{l}_{\text {LOAD }}($ Max $)$, and note the inductor code for that region. C. Identify the inductor value from the inductor code, and select an appropriate inductor from the table shown in Figure 23. Part numbers are listed for three inductor manufacturers. The inductor chosen must be rated for operation at the XH2576 switching frequency (52 kHz) and for a current rating of $1.15 \times \mathrm{I}_{\text {LOAD }}$. For additional inductor information, see INDUCTOR SELECTION.	1. Inductor Selection (L1) A. Use the selection guide shown in Figure 24. B. From the selection guide, the inductance area intersected by the 15 V line and 3 A line is L100. C. Inductor value required is $100 \mu \mathrm{H}$. From the table in Figure 23. Choose AIE 415-0930, Pulse Engineering PE92108, or Renco RL2444.
2. Output Capacitor Selection (Cout) A. The value of the output capacitor together with the inductor defines the dominate pole-pair of the switching regulator loop. For stable operation and an acceptable output ripple voltage, (approximately 1% of the output voltage) a value between $100 \mu \mathrm{~F}$ and $470 \mu \mathrm{~F}$ is recommended. B. The capacitor's voltage rating should be at least 1.5 times greater than the output voltage. For a 5 V regulator, a rating of at least 8 V is appropriate, and a 10 V or 15 V rating is recommended. Higher voltage electrolytic capacitors generally have lower ESR numbers, and for this reason it may be necessary to select a capacitor rated for a higher voltage than would normally be needed.	2. Output Capacitor Selection (Cout) A. $\mathrm{C}_{\text {OUt }}=680 \mu \mathrm{~F}$ to $2000 \mu \mathrm{~F}$ standard aluminum electrolytic. B. Capacitor voltage rating $=20 \mathrm{~V}$.
3. Catch Diode Selection (D1) A.The catch-diode current rating must be at least 1.2 times greater than the maximum load current. Also, if the power supply design must withstand a continuous output short, the diode should have a current rating equal to the maximum current limit of the XH2576 The most stressful condition for this diode is an overload or shorted output condition. B. The reverse voltage rating of the diode should be at least 1.25 times the maximum input voltage.	3. Catch Diode Selection (D1) A.For this example, a 3A current rating is adequate. B. Use a 20 V 1N5823 or SR302 Schottky diode, or any of the suggested fast-recovery diodes shown in Table 1.
4. Input Capacitor (C_{IN}) An aluminum or tantalum electrolytic bypass capacitor located close to the regulator is needed for stable operation.	4. Input Capacitor (C_{IN}) A $100 \mu \mathrm{~F}, 25 \mathrm{~V}$ aluminum electrolytic capacitor located near the input and ground pins provides sufficient bypassing.

INDUCTOR VALUE SELECTION GUIDES

(For Continuous Mode Operation)

Figure 23. XH2576-3.3

Figure 25. XH2576-12

Figure 24. XH2576-5.0
(For Continuous Mode Operation)

Figure 26. XH2576-ADJ

PROCEDURE (Adjustable Output Voltage Versions)	EXAMPLE (Adjustable Output Voltage Versions)
Given: $\mathrm{V}_{\text {OUT }}=$ Regulated Output Voltage $\mathrm{V}_{\mathrm{IN}}($ Max $)=$ Maximum Input Voltage LIOAD (Max) = Maximum Load Current $\mathrm{F}=$ Switching Frequency (Fixed at 52 kHz)	Given: $\begin{aligned} & \mathrm{V}_{\text {OUT }}=10 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}(\operatorname{Max})=25 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}(\mathrm{Max})=3 \mathrm{~A} \\ & \mathrm{~F}=52 \mathrm{kHz} \end{aligned}$
1. Programming Output Voltage (Selecting R1 and R2, as shown in Figure 21 and Figure 22) Use the following formula to select the appropriate resistor values. $V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R_{2}}{R_{1}}\right) \quad \text { where } V_{\text {REF }}=1.23 \mathrm{~V}$ R_{1} can be between $1 k$ and $5 k$. (For best temperature coefficient and stability with time, use 1% metal film resistors) $R_{2}=R_{1}\left(\frac{V_{\text {OUT }}}{V_{\text {REF }}}-1\right)$	1. Programming Output Voltage(Selecting R1 and R2) $\begin{aligned} & V_{\text {OUT }}=1.23\left(1+\frac{R_{2}}{R_{1}}\right) \quad \text { Select } R_{1}=1 k \\ & R_{2}=R_{1}\left(\frac{V_{\text {OUT }}}{V_{\text {REF }}}-1\right)=1 k\left(\frac{10 \mathrm{~V}}{1.23 \mathrm{~V}}-1\right) \end{aligned}$ $R_{2}=1 k(8.13-1)=7.13 k$, closest 1% value is $7.15 k$

(For Continuous Mode Operation)

PROCEDURE (Adjustable Output Voltage Versions)	
2. Inductor Selection (L1) A. Calculate the inductor Volt • microsecond constant, E•T $(V \cdot \mu s)$, from the following formula:	2.

2. Inductor Selection (L1)
A. Calculate $\mathrm{E} \cdot \mathrm{T}(\mathrm{V} \cdot \mu \mathrm{s})$

$$
E \cdot T=(25-10) \cdot \frac{10}{25} \cdot \frac{1000}{52}=115 \mathrm{~V} \cdot \mu \mathrm{~S}
$$

B. $E \cdot T=115 \mathrm{~V} \cdot \mu \mathrm{~s}$
C. $\mathrm{I}_{\text {LOAD }}($ Max $)=3 \mathrm{~A}$
D. Inductance Region $=\mathrm{H} 150$
E. Inductor Value $=150 \mu \mathrm{H}$ Choose from AIEpart \#415-0936Pulse Engineering part \#PE-531115, or Renco part \#RL2445.

3. Output Capacitor Selection ($\mathrm{C}_{\text {OUT }}$)

$\mathrm{C}_{\text {OUT }}>13,300 \frac{25}{10 \cdot 150}=22.2 \mu \mathrm{~F}$
However, for acceptable output ripple voltage select
Cout $\geq 680 \mu \mathrm{~F}$
$\mathrm{C}_{\text {OUT }}=680 \mu \mathrm{~F}$ electrolytic capacitor

4. Catch Diode Selection (D1)

A. For this example, a 3.3A current rating is adequate.
B. Use a 30V 31DQ03 Schottky diode, or any of the suggested fastrecovery diodes in Table 1.

5. Input Capacitor ($\mathrm{C}_{\text {IN }}$)

A $100 \mu \mathrm{~F}$ aluminum electrolytic capacitor located near the input and ground pins provides sufficient bypassing.

以上信息仅供参考．如需帮助联系客服人员。谢谢 XINLUDA

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by XINLUDA manufacturer:
Other Similar products are found below :
LV5065VB-TLM-H LV5066V-TLM-H LV5725JAZ-AH 633888R MP2908AGF AZ7500EP-E1 NCP1012AP133G NCP1217P133G
NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP1587GDR2G NCP6153MNTWG
NCP81005MNTWG NCP81101BMNTXG NCP81205MNTXG HV9123NG-G-M934 IR35207MTRPBF ISL6367HIRZ CAT874-80ULGT3
SJ6522AG SJE6600 TLE63893GV50XUMA1 IR35215MTRPBF SG3845DM NCP1216P133G NCP1236DD65R2G NCP1247BD100R2G
NCP1250BP65G NCP4202MNR2G NCP4204MNTXG NCP6132AMNR2G NCP81141MNTXG NCP81142MNTXG NCP81172MNTXG NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UC3845ADM UBA2051C IR35201MTRPBF MAX8778ETJ+ MAX17500AAUB+T MAX17411GTM+T MAX16933ATIR/V+ NCP1010AP130G NCP1063AD100R2G NCP1216AP133G NCP1217AP100G

