1 Features

- Wide Input Voltage Range: 3 V to 40 V
- High Output Switch Current: Up to 1.5 A
- Adjustable Output Voltage
- Oscillator Frequency Up to 100 kHz
- Precision Internal Reference: 2\%
- Short-Circuit Current Limiting
- Low Standby Current

2 Applications

- Blood Gas Analyzers: Portable
- Cable Solutions
- HMIs (Human Machine Interfaces)
- Telecommunications
- Portable Devices
- Consumer \& Computing
- Test \& Measurement

3 Description

The XD34063 and XD33063 devices are easy-touse ICs containing all the primary circuitry needed for building simple DC-DC converters. These devices primarily consist of an internal temperaturecompensated reference, a comparator, an oscillator, a PWM controller with active current limiting, a driver, and a high-current output switch. Thus, the devices require minimal external components to build converters in the boost, buck, and inverting topologies.
The XD34063 device is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, while the XD33063 device is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

5 Device Information ${ }^{(1)}$

PART NUMBER	PACKAGE (PIN)	BODY SIZE
$33063 / 34063$	SOIC (8)	$4.90 \mathrm{~mm} \times 3.91 \mathrm{~mm}$
	SON (8)	$4.00 \mathrm{~mm} \times 4.00 \mathrm{~mm}$
	PDIP (8)	$9.81 \mathrm{~mm} \times 6.35 \mathrm{~mm}$

(1) For all available packages, see the orderable addendum at the end of the data sheet.

4 Simplified Schematic

XD34063 DIP8/XD33063 DIP8- XL34063 SOP8/XL33063 SOP8

6 Pin Configuration and Functions

\dagger The exposed thermal pad is electrically bonded internally to pin 4 (GND).
Pin Functions

PIN		TYPE	DESCRIPTION
NAME	NO.		
Switch Collector	1	I/O	High-current internal switch collector input.
Switch Emitter	2	I/O	High-current internal switch emitter output.
Timing Capacitor	3	-	Attach a timing capacitor to change the switching frequency.
GND	4	-	Ground
Comparator Inverting Input	5	I	Attach to a resistor divider network to create a feedback loop.
V_{CC}	6	I	Logic supply voltage. Tie to V_{IN}.
IPK	7	I	Current-limit sense input.
Driver Collector	8	I/O	Darlington pair driving transistor collector input.

XD34063 DIP8/XD33063 DIP8- XL34063 SOP8/XL33063 SOP8

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

		MIN	MAX
V_{CC}	Supply voltage	UNIT	
V_{IR}	Comparator inverting input voltage range	-0.3	40
$\mathrm{~V}_{\mathrm{C} \text { (switch) }}$	Switch collector voltage	V	
$\mathrm{V}_{\mathrm{E} \text { (switch) }}$	Switch emitter voltage	$\mathrm{V}_{\text {PIN } 1}=40 \mathrm{~V}$	40
$\mathrm{~V}_{\mathrm{CE}(\text { switch })}$	Switch collector to switch emitter voltage	V	
$\mathrm{V}_{\mathrm{C} \text { (driver) }}$	Driver collector voltage	40	V
$\mathrm{I}_{\text {(driver) }}$	Driver collector current	40	V
I_{SW}	Switch current		40
$\mathrm{~T}_{\mathrm{J}}$	Operating virtual junction temperature	V	
$\mathrm{T}_{\text {Stg }}$	Storage temperature range	100	mA

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

		VALUE	UNIT
Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ${ }^{(1)}$	2500	V
	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ${ }^{(2)}$	1500	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

			MIN	MAX	UNIT
V_{CC}	Supply voltage	3	40	V	
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	XD34063	-40	85	C
		XD33063	0	70	

7.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		XD33063			UNIT
		D	DRJ	P	
		8 PINS			
$\mathrm{R}_{\theta \mathrm{JA}}$	Junction-to-ambient thermal resistance	97	41	85	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).

7.5 Electrical Characteristics-Oscillator

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ full operating range (unless otherwise noted) (see block diagram)

	PARAMETER	TEST CONDITIONS	T_{A}	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {osc }}$	Oscillator frequency	$\mathrm{V}_{\text {PIN5 }}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$	$25^{\circ} \mathrm{C}$	24	33	42	kHz
$\mathrm{I}_{\text {chg }}$	Charge current	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ to 40 V	$25^{\circ} \mathrm{C}$	24	35	42	$\mu \mathrm{A}$
$\mathrm{I}_{\text {dischg }}$	Discharge current	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ to 40 V	$25^{\circ} \mathrm{C}$	140	220	260	$\mu \mathrm{A}$
$\mathrm{I}_{\text {dischg }} / I_{\text {chg }}$	Discharge-to-charge current ratio	$\mathrm{V}_{\mathrm{PIN} 7}=\mathrm{V}_{\mathrm{CC}}$	$25^{\circ} \mathrm{C}$	5.2	6.5	7.5	-
$\mathrm{V}_{\text {lpk }}$	Current-limit sense voltage	$\mathrm{I}_{\text {dischg }}=\mathrm{I}_{\text {chg }}$	$25^{\circ} \mathrm{C}$	250	300	350	mV

XD34063 DIP8/XD33063 DIP8- XL34063 SOP8/XL33063 SOP8

7.6 Electrical Characteristics-Output Switch

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ full operating range (unless otherwise noted) (see block diagram) ${ }^{(1)}$

	PARAMETER	TEST CONDITIONS	T_{A}	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {CE(sat) }}$	Saturation voltage Darlington connection	$\mathrm{I}_{\text {SW }}=1 \mathrm{~A}$, pins 1 and 8 connected	Full range		1	1.3	V
$\mathrm{V}_{\text {CE(sat) }}$	Saturation voltage -non-Darlington connection ${ }^{(2)}$	$\begin{aligned} & I_{\text {SW }}=1 \mathrm{~A}, \mathrm{R}_{\text {PIN } 8}=82 \Omega \text { to } \mathrm{V}_{\mathrm{CC}}, \\ & \text { forced } \beta \sim 20 \end{aligned}$	Full range		0.45	0.7	V
$\mathrm{h}_{\text {FE }}$	DC current gain	$\mathrm{I}_{\mathrm{SW}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	50	75		-
$\mathrm{I}_{\text {(} \text { (ff) }}$	Collector off-state current	$\mathrm{V}_{\text {CE }}=40 \mathrm{~V}$	Full range		0.01	100	$\mu \mathrm{A}$

(1) Low duty-cycle pulse testing is used to maintain junction temperature as close to ambient temperature as possible.
(2) In the non-Darlington configuration, if the output switch is driven into hard saturation at low switch currents ($\leq 300 \mathrm{~mA}$) and high driver currents $(\geq 30 \mathrm{~mA})$, it may take up to $2 \mu \mathrm{~s}$ for the switch to come out of saturation. This condition effectively shortens the off time at frequencies $\geq 30 \mathrm{kHz}$, becoming magnified as temperature increases. The following output drive condition is recommended in the nonDarlington configuration:
Forced β of output switch $=I_{C, S W} /\left(I_{C, \text { driver }}-7 \mathrm{~mA}\right) \geq 10$, where $\sim 7 \mathrm{~mA}$ is required by the $100-\Omega$ resistor in the emitter of the driver to forward bias the V_{be} of the switch.

7.7 Electrical Characteristics-Comparator

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ full operating range (unless otherwise noted) (see block diagram)

	PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {th }}$	Threshold voltage		$25^{\circ} \mathrm{C}$	1.225	1.25	1.275	V
			Full range	1.21		1.29	
$\Delta \mathrm{V}_{\text {th }}$	Threshold-voltage line regulation	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ to 40 V	Full range		1.4	5	mV
IIB	Input bias current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	Full range		-20	-400	nA

7.8 Electrical Characteristics-Total Device

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ full operating range (unless otherwise noted) (see block diagram)

	PARAMETER	TEST CONDITIONS	TA	MIN MAX	UNIT
I_{cc}	Supply current	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ to $40 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$, $V_{\text {PIN } 7}=V_{C C}, V_{\text {PIN } 5}>V_{\text {th }}$, $V_{\text {PIN2 }}=G N D$, All other pins open	Full range	4	mA

XD34063 DIP8/XD33063 DIP8- XL34063 SOP8/XL33063 SOP8

7.9 Typical Characteristics

XD34063 DIP8/XD33063 DIP8- XL34063 SOP8/XL33063 SOP8

8 Detailed Description

8.1 Overview

The XD33063 and XD34063 devices are easy-to-use ICs containing all the primary circuitry needed for building simple DC-DC converters. These devices primarily consist of an internal temperature-compensated reference, a comparator, an oscillator, a PWM controller with active current limiting, a driver, and a high-current output switch. Thus, the devices require minimal external components to build converters in the boost, buck, and inverting topologies.
The XD 33063 device is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, while the XD 34063 device is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

8.2 Functional Block Diagram

8.3 Feature Description

- Wide Input Voltage Range: 3 V to 40 V
- High Output Switch Current: Up to 1.5 A
- Adjustable Output Voltage
- Oscillator Frequency Up to 100 kHz
- Precision Internal Reference: 2\%
- Short-Circuit Current Limiting
- Low Standby Current

8.4 Device Functional Modes

8.4.1 Standard operation

Based on the application, the device can be configured in multiple different topologies. See the Application and Implementation section for how to configure the device in several different operating modes.

XD34063 DIP8/XD33063 DIP8- XL34063 SOP8/XL33063 SOP8

9 Application and Implementation

9.1 Application Information

9.1.1 External Switch Configurations for Higher Peak Current

a) EXTERNAL npn SWITCH
b) EXTERNAL npn SATURATED SWITCH (see Note A)
A. If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents ($\leq 300 \mathrm{~mA}$) and high driver currents ($\geq 30 \mathrm{~mA}$), it may take up to $2 \mu \mathrm{~s}$ to come out of saturation. This condition will shorten the off time at frequencies $\geq 30 \mathrm{kHz}$ and is magnified at high temperatures. This condition does not occur with a Darlington configuration because the output switch cannot saturate. If a non-Darlington configuration is used, the output drive configuration in Figure 7b is recommended.

Figure 5. Boost Regulator Connections for I_{C} Peak Greater Than 1.5 A

XD34063 DIP8/XD33063 DIP8- XL34063 SOP8/XL33063 SOP8

Application Information (continued)

Figure 6. Buck Regulator Connections for I_{C} Peak Greater Than 1.5 A

Figure 7. Inverting Regulator Connections for I_{C} Peak Greater Than 1.5 A

9.2 Typical Application

9.2.1 Voltage-Inverting Converter Application

XD34063 DIP8/XD33063 DIP8- XL34063 SOP8/XL33063 SOP8

Typical Application (continued)

9.2.1.1 Design Requirements

The user must determine the following desired parameters:
$\mathrm{V}_{\text {sat }}=$ Saturation voltage of the output switch
$V_{F}=$ Forward voltage drop of the chosen output rectifier
The following power-supply parameters are set by the user:
$\mathrm{V}_{\text {in }}=$ Nominal input voltage
$\mathrm{V}_{\text {out }}=$ Desired output voltage
$\mathrm{I}_{\text {out }}=$ Desired output current
$\mathrm{f}_{\text {min }}=$ Minimum desired output switching frequency at the selected values of $\mathrm{V}_{\text {in }}$ and $\mathrm{I}_{\text {out }}$
$\mathrm{V}_{\text {ripple }}=$ Desired peak-to-peak output ripple voltage. The ripple voltage directly affects the line and load regulation and, thus, must be considered. In practice, the actual capacitor value should be larger than the calculated value, to account for the capacitor's equivalent series resistance and board layout.

9.2.1.2 Detailed Design Procedure

CALCULATION	VOLTAGE INVERTING
$\mathrm{ton}^{\prime} / \mathrm{toff}$	$\frac{\left\|V_{\text {out }}\right\|+V_{F}}{V_{\text {in }}-V_{\text {sat }}}$
$\left(\mathrm{t}_{\mathrm{on}}+\mathrm{t}_{\text {off }}\right)$	$\frac{1}{f}$
$\mathrm{t}_{\text {off }}$	$\frac{t_{\text {on }}+t_{\text {off }}}{\frac{t_{\text {on }}}{t_{\text {off }}}+1}$
$\mathrm{t}_{\text {on }}$	$\left(t_{\text {on }}+t_{\text {off }}\right)-t_{\text {off }}$
$\mathrm{C}_{\text {T }}$	$4 \times 10^{-5} \mathrm{t}_{\text {on }}$
$\mathrm{I}_{\mathrm{pk} \text { (switch) }}$	$2 \mathrm{l}_{\text {out(max })}\left(\frac{\mathrm{t}_{\text {on }}}{\mathrm{t}_{\text {off }}}+1\right)$
R_{Sc}	$\frac{0.3}{\mathrm{I}_{\mathrm{pk}(\text { switch })}}$
$\mathrm{L}_{\text {(min) }}$	$\left(\frac{\left(\mathrm{V}_{\text {in(min })}-\mathrm{V}_{\text {sat }}\right)}{\mathrm{I}_{\mathrm{pk}(\text { switch })}}\right) \mathrm{t}_{\text {on(max })}$
Co	$9 \frac{\mathrm{I}_{\text {out }} \mathrm{t}_{\mathrm{on}}}{\mathrm{~V}_{\text {ripple(pp) }}}$
$V_{\text {out }}$	$-1.25\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)$ See Figure 8

XD34063 DIP8/XD33063 DIP8- XL34063 SOP8/XL33063 SOP8

9.2.1.3 Application Performance

Figure 9. Current-Limit Sense Voltage vs Temperature

TEST	CONDITIONS	RESULTS
Line regulation	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$ to $6 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	$3 \mathrm{mV} \pm 0.12 \%$
Load regulation	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$ to 100 mA	$0.022 \mathrm{~V} \pm 0.09 \%$
Output ripple	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	$500 \mathrm{mV} \mathrm{V}_{\mathrm{PP}}$
Short-circuit current	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega$	910 mA
Efficiency	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	62.2%
Output ripple with optional filter	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	70 mV

XD34063 DIP8/XD33063 DIP8- XL34063 SOP8/XL33063 SOP8

9.2.2 Step-Up Converter Application

Figure 10. Step-Up Converter

9.2.2.1 Design Requirements

The user must determine the following desired parameters:
$V_{\text {sat }}=$ Saturation voltage of the output switch
$V_{F}=$ Forward voltage drop of the chosen output rectifier
The following power-supply parameters are set by the user:
$\mathrm{V}_{\text {in }}=$ Nominal input voltage
$V_{\text {out }}=$ Desired output voltage
$\mathrm{I}_{\text {out }}=$ Desired output current
$f_{\text {min }}=$ Minimum desired output switching frequency at the selected values of $\mathrm{V}_{\text {in }}$ and $\mathrm{I}_{\text {out }}$
$\mathrm{V}_{\text {ripple }}=$ Desired peak-to-peak output ripple voltage. The ripple voltage directly affects the line and load regulation and, thus, must be considered. In practice, the actual capacitor value should be larger than the calculated value, to account for the capacitor's equivalent series resistance and board layout.

XD34063 DIP8/XD33063 DIP8- XL34063 SOP8/XL33063 SOP8

9.2.2.2 Detailed Design Procedure

CALCULATION	STEP UP
$\mathrm{t}_{\mathrm{on}} / \mathrm{t}_{\text {off }}$	$\frac{V_{\text {out }}+V_{F-V i n(\min)}}{V_{\text {in }(\min)}-V_{\text {sat }}}$
$\left(\mathrm{t}_{\mathrm{on}}+\mathrm{t}_{\text {off }}\right)$	$\frac{1}{f}$
$\mathrm{t}_{\text {off }}$	$\frac{t_{\text {on }}+t_{\text {off }}}{\frac{t_{\text {on }}}{t_{\text {off }}}+1}$
$\mathrm{t}_{\text {on }}$	$\left(t_{\text {on }}+t_{\text {off }}\right)-t_{\text {off }}$
$\mathrm{C}_{\text {T }}$	$4 \times 10^{-5} \mathrm{t}_{\text {on }}$
$\mathrm{I}_{\mathrm{pk} \text { (switch) }}$	$2 \mathrm{l}_{\text {out(max })}\left(\frac{\mathrm{t}_{\text {on }}}{\mathrm{t}_{\text {off }}}+1\right)$
$\mathrm{R}_{\text {Sc }}$	$\frac{0.3}{\mathrm{l}_{\mathrm{pk}(\text { switch })}}$
$\mathrm{L}_{\text {(min) }}$	$\left(\frac{\left(V_{\text {in(min })}-V_{\text {sat }}\right)}{I_{\text {pk(switch })}}\right) t_{\text {on(max })}$
C_{0}	$9 \frac{\mathrm{I}_{\text {out }} \mathrm{t}_{\mathrm{on}}}{\mathrm{~V}_{\text {ripple(pp) }}}$
$V_{\text {out }}$	$1.25\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)$ See Figure 10

9.2.2.3 Application Performance

TEST	CONDITIONS	RESULTS
Line regulation	$\mathrm{V}_{\mathrm{IN}}=8 \mathrm{~V}$ to $16 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}$	$30 \mathrm{mV} \pm 0.05 \%$
Load regulation	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=75 \mathrm{~mA}$ to 175 mA	$10 \mathrm{mV} \pm 0.017 \%$
Output ripple	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}$	$400 \mathrm{mV} \mathrm{V}_{\mathrm{PP}}$
Efficiency	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}$	87.7%
Output ripple with optional filter	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}$	$40 \mathrm{mV} \mathrm{V}_{\mathrm{PP}}$

XD34063 DIP8/XD33063 DIP8- XL34063 SOP8/XL33063 SOP8

9.2.3 Step-Down Converter Application

Figure 11. Step-Down Converter

9.2.3.1 Design Requirements

The user must determine the following desired parameters:
$V_{\text {sat }}=$ Saturation voltage of the output switch
$V_{F}=$ Forward voltage drop of the chosen output rectifier
The following power-supply parameters are set by the user:
$\mathrm{V}_{\text {in }}=$ Nominal input voltage
$\mathrm{V}_{\text {out }}=$ Desired output voltage
$\mathrm{I}_{\text {out }}=$ Desired output current
$\mathrm{f}_{\text {min }}=$ Minimum desired output switching frequency at the selected values of $\mathrm{V}_{\text {in }}$ and $\mathrm{I}_{\text {out }}$
$\mathrm{V}_{\text {ripple }}=$ Desired peak-to-peak output ripple voltage. The ripple voltage directly affects the line and load regulation and, thus, must be considered. In practice, the actual capacitor value should be larger than the calculated value, to account for the capacitor's equivalent series resistance and board layout.

XD34063 DIP8/XD33063 DIP8- XL34063 SOP8/XL33063 SOP8

9.2.3.2 Detailed Design Procedure

CALCULATION	STEP DOWN
$\mathrm{t}_{\text {on }} / \mathrm{toff}$	$\frac{V_{\text {out }}+V_{F}}{V_{\text {in(min })}-V_{\text {sat }}-V_{\text {out }}}$
($\mathrm{ton}+\mathrm{t}_{\text {off }}$)	$\frac{1}{f}$
$\mathrm{t}_{\text {off }}$	$\frac{t_{\text {on }}+t_{\text {off }}}{\frac{t_{\text {on }}}{t_{\text {off }}}+1}$
$\mathrm{t}_{\text {on }}$	$\left(t_{\text {on }}+t_{\text {off }}\right)-t_{\text {off }}$
$\mathrm{C}_{\text {T }}$	$4 \times 10^{-5} \mathrm{t}_{\text {on }}$
$\mathrm{I}_{\mathrm{pk} \text { (switch) }}$	$2 \mathrm{l}_{\text {out(max })}$
R_{sc}	$\frac{0.3}{\mathrm{I}_{\mathrm{pk}(\text { switch })}}$
$\mathrm{L}_{\text {(min) }}$	$\left(\frac{\left(V_{\text {in(min) }}-V_{\text {sat }}-V_{\text {out }}\right)}{I_{\text {pk(switch })}}\right) t_{\text {on(max })}$
C_{0}	$\frac{\mathrm{I}_{\mathrm{pk}(\text { switch })}\left(\mathrm{t}_{\mathrm{on}}+\mathrm{t}_{\text {off }}\right)}{8 \mathrm{~V}_{\text {ripple }(\mathrm{pp})}}$
$V_{\text {out }}$	$1.25\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)$ See Figure 11

9.2.3.3 Application Performance

TEST	CONDITIONS	RESULTS
Line regulation	$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$ to $25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	$12 \mathrm{mV} \pm 0.12 \%$
Load regulation	$\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}$ to 500 mA	$3 \mathrm{mV} \pm 0.03 \%$
Output ripple	$\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	120 mV PP
Short-circuit current	$\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega$	1.1 A
Efficiency	$\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	83.7%
Output ripple with optional filter	$\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	40 mV PP

XD34063 DIP8／XD33063 DIP8－XL34063 SOP8／XL33063 SOP8

10 Power Supply Recommendations

This device accepts 3 V to 40 V on the input．It is recommended to have a $1000-\mu \mathrm{F}$ decoupling capacitor on the input．

11 Layout

11．1 Layout Guidelines

Keep feedback loop layout trace lengths to a minimum to avoid unnecessary IR drop．In addition，the loop for the decoupling capacitor at the input should be as small as possible．The trace from V_{IN} to pin 1 of the device should be thicker to handle the higher current．

11．2 Layout Example

Figure 12．Layout Example for a Step－Down Converter

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Isolated DC/DC Converters category:
Click to view products by XINLUDA manufacturer:
Other Similar products are found below :
ESM6D044440C05AAQ FMD15.24G PSL486-7LR PSR152.5-7IR Q48T30020-NBB0 AVO240-48S12B-6L AVO250-48S28B-6L NAN0505 HW-L16D JAHW100Y1 217-1617-001 22827 SPB05C-12 SQ24S15033-PS0S 18952 19-130041 CE-1003 CE-1004 GQ2541-7R PSE1000DCDC-12V RDS180245 MAU228 419-2065-201 449-2075-101 J80-0041NL V300C24C150BG 419-2062-200 419-2063-401 419-2067-101 419-2067-501 419-2068-001 DCG40-5G DFC15U48D15 449-2067-000 XGS-0512 XGS-1205 XGS-1212 XGS-2412 XGS$\underline{2415} \underline{X K S}-1215 \underline{033456}$ NCT1000N040R050B SPB05B-15 SPB05C-15 SSQE48T25025-NAA0G L-DA20 HP3040-9RG HP1001-9RTG XKS-2415 XKS-2412

