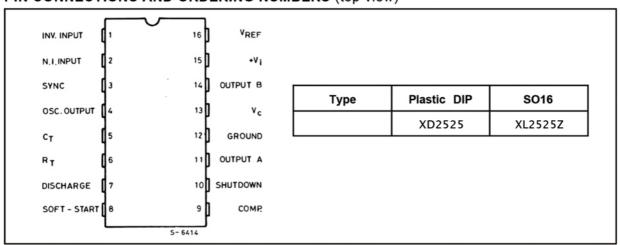


REGULATING PULSE WIDTH MODULATORS

- 8 TO 35 V OPERATION
- 5.1 V REFERENCE TRIMMED TO ± 1 %
- 100 Hz TO 500 KHz OSCILLATOR RANGE
- SEPARATE OSCILLATOR SYNC TERMINAL
- ADJUSTABLE DEADTIME CONTROL
- INTERNAL SOFT-START
- PULSE-BY-PULSE SHUTDOWN
- INPUT UNDERVOLTAGE LOCKOUT WITH HYSTERESIS
- LATCHING PWM TO PREVENT MULTIPLE PULSES
- DUAL SOURCE/SINK OUTPUT DRIVERS



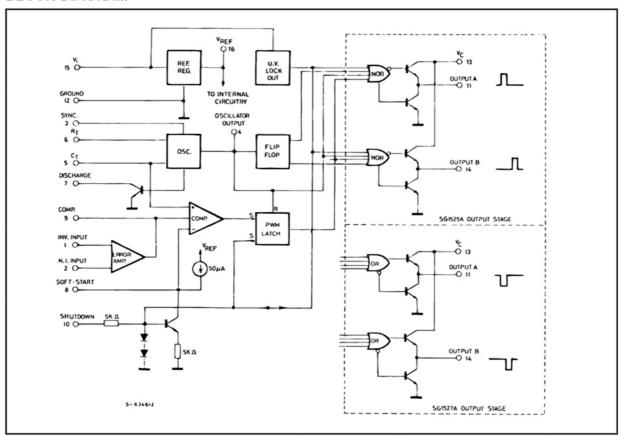
DESCRIPTION

The XD2525 DIP16 series of pulse width modulator integrated circuits are designed to offer improved performance and lowered external parts count when used in designing all types of switching power supplies. The on-chip + 5.1 V reference is trimmed to \pm 1 % and the input common-mode range of the error amplifier includes the reference voltage eliminating external resistors. A sync input to the oscillator allows multiple units to be slaved or a single unit to be synchronized to an external system clock. A single resistor between the C_T and the discharge terminals provide a wide range of dead time ad-These devices also feature built-in soft-start circuitry with only an external timing capacitor required. A shutdown terminal controls both the soft-start circuity and the output stages, providing instantaneous

turn off through the PWM latch with pulsed shutdown, as well as soft-start recycle with longer shutdown commands. These functions are also controlled by an undervoltage lockout which keeps the outputs off and the soft-start capacitor discharged for sub-normal input voltages. This lockout circuitry includes approximately 500 mV of hysteresis for iitterfree operation. Another feature of these PWM circuits is a latch following the comparator. Once a PWM pulses has been terminated for any reason, the outputs will remain off for the duration of the period. The latch is reset with each clock pulse. The output stages are totem-pole designs capable of sourcing or sinking in excess of 200 mA. The XD2525 DIP16 output stage features NOR logic, giving a LOW output for an OFF state.

PIN CONNECTIONS AND ORDERING NUMBERS (top view)

ABSOLUTE MAXIMUM RATINGS


Symbol	Parameter	Value	Unit
Vi	Supply Voltage	40	V
Vc	Collector Supply Voltage	40	٧
losc	Oscillator Charging Current	5	mA
l _o	Output Current, Source or Sink	500	mA
I _R	Reference Output Current	50	mA
lΤ	Current through C _T Terminal Logic Inputs Analog Inputs	5 - 0.3 to + 5.5 - 0.3 to V _i	mA V V
P _{tot}	Total Power Dissipation at T _{amb} = 70 °C	1000	mW
Tj	Junction Temperature Range	- 55 to 150	°
T _{stg}	Storage Temperature Range	- 65 to 150	°C
Тор	Operating Ambient Temperature : XD2525 DIP16 XL2525Z SOP16	– 25 to 85 0 to 70	ဂိ ဂိ

THERMAL DATA

Symbol	Parameter	SO16	DIP16	Unit
R _{th j-pins}	Thermal Resistance Junction-pins Ma	x	50	°C/W
R _{th j-amb}	Thermal Resistance Junction-ambient Ma	x l	80	°C/W
Rth j-alumina	Thermal Resistance Junction-alumina (*)	x 50		°C/W

^{*} Thermal resistance junction-alumina with the device soldered on the middle of an alumina supporting substrate measuring 15 × 20 mm; 0.65 mm thickness with infinite heatsink.

BLOCK DIAGRAM

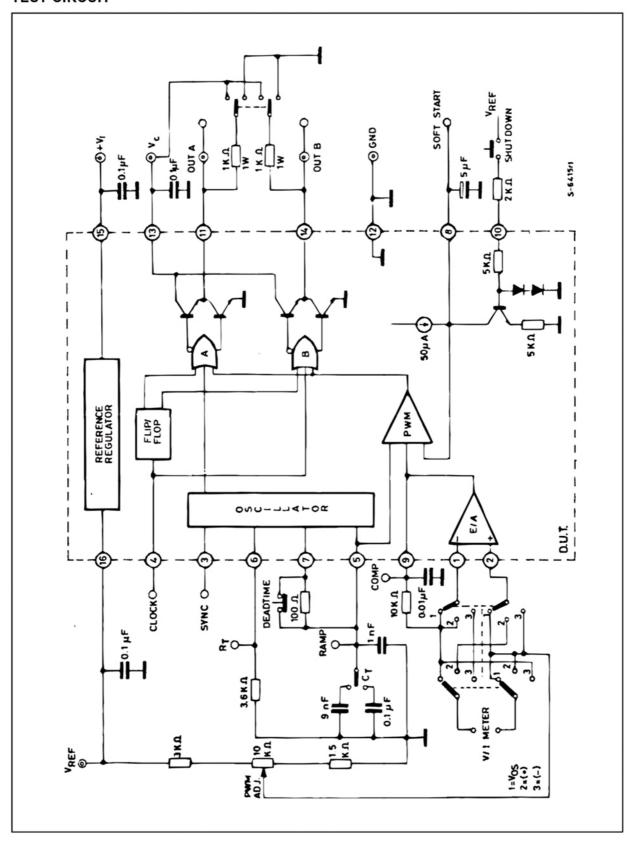
ELECTRICAL CHARACTERISTICS (V# i = 20 V, and over operating temperature, unless otherwise specified)

Symbol	Parameter Test Conditions	XD2525 DIP16			XL2525Z SOP16			Unit	
Syllibol	Parameter	Test Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Oiiii
REFEREN	CE SECTION								
V_{REF}	Output Voltage	T _j = 25 °C	5.05	5.1	5.15	5	5.1	5.2	٧
ΔV_{REF}	Line Regulation	V _i = 8 to 35 V		10	20		10	20	mV
ΔV_{REF}	Load Regulation	I _L = 0 to 20 mA		20	50		20	50	mV
ΔV _{REF} /ΔT*	Temp. Stability	Over Operating Range		20	50		20	50	mV
*	Total Output Variation	Line, Load and Temperature	5		5.2	4.95		5.25	٧
	Short Circuit Current	V _{REF} = 0 T _j = 25 °C	,	80	100		80	100	mA
*	Output Noise Voltage	10 Hz \leq f \leq 10 kHz, T _j = 25 °C		40	200		40	200	μVrms
ΔV_{REF}^*	Long Term Stability	T _j = 125 °C, 1000 hrs		20	50		20	50	mV
OSCILLAT	OR SECTION * *								
*, •	Initial Accuracy	T _j = 25 °C		± 2	± 6		± 2	± 6	%
*, •	Voltage Stability	V _i = 8 to 35 V		± 0.3	± 1		± 1	± 2	%
$\Delta f/\Delta T^*$	Temperature Stability	Over Operating Range		± 3	± 6		± 3	± 6	%
f _{MIN}	Minimum Frequency	$R_T = 200 \text{ K}\Omega \text{ C}_T = 0.1 \mu\text{F}$			120			120	Hz
f_{MAX}	Maximum Frequency	$R_T = 2 \text{ K}\Omega \text{ C}_T = 470 \text{ pF}$	400			400			KHz
	Current Mirror	I _{RT} = 2 mA	1.7	2	2.2	1.7	2	2.2	mA
*, •	Clock Amplitude		3	3.5		3	3.5		V
*, •	Clock Width	T _j = 25 °C	0.3	0.5	1	0.3	0.5	1	μS
	Sync Threshold		1.2	2	2.8	1.2	2	2.8	V
	Sync Input Current	Sync Voltage = 3.5 V		1	2.5		1	2.5	mA
ERROR A	MPLIFIER SECTION (Vc	_M = 5.1 V)							
Vos	Input Offset Voltage			0.5	5		2	10	mV
l _b	Input Bias Current			1	10		1	10	μА
los	Input Offset Current				1		1	1	μА
	DC Open Loop Gain	$R_L \geq 10~M\Omega$	60	75	,	60	75		dB
*	Gain Bandwidth Product	$G_v = 0 \text{ dB}$ $T_j = 25 ^{\circ}\text{C}$	1	2		1	2		MHz
*, •	DC Transconduct.	$\begin{array}{l} 30 \text{ K}\Omega \leq R_L \leq 1 \text{ M}\Omega \\ T_j = 25 \text{ °C} \end{array}$	1.1	1.5		1.1	1.5		ms
	Output Low Level			0.2	0.5		0.2	0.5	٧
	Output High Level		3.8	5.6		3.8	5.6		٧
CMR	Comm. Mode Reject.	V _{CM} = 1.5 to 5.2 V	60	75		60	75		dB
PSR	Supply Voltage Rejection	V _i = 8 to 35 V	50	60		50	60		dB

XD2525 DIP16-XL2525Z SOP16

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions	XD2525 DIP16			XL2525Z SOP16			Unit
Symbol	Parameter	Test Collultions		Тур.	Max.	Min.	Тур.	Max.	1 01111
PWM COMPARATOR									
	Minimum Duty-cycle				0			0	%
•	Maximum Duty-cycle		45	49		45	49		%
•	Input Threshold	Zero Duty-cycle	0.7	0.9		0.7	0.9		٧
		Maximum Duty-cycle		3.3	3.6		3.3	3.6	٧
*	Input Bias Current			0.05	1		0.05	1	μА
SHUTDOV	SHUTDOWN SECTION								
	Soft Start Current	V _{SD} = 0 V, V _{SS} = 0 V	25	50	80	25	50	80	μА
	Soft Start Low Level	V _{SD} = 2.5 V		0.4	0.7		0.4	0.7	٧
	Shutdown Threshold	To outputs, $V_{SS} = 5.1 \text{ V}$ T _j = 25 °C	0.6	0.8	1	0.6	0.8	1	٧
	Shutdown Input Current	V _{SD} = 2.5 V		0.4	1		0.4	1	mA
*	Shutdown Delay	V _{SD} = 2.5 V T _j = 25 °C		0.2	0.5		0.2	0.5	μS
OUTPUT	DRIVERS (each output) (V _C = 20 V)							
	Output Low Level	I _{sink} = 20 mA		0.2	0.4		0.2	0.4	٧
		I _{sink} = 100 mA		1	2		1	2	٧
	Output High Level	I _{source} = 20 mA	18	19		18	19		٧
		I _{source} = 100 mA	17	18		17	18		٧
	Under-Voltage Lockout	V _{comp} and V _{ss} = High	6	7	8	6	7	8	٧
Ic	Collector Leakage	V _C = 35 V			200			200	μА
t _r *	Rise Time	C _L = 1 nF, T _j = 25 °C		100	600		100	600	ns
t _f *	Fall Time	C _L = 1 nF, T _j = 25 °C		50	300		50	300	ns
TOTAL STANDBY CURRENT									
Is	Supply Current	V _i = 35 V		14	20		14	20	mA


^{*} These parameters, although guaranteed over the recommended operating conditions, are not 100 % tested in production.

$$f = \frac{1}{C_T(0.7 R_T + 3 R_D)}$$

[•] Tested at f_{osc} = 40 KHz (R_T = 3.6 K Ω , C_T = 10nF, R_D = 0 Ω). Approximate oscillator frequency is defined by :

[■] DC transconductance (g_M) relates to DC open-loop voltage gain (G_V) according to the following equation: $G_V = g_M R_L$ where R_L is the resistance from pin 9 to ground. The minimum g_M specification is used to calculate minimum G_V when the error amplifier output is loaded.

TEST CIRCUIT

RECOMMENDED OPERATING CONDITIONS (•)

Parameter	Value
Input Voltage (V _i)	8 to 35 V
Collector Supply Voltage (V _C)	4.5 to 35 V
Sink/Source Load Current (steady state)	0 to 100 mA
Sink/Source Load Current (peak)	0 to 400 mA
Reference Load Current	0 to 20 mA
Oscillator Frequency Range	100 Hz to 400 KHz
Oscillator Timing Resistor	2 KΩ to 150 KΩ
Oscillator Timing Capacitor	0.001 μF to 0.1 μF
Dead Time Resistor Range	0 to 500 Ω

^(•) Range over which the device is functional and parameter limits are guaranteed.

Figure 1 : Oscillator Charge Time vs. R_T and C_T .

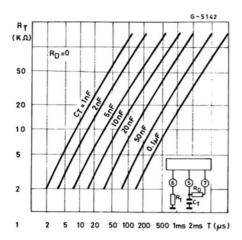


Figure 3 : Output Saturation Characteristics.

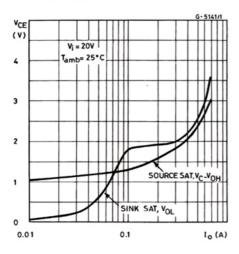


Figure 2 : Oscillator Discharge Time vs. R_D and C_T .

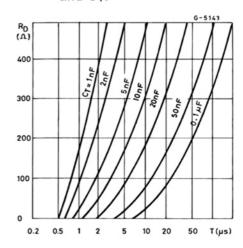


Figure 4 : Error Amplifier Voltage Gain and Phase vs. Frequency.

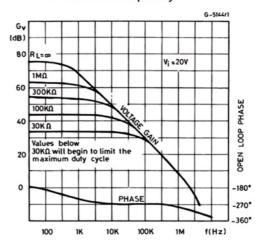
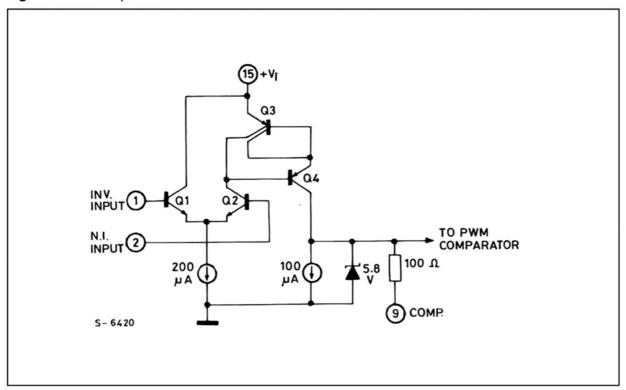



Figure 5: Error Amplifier.

PRINCIPLES OF OPERATION

SHUTDOWN OPTIONS (see Block Diagram)

Since both the compensation and soft-start terminals (Pins 9 and 8) have current source pull-ups, either can readily accept a pull-down signal which only has to sink a maximum of 100 μA to turn off the outputs. This is subject to the added requirement of discharging whatever external capacitance may be attached to these pins.

An alternate approach is the use of the shutdown circuitry of Pin 10 which has been improved to enhance the available shutdown options. Activating this circuit by applying a positive signal on Pin 10 performs two functions: the PWM latch is immedi-

ately set providing the fastest turn-off signal to the outputs ; and a 150 μA current sink begins to discharge the external soft-start capacitor. If the shutdown command is short, the PWM signal is terminated without significant discharge of the soft-start capacitor, thus, allowing, for example, a convenient implementation of pulse-by-pulse current limiting. Holding Pin 10 high for a longer duration, however, will ultimately discharge this external capacitor, recycling slow turn-on upon release.

Pin 10 should not be left floating as noise pickup could conceivably interrupt normal operation.

Figure 6 : Oscillator Schematic.

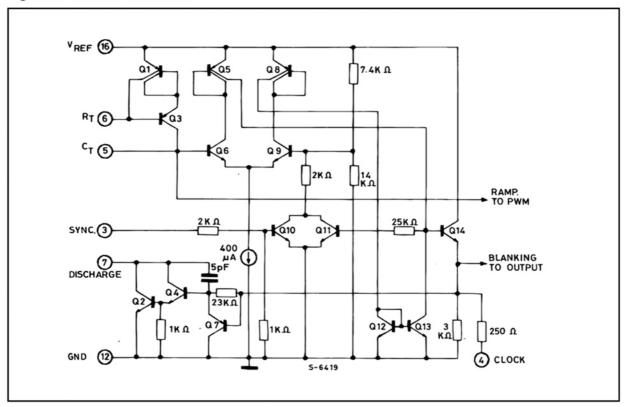


Figure 7 : Output Circuit (1/2 circuit shown).

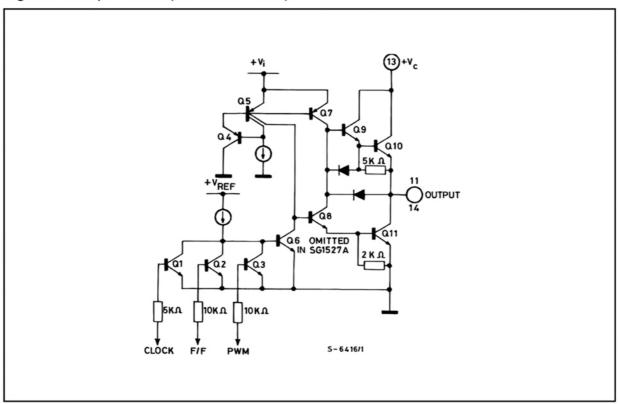
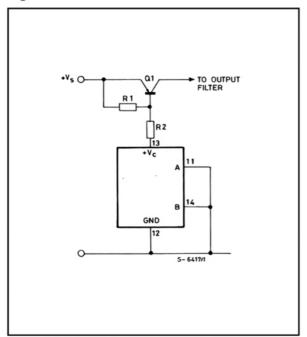
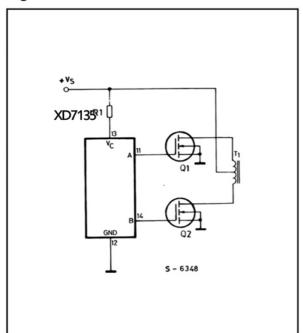




Figure 8.

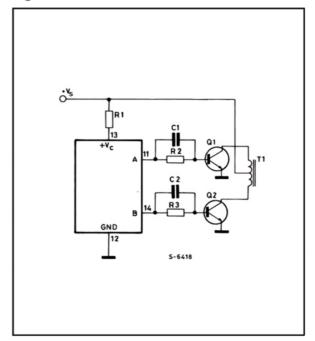

For single-ended supplies, the driver outputs are grounded. The V_{C} terminal is switched to ground by the totem-pole source transistors on alternate oscillator cycles.

Figure 10.

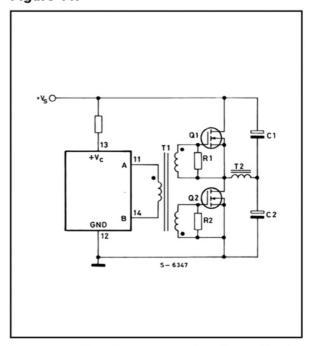

The low source impedance of the output drivers provides rapid charging of Power Mos input capacitance while minimizing external components.

Figure 9.

In conventional push-pull bipolar designs, forward base drive is controlled by R_1 - R_3 . Rapid turn-off times for the power devices are achieved with speed-up capacitors C_1 and C_2 .

Figure 11.

Low power transformers can be driven directly. Automatic reset occurs during dead time, when both ends of the primary winding are switched to ground.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Controllers category:

Click to view products by XINLUDA manufacturer:

Other Similar products are found below:

LV5065VB-TLM-H LV5066V-TLM-H LV5725JAZ-AH 633888R MP2908AGF AZ7500EP-E1 NCP1012AP133G NCP1217P133G

NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP1587GDR2G NCP6153MNTWG

NCP81005MNTWG NCP81101BMNTXG NCP81205MNTXG HV9123NG-G-M934 IR35207MTRPBF ISL6367HIRZ CAT874-80ULGT3

SJ6522AG SJE6600 TLE63893GV50XUMA1 IR35215MTRPBF SG3845DM NCP1216P133G NCP1236DD65R2G NCP1247BD100R2G

NCP1250BP65G NCP4202MNR2G NCP4204MNTXG NCP6132AMNR2G NCP81141MNTXG NCP81142MNTXG NCP81172MNTXG

NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UC3845ADM UBA2051C IR35201MTRPBF MAX8778ETJ+

MAX17500AAUB+T MAX17411GTM+T MAX16933ATIR/V+ NCP1010AP130G NCP1063AD100R2G NCP1216AP133G

NCP1217AP100G