ISO K Line Serial Link Interface

The 33290 is a serial link bus interface device designed to provide bi－directional half－duplex communication interfacing in automotive diagnostic applications．It is designed to interface between the vehicle＇s on－board microcontroller and systems off－board the vehicle via the special ISO K line．The 33290 is designed to meet the Diagnostic Systems ISO9141 specification．The device＇s K line bus driver＇s output is fully protected against bus shorts and overtemperature conditions．

The 33290 derives its robustness to temperature and voltage extremes by being built on a SMARTMOS process，incorporating CMOS logic，bipolar／MOS analog circuitry，and DMOS power FETs． Although the 33290 was principally designed for automotive applications，it is suited for other serial communication applications． It is parametrically specified over an ambient temperature range of $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ and $8.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{BB}} \leq 18 \mathrm{~V}$ supply．The economical SO－8 surface－mount plastic package makes the 33290 very cost effective．

Features

－Operates Over Wide Supply Voltage of 8.0 to 18 V
－Operating Temperature of -40 to $125^{\circ} \mathrm{C}$
－Interfaces Directly to Standard CMOS Microprocessors
－ISO K Line Pin Protected Against Shorts to Ground
－Thermal Shutdown with Hysteresis
－ISO K Line Pin Capable of High Currents
－ISO K Line Can Be Driven with up to 10 nF of Parasitic Capacitance
－ 8.0 kV ESD Protection Attainable with Few Additional Components
－Standby Mode：No $V_{B a t}$ Current Drain with $V_{D D}$ at 5.0 V
－Low Current Drain During Operation with $V_{D D}$ at 5.0 V
－Pb－Free Packaging Designated by Suffix Code EF

33290 Simplified Application Diagram

XL33290 SOP8

INTERNAL BLOCK DIAGRAM

33290 Simplified Block Diagram

PIN CONNECTIONS

33290 Pin Connections
Table 1. 33290 Pin Definitions

Pin Number	Pin Name	Definition
1	VBB	Battery power through external resistor and diode.
2	NC	Not to be connected. ${ }^{(1)}$
3	GND	Common signal and power return.
4	ISO	Bus connection.
5	TX	Logic level input for data to be transmitted on the bus.
6	VDD	Logic output of data received on the bus.
7	CEN	Chip enable. Logic "1" for active state. Logic "0" for sleep state.
8		

Notes

1. NC pins should not have any connections made to them. NC pins are not guaranteed to be open circuits.

ELECTRICAL CHARACTERISTICS

MAXIMUM RATINGS

Table 2. Maximum Ratings
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

Rating	Symbol	Value	Unit
VDD DC Supply Voltage	$V_{D D}$	-0.3 to 7.0	V
VBB Load Dump Peak Voltage	$\mathrm{V}_{\mathrm{BB} \text { (LD) }}$	45	V
ISO Pin Load Dump Peak Voltage ${ }^{(2)}$	$V_{\text {ISO }}$	40	V
ISO Short Circuit Current Limit	$\mathrm{I}_{\text {ISO(LIM) }}$	1.0	A
ESD Voltage ${ }^{(3)}$ Human Body Model (4) Machine Model ${ }^{(4)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{ESD} 1} \\ & \mathrm{~V}_{\mathrm{ESD} 2} \end{aligned}$	$\begin{gathered} \pm 2000 \\ \pm 200 \end{gathered}$	V
ISO Clamp Energy ${ }^{(5)}$	$\mathrm{E}_{\text {clamp }}$	10	mJ
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Operating Case Temperature	T_{C}	-40 to +125	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-40 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	0.8	w
Peak Package Reflow Temperature During Reflow ${ }^{(6)}$, ${ }^{(7)}$	TPPRT	Note 7.	${ }^{\circ} \mathrm{C}$
Thermal Resistance Junction-to-Ambient	$\mathrm{R}_{\text {өJA }}$	150	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes
2. Device will survive double battery jump start conditions in typical applications for 10 minutes duration, but is not guaranteed to remain within specified parametric limits during this duration.
3. ESD data available upon request.
4. ESD1 testing is performed in accordance with the Human Body Model ($C_{\text {ZAP }}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{ZAP}}=1500 \Omega$), ESD2 testing is performed in accordance with the Machine Model ($\left.\mathrm{C}_{\text {ZAP }}=200 \mathrm{pF}, \mathrm{R}_{\mathrm{ZAP}}=0 \Omega\right)$.
5. Nonrepetitive clamping capability at $25^{\circ} \mathrm{C}$.
6. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause malfunction or permanent damage to the device.

Table 3. Static Electrical Characteristics
Characteristics noted under conditions of $4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.25 \mathrm{~V}, 8.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{BB}} \leq 18 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq 125^{\circ} \mathrm{C}$, unless otherwise noted.

Characteristic	Symbol	Min	Typ	Max	Unit

POWER AND CONTROL

V_{DD} Sleep State Current $\mathrm{T}_{\mathrm{x}}=0.8 \mathrm{~V}_{\mathrm{DD}}, \mathrm{CEN}=0.3 \mathrm{~V}_{\mathrm{DD}}$	$\mathrm{l}_{\mathrm{DD}(\mathrm{SS})}$	-	-	0.1	mA
$V_{D D}$ Quiescent Operating Current $\mathrm{T}_{\mathrm{x}}=0.2 \mathrm{~V}_{\mathrm{DD}}, \mathrm{CEN}=0.7 \mathrm{~V}_{\mathrm{DD}}$	${ }^{\text {DD }(Q)}$	-	-	1.0	mA
V_{BB} Sleep State Current $\mathrm{V}_{\mathrm{BB}}=16 \mathrm{~V}, \mathrm{~T}_{\mathrm{x}}=0.8 \mathrm{~V}_{\mathrm{DD}}, \mathrm{CEN}=0.3 \mathrm{~V}_{\mathrm{DD}}$	$\mathrm{I}_{\mathrm{BB}(\mathrm{SS})}$	-	-	50	$\mu \mathrm{A}$
V_{BB} Quiescent Operating Current $T_{X}=0.2 V_{D D}, C E N=0.7 V_{D D}$	$\mathrm{I}_{\mathrm{BB}(\mathrm{Q})}$	-	-	1.0	mA
Chip Enable Input High-Voltage Threshold ${ }^{(8)}$ Input Low-Voltage Threshold ${ }^{(9)}$	$\mathrm{V}_{\mathrm{IH} \text { (CEN) }}$ $\mathrm{V}_{\text {IL(CEN }}$	$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$\stackrel{-}{-}$	V
Chip Enable Pull-Down Current ${ }^{(10)}$	$\mathrm{I}_{\text {PD(CEN }}$	2.0	-	40	$\mu \mathrm{A}$
T_{X} Input Low-Voltage Threshold $\mathrm{R}_{\text {ISO }}=510 \Omega{ }^{(11)}$	$\mathrm{V}_{\text {IL(Tx) }}$	-	-	$0.3 \times V_{\text {DD }}$	V
T_{X} Input High-Voltage Threshold $\mathrm{R}_{\mathrm{ISO}}=510 \Omega^{(12)}$	$\mathrm{V}_{\mathrm{IH}(\mathrm{TX})}$	$0.7 \times \mathrm{V}_{\mathrm{DD}}$	-	-	V
T_{X} Pull-Up Current ${ }^{(13)}$	$\mathrm{I}_{\mathrm{PU}(\mathrm{TX})}$	-40	-	-2.0	$\mu \mathrm{A}$
R_{X} Output Low-Voltage Threshold $\mathrm{R}_{\mathrm{ISO}}=510 \Omega, \mathrm{~T}_{\mathrm{X}}=0.2 \mathrm{~V}_{\mathrm{DD}}, \mathrm{R}_{\mathrm{X}} \text { Sinking } 1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}(\mathrm{Rx})}$	-	-	0.2 V ${ }_{\text {DD }}$	V
R_{X} Output High-Voltage Threshold $\mathrm{R}_{\mathrm{ISO}}=510 \Omega, \mathrm{~T}_{\mathrm{X}}=0.8 \mathrm{~V}_{\mathrm{DD}}, \mathrm{R}_{\mathrm{X}} \text { Sourcing } 250 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{OH}(\mathrm{Rx})}$	0.8 V D	-	-	V
Thermal Shutdown ${ }^{(14)}$	$\mathrm{T}_{\text {LIM }}$	150	170	-	${ }^{\circ} \mathrm{C}$

Notes
8. When IBB transitions to $>100 \mu \mathrm{~A}$.
9. When IBB transitions to $<100 \mu \mathrm{~A}$.
10. Enable pin has an internal current pull-down. Pull-down current is measured with CEN pin at $0.3 \mathrm{~V}_{\mathrm{DD}}$.
11. Measured by ramping T_{X} down from $0.7 \mathrm{~V}_{D D}$ and noting T_{X} value at which ISO falls below $0.2 \mathrm{~V}_{B B}$.
12. Measured by ramping T_{X} up from $0.3 \mathrm{~V}_{\mathrm{DD}}$ and noting the value at which ISO rises above $0.9 \mathrm{~V}_{B B}$.
13. T_{x} pin has internal current pull-up. Pull-up current is measured with T_{X} pin at $0.7 \mathrm{~V}_{\mathrm{DD}}$.
14. Thermal Shutdown performance ($\mathrm{T}_{\text {LIM }}$) is guaranteed by design but not production tested.

Table 3. Static Electrical Characteristics (Continued)
Characteristics noted under conditions of $4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.25 \mathrm{~V}, 8.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{BB}} \leq 18 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq 125^{\circ} \mathrm{C}$, unless otherwise noted.

Characteristic	Symbol	Min	Typ	Max	Unit

ISO I/O

Input Low Voltage Threshold $\mathrm{R}_{\mathrm{ISO}}=0 \Omega, \mathrm{~T}_{\mathrm{X}}=0.8 \mathrm{~V}_{\mathrm{DD}}{ }^{(15)}$	$\mathrm{V}_{\mathrm{IL}(\mathrm{ISO})}$	-	-	$0.4 \times V_{B B}$	V
Input High Voltage Threshold $\mathrm{R}_{\mathrm{ISO}}=0 \Omega, \mathrm{~T}_{\mathrm{X}}=0.8 \mathrm{~V}_{\mathrm{DD}}{ }^{(16)}$	$\mathrm{V}_{\mathrm{IH}(\mathrm{ISO})}$	$0.7 \times V_{B B}$	-	-	V
Input Hysteresis ${ }^{(17)}$	$\mathrm{V}_{\text {Hys(ISO) }}$	$0.05 \times \mathrm{V}_{\text {BB }}$	-	$0.1 \times \mathrm{V}_{\mathrm{BB}}$	V
Internal Pull-Up Current $\mathrm{R}_{\mathrm{ISO}}=\infty \Omega, \mathrm{T}_{\mathrm{X}}=0.8 \mathrm{~V}_{\mathrm{DD}}, \mathrm{~V}_{\text {ISO }}=9.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=18 \mathrm{~V}$	$\mathrm{IPU}_{\text {P(ISO) }}$	-5.0	-	-140	$\mu \mathrm{A}$
Short Circuit Current Limit ${ }^{(18)}$ $\mathrm{R}_{\mathrm{ISO}}=0 \Omega, \mathrm{~T}_{\mathrm{X}}=0.4 \mathrm{~V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{ISO}}=\mathrm{V}_{\mathrm{BB}}$	IsC(ISO)	50	-	1000	mA
Output Low Voltage $\mathrm{R}_{\mathrm{ISO}}=510 \Omega, \mathrm{~T}_{\mathrm{X}}=0.2 \mathrm{~V}_{\mathrm{DD}}$	$\mathrm{V}_{\text {OL(ISO) }}$	-	-	$0.1 \times \mathrm{V}_{\mathrm{BB}}$	V
Output High Voltage $\mathrm{R}_{\mathrm{ISO}}=\infty \Omega, \mathrm{T}_{\mathrm{X}}=0.8 \mathrm{~V}_{\mathrm{DD}}$	$\mathrm{V}_{\mathrm{OH}(\mathrm{ISO}}$	$0.95 \times \mathrm{V}_{\text {BB }}$	-	-	v

Notes
15. ISO ramped from $0.8 \mathrm{~V}_{\mathrm{BB}}$ to $0.4 \mathrm{~V}_{\mathrm{BB}}$, Monitor R_{X}, Value of ISO voltage at which R_{X} transitions to $0.3 \mathrm{~V}_{\mathrm{DD}}$.
16. ISO ramped from $0.4 \mathrm{~V}_{B B}$ to $0.8 \mathrm{~V}_{B B}$, Monitor R_{X}, Value of ISO voltage at which R_{X} transitions to $0.7 \mathrm{~V}_{\mathrm{DD}}$.
17. Input Hysteresis, $\mathrm{V}_{\mathrm{Hys}(\mathrm{ISO})}=\mathrm{V}_{\mathrm{IH}(\mathrm{ISO})}-\mathrm{V}_{\mathrm{IL}(\mathrm{ISO})}$.
18. ISO has internal current limiting.

DYNAMIC ELECTRICAL CHARACTERISTICS

Table 4. Dynamic Electrical Characteristics

Characteristics noted under conditions of $4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.25 \mathrm{~V}, 8.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{BB}} \leq 18 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq 125^{\circ} \mathrm{C}$, unless otherwise noted.

Characteristic	Symbol	Min	Typ	Max	Unit
Fall Time ${ }^{(19)}$ $\mathrm{R}_{\text {ISO }}=510 \Omega$ to $\mathrm{V}_{\mathrm{BB}}, \mathrm{C}_{\text {ISO }}=10 \mathrm{nF}$ to Ground	$\mathrm{t}_{\text {fall(ISO) }}$	-	-	2.0	$\mu \mathrm{s}$
ISO Propagation Delay ${ }^{(20)}$ High to Low: $\mathrm{R}_{\text {ISO }}=510 \Omega, \mathrm{C}_{\text {ISO }}=500 \mathrm{pF}{ }^{(21)}$ Low to High: $\mathrm{R}_{\text {ISO }}=510 \Omega, \mathrm{C}_{\text {ISO }}=500 \mathrm{pF}{ }^{(22)}$	$\mathrm{t}_{\text {PD(ISO) }}$	-	-	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\mu \mathrm{s}$

Notes
19. Time required ISO voltage to transition from $0.8 \mathrm{~V}_{\mathrm{BB}}$ to $0.2 \mathrm{~V}_{\mathrm{BB}}$.
20. Changes in the value of $\mathrm{C}_{I S O}$ affect the rise and fall time but have minimal effect on Propagation Delay.
21. Step T_{X} voltage from $0.2 \mathrm{~V}_{\mathrm{DD}}$ to $0.8 \mathrm{~V}_{\mathrm{DD}}$. Time measured from $\mathrm{V}_{\mathrm{IH}(\mathrm{ISO})}$ until $\mathrm{V}_{\mathrm{ISO}}$ reaches $0.3 \mathrm{~V}_{\mathrm{BB}}$.
22. Step T_{X} voltage from $0.8 \mathrm{~V}_{\mathrm{DD}}$ to $0.2 \mathrm{~V}_{\mathrm{DD}}$. Time measured from $\mathrm{V}_{\mathrm{IL}(\mathrm{ISO})}$ until $\mathrm{V}_{\mathrm{ISO}}$ reaches $0.7 \mathrm{~V}_{\mathrm{BB}}$.

XL33290 SOP8

ELECTRICAL PERFORMANCE CURVES

ISO Input Threshold／ V_{BB} vs．Temperature

ISO Output／V $\mathrm{VBB}_{\text {vs }}$ vs Temperature

ISO Fall Time vs．Temperature

ISO Propagation Delay vs．Temperature

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Interface - Specialised category:
Click to view products by XINLUDA manufacturer:
Other Similar products are found below :
MC33975ATEKR2 SP508EEF-L TDA8035HN/C2/S1J TDA8026ET/C3E TC358870XBG(NOK) MAX13175EETU+
MAX17841EVMINIQU\# 250375-4Z50-2 NCN5120MNTWG C100N50Z4A SN65HVD63RGTT TDA8035HN/C1/S1J AD8192ACPZ-RL7
AD5700-1BCPZ-R5 AD5700-1BCPZ-RL7 ADV3003ACPZ ADV7511KSTZ LTC4332IUFD\#PBF LTC4332HUFD\#PBF
LTC4332CUFD\#PBF MAX3814CHJ+T CH351Q MC33664ATL1EGR2 XL1192D XD7135 XR34350IL KTU1109EFAA-TR CH368L
CH7307C-DEF DS28CM00R-A00+T DS8500-JND+T\&R MAX16054AZT+T MAX16545BGPF+ MAX16550GPN+ MAX16550AGPN+
MAX16550AGPN+T MAX96705AGTJ/V+ MAX3816ACUE+ MAX4886ETO+ MAX14502AETL+ SP331ET-L SP332CT-L SP338EER1-
$\underline{L} \underline{\text { SP3508EF-L SP335EER1-L XR3160ECUTR-F XR3160EIUTR-F ATECC108A-MAHDA-T MAX3814CHJ+ LPC47M182-NW }}$

