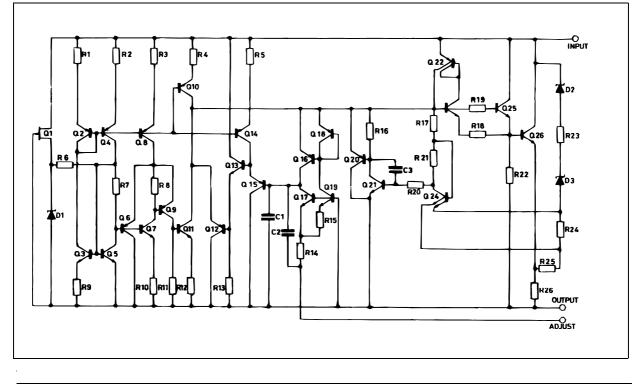


XL217 SOP8 / XT217 TO92

Datasheet - production data

Features

- Outuput voltage range: 1.2 to 37 V
- Outuput current in excess of 100 mA
- Output current up to 100 mA
- Line regulation typ. 0.01%
- Load regulation typ. 0.1%
- Thermal overload protection
- Short-circuit protection
- Output transition safe area compensation
- Floating operation for high voltage applications


Description

The XL217 are monolithic integrated circuits in SO-8 and TO-92 packages intended for use as positive adjustable voltage regulators. They are designed to supply up to 100 mA of load current with an output voltage adjustable over a 1.2 to 37 V range.The nominal output voltage is selected by means of only a resistive divider, making the device exceptionally easy to use and eliminating the stocking of many fixed regulators.

Order cod	es
SO-8 (tape and reel)	TO-92 (Bag)
XL217	
XL217	XT217

Table 1. Device summary

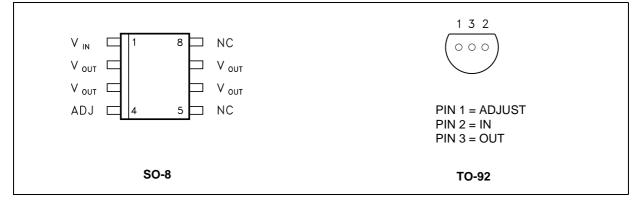
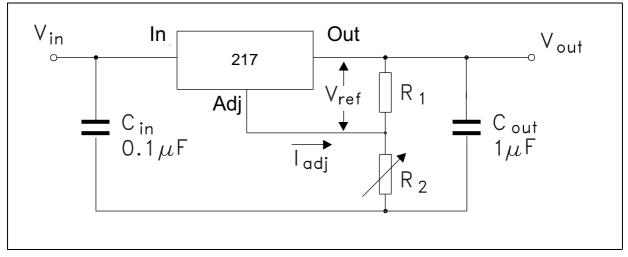

1 Diagram

Figure 1. Schematic diagram

2 Pin configuration


Figure 2. Pin connections (top view for SO-8, bottom view for TO-92)

3 Maximum ratings

Symbol	Parameter		Value	Unit
V _I -V _O	Input-output differential voltage		40	V
PD	Power dissipation		Internally limited	mW
т		for XL217	-40 to 125	°C
T _{OP}	Operating junction temperature range	for XT217	0 to 125	
T _{STG}	Storage temperature range	·	-55 to 150	°C

Figure 3. Test circuit

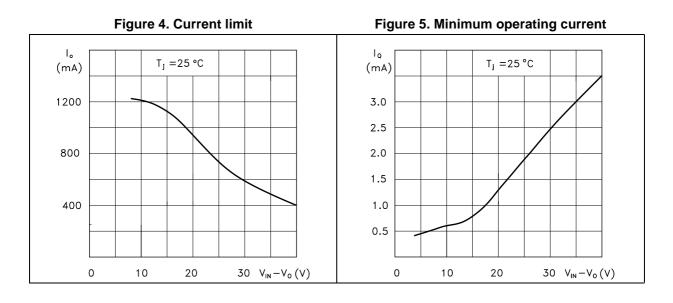
4 Electrical characteristics

(Refer to the test circuits, T_J = - 40 to 125°C, V_I - V_O = 5 V, I_O = 40 mA, unless otherwise specified)

Symbol	Parameter	Test condition	S	Min.	Тур.	Max.	Unit
	Line regulation	$V_1 - V_0 = 3 \text{ to } 40 \text{ V}, \text{ I}_1 20 \text{ mA}$	$T_J = 25^{\circ}C$		0.01	0.02	%/V
DVO	Line regulation	$v_1 - v_0 = 3 10 40 v, 12 20 MA$			0.02	0.05	70/ V
		$V_{O} \le 5 \text{ V}, I_{O} = 5 \text{ to } 100 \text{ mA}$	T _J = 25°C		5	15	mV
	Lood regulation	$v_0 \le 5 v, v_0 = 5 t0 100 \text{ IIIA}$			20	50	IIIV
DVO	Load regulation	$V_{\Omega} \ge 5 \text{ V}, \text{ I}_{\Omega} = 5 \text{ to } 100 \text{ mA}$	T _J = 25°C		0.1	0.3	%
		$v_0 \ge 5 v, v_0 = 5 t0 100 \text{ IIIA}$			0.3	1	70
I _{ADJ}	Adjustment pin current				50	100	μA
DI _{ADJ}	Adjustment pin current	$V_1 - V_0 = 3 \text{ to } 40 \text{ V}, I_0 = 5 \text{ to } 7$ $P_d < 625 \text{ mW}$	100 mA		0.2	5	μA
V _{REF}	Reference voltage	$V_{I} - V_{O} = 3 \text{ to } 40 \text{ V}, I_{O} = 10 \text{ to } 500 \text{ mA}$ $P_{d} < 625 \text{ mW}$ 1.2 1.25		1.3	V		
DV _O /V _O	Output voltage temperature stability	/		0.7		%	
I _{O(min)}	Minimum load current	V _I - V _O = 40 V			3.5	5	mA
		$V_{I} - V_{O} = 3 \text{ to } 13 \text{ V}$		100	200		mA
I _{O(max)}	Maximum output current	V _I - V _O = 40 V			50		mA
eN	Output noise voltage	B = 10 Hz to 10 KHz, $T_J = 25^{\circ}C$ 0.003			%		
SVR	Supply voltage rejection	T _J = 25°C	$C_{ADJ} = 0$		65		dB
JVK	(1)	f = 120 Hz	$C_{ADJ} = 10 \ \mu F$	66	80		

Table 3.	Electrical	characteristics	of XL217
	LICOLIDUI	011010010110100	

1. C_{ADJ} is connected between adjust pin and ground.


(Refer to the test circuits, T_J = 0 to 125°C, V_I - V_O = 5 V, I_O = 40 mA, unless otherwise specified)

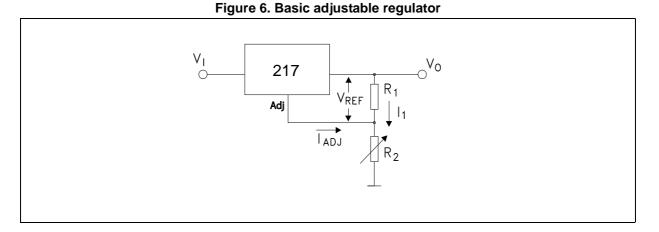
Symbol	Parameter	Test conditions	6	Min.	Тур.	Max.	Unit
	Line regulation	$V_1 - V_0 = 3 \text{ to } 40 \text{ V}, I_1 < 20 \text{ mA}$	$T_J = 25^{\circ}C$		0.01	0.04	%/V
DVO	Line regulation	$v_1 - v_0 = 3 10 40 v, 1 < 20 11A$			0.02	0.07	70/ V
		$V_{O} \le 5 \text{ V}, I_{O} = 5 \text{ to } 100 \text{ mA}$	$T_J = 25^{\circ}C$		5	25	mV
	Load regulation	$v_0 \le 5 v, v_0 = 5 to 100 mA$			20	70	mv
DVO		$V_{O} \ge 5 \text{ V}, I_{O} = 5 \text{ to } 100 \text{ mA}$	T _J = 25°C		0.1	0.5	%
		$v_0 \ge 5 v, v_0 = 5 to 100 mA$			0.3	1.5	
I _{ADJ}	Adjustment pin current				50	100	μA
DI _{ADJ}	Adjustment pin current	$V_{I} - V_{O} = 3 \text{ to } 40 \text{ V}, I_{O} = 5 \text{ to } 10$ $P_{d} < 625 \text{ mW}$	00 mA		0.2	5	μA
V _{REF}	Reference voltage	$ \begin{array}{ c c c c c } V_{1} - V_{O} = 3 \text{ to } 40 \text{ V}, \text{ I}_{O} = 5 \text{ to } 100 \text{ mA} \\ P_{d} < 625 \text{ mW} \end{array} \begin{array}{ c c c } 1.2 \end{array} $		1.3	V		
DV _O /V _O	Output voltage temperature stability	0.		0.7		%	
I _{O(min)}	Minimum load current	$V_{\rm I} - V_{\rm O} = 40 \ V$ 3.5		5	mA		
		V _I - V _O = 3 to 13 V		100	200		<u>س</u> ۸
I _{O(max)}	Maximum output current	$V_{I} - V_{O} = 40 V$			50		— mA
eN	Output noise voltage	B = 10 Hz to 10 KHz, $T_{J} = 25^{\circ}$	С		0.003		%
SVR	Supply voltage rejection (1)	T _J = 25°C	$C_{ADJ} = 0$		65		dB
JVK		f = 120 Hz	$C_{ADJ} = 10 \ \mu F$	66	80	dB	

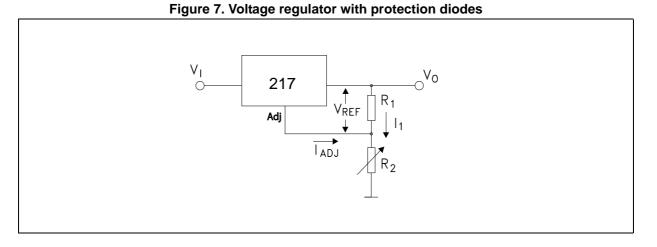
Table 4. Electrical characteristics of XL217

1. C_{ADJ} is connected between adjust pin and ground.

5 Typical performance

6 Application information


The XL217 provides an internal reference voltage of 1.25 V between the output and adjustments terminals. This is used to set a constant current flow across an external resistor divider (see *Figure 6.*), giving an output voltage V_O of:

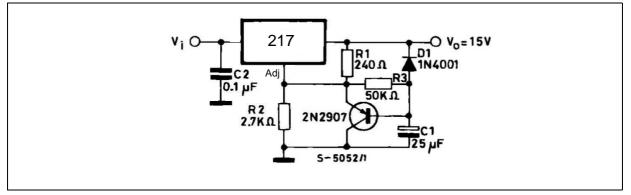
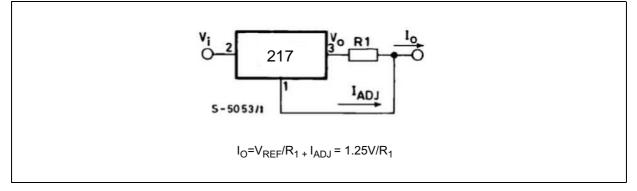
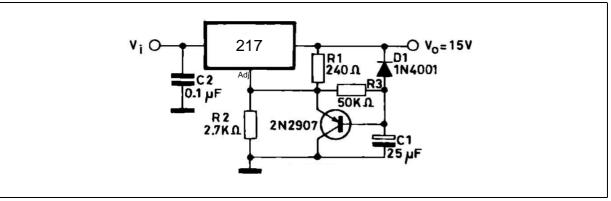

 $V_{O} = V_{REF} (1 + R_{2}/R_{1}) + I_{ADJ} R_{2}$

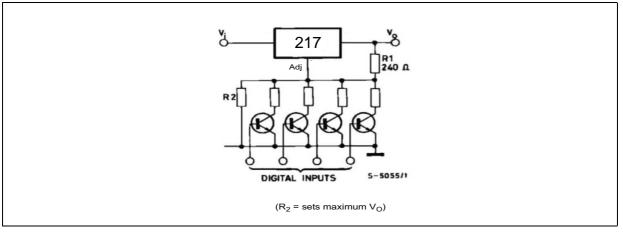
The device was designed to minimize the term I_{ADJ} (100 µA max) and to maintain it very constant with line and load changes. Usually, the error term $I_{ADJ} \times R_2$ can be neglected. To obtain the previous requirement, all the regulator quiescent current is returned to the output terminal, imposing a minimum load current condition. If the load is insufficient, the output voltage will rise.

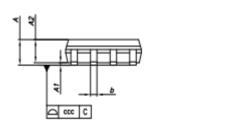
Since the XL217 is a floating regulator and "sees" only the input-to-output differential voltage, supplies of very high voltage with respect to ground can be regulated as regulator as the maximum input-to-output differential is not exceeded. Furthermore, programmable regulators are easily obtainable and, by connecting a fixed resistor between the adjustment and output, the device can be used as a precision current regulator. In order to optimize the load regulation, the current set resistor R_1 (see *Figure 6.*) should be tied as close as possible to the regulator, while the ground terminal of R_2 should be near the ground of the load to provide remote ground sensing.

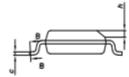
7 Application circuits

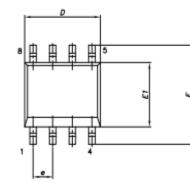
Figure 8. Slow turn-on 15 V regulator

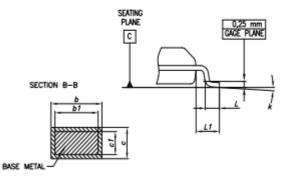





Figure 9. Current regulator

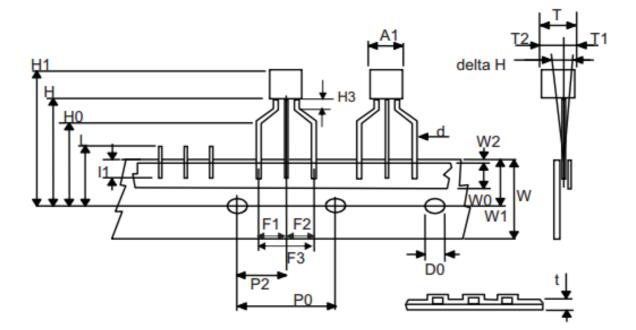

Figure 10. 5 V Electronic shut-down regulator




Figure 11. Digitally selected outputs



XL217 SOP8 / XT217 TO92



Dim.	mm			
	Min.	Тур.	Max.	
Α			1.75	
A1	0.10		0.25	
A2	1.25			
b	0.31		0.51	
b1	0.28		0.48	
с	0.10		0.25	
c1	0.10		0.23	
D	4.80	4.90	5.00	
E	5.80	6.00	6.20	
E1	3.80	3.90	4.00	
е		1.27		
h	0.25		0.50	
L	0.40		1.27	
L1		1.04		
L2		0.25		
k	0°		8°	
CCC			0.10	

以上信息仅供参考.如需帮助联系客服人员。谢谢 XINLUDA

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by XINLUDA manufacturer:

Other Similar products are found below :

LV56831P-E LV5684PVD-XH MCDTSA6-2R L4953G L7815ACV-DG PQ3DZ53U LV56801P-E TCR3DF13,LM(CT TCR3DF39,LM(CT TLE42794G L78L05CZ/1SX L78LR05DL-MA-E L78MR05-E 033150D 033151B 090756R 636416C NCV78M15BDTG 702482B 714954EB TLE42794GM TLE42994GM ZMR500QFTA BA033LBSG2-TR NCV78M05ABDTRKG NCV78M08BDTRKG NCP7808TG NCV571SN12T1G LV5680P-E CAJ24C256YI-GT3 L78M15CV-DG L9474N TLS202B1MBV33HTSA1 L79M05T-E NCP571SN09T1G MAX15006AASA/V+ MIC5283-5.0YML-T5 L4969URTR-E L78LR05D-MA-E NCV7808BDTRKG L9466N NCP7805ETG SC7812CTG NCV7809BTG NCV571SN09T1G NCV317MBTG MC78M15CDTT5G MC78M12CDTT5G L9468N LT1054IS8#TRPBF