XL3483 SOP8
www．XInluda．com 信路达

General Description

3483 and 3485，3．3V，low－power transceivers for RS－485 and RS－422 communication．Each
part contains one driver and one receiver．The 3483 feature slew－rate－limited drivers that minimize EMI and reduce reflections caused
by improperly terminated cables，allowing error－free data transmission at data rates up to 250 kbps ．
2.5 Mbps ． 3485 ，transmit at up to 10 Mbps ．

Drivers are short－circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high－impedance state．The receiver input has a fail－safe feature that guarantees a logic－high output if both inputs are open circuit．
－Slew－Rate Limited for Errorless Data Transmission
－-7 V to +12 V Common－Mode Input Voltage Range
－Full－Duplex and Half－Duplex Versions Available

Features

Operate from a Single 3．3V Supply－ No Charge Pump！
－Interoperable with＋5V Logic
－8ns Max Skew 3485 3483
－2nA Low－Current Shutdown Mode 3483／3485
－Allows up to 32 Transceivers on the Bus
－Current－Limiting and Thermal Shutdown for Driver Overload Protection

列

Applications

Low－Power RS－485／RS－422 Transceivers
Telecommunications
Transceivers for EMI－Sensitive Applications
Industrial－Control Local Area Networks

ABSOLUTE MAXIMUM RATINGS

14-Pin Plastic DIP (derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots800 \mathrm{~mW}$
14-Pin SO (derate $8.33 \mathrm{mWW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)............. 667 mW
Operating Temperature Ranges
$3483 / 3485 . ~$

Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10 sec
$+300^{\circ} \mathrm{C}$ Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
8-Pin Plastic DIP (derate $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots . .727 \mathrm{~mW}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP MAX	UNITS
Differential Driver Output	VOD	$\mathrm{RL}=100 \Omega$ (RS-422)		2.0		V
		$\mathrm{R}_{\mathrm{L}}=54 \Omega$ (RS-485), Figure 2		1.5		
		$\mathrm{R}_{\mathrm{L}}=60 \Omega$ (RS-485), $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, Figure 3		1.5		
Change in Magnitude of Driver Differential Output Voltage for Complementary Output States (Note 1)	$\Delta \mathrm{V}_{\mathrm{OD}}$	$\mathrm{R}_{\mathrm{L}}=54 \Omega$ or 100Ω, Figure 4			0.2	V
Driver Common-Mode Output Voltage	VOC	$\mathrm{R}_{\mathrm{L}}=54 \Omega$ or 100Ω, Figure 4			3	V
Change in Magnitude of Common-Mode Output Voltage (Note 1)	$\Delta \mathrm{V}_{\mathrm{OC}}$	$\mathrm{R}_{\mathrm{L}}=54 \Omega$ or 100Ω, Figure 4			0.2	V
Input High Voltage	V_{IH}	DE, DI, RE		2.0		V
Input Low Voltage	VIL	DE, DI, $\overline{\mathrm{RE}}$			0.8	V
Logic Input Current	IIN1	DE, DI, $\overline{\mathrm{RE}}$			± 2	$\mu \mathrm{A}$
Input Current (A, B)	IIN2	$\begin{aligned} & \mathrm{DE}=0 \mathrm{~V}, \\ & \mathrm{~V} C \mathrm{C}=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V} \end{aligned}$	V IN $=12 \mathrm{~V}$		1.0	mA
			V IN $=-7 \mathrm{~V}$		-0.8	
Receiver Differential Threshold Voltage	$\mathrm{V}_{\text {TH }}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V}$		-0.2	0.2	V
Receiver Input Hysteresis	$\Delta \mathrm{V}_{\text {TH }}$	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$			50	mV
Receiver Output High Voltage	V OH	IOUT $=-1.5 \mathrm{~mA}, \mathrm{~V}$ ID $=200 \mathrm{mV}$, Figure 4		VCC - 0.4		V
Receiver Output Low Voltage	VOL	IOUT $=2.5 \mathrm{~mA}, \mathrm{~V} \mathrm{~V}$ ($=200 \mathrm{mV}$, Figure 4			0.4	V
Three-State (High Impedance) Output Current at Receiver	lozr	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$			± 1	$\mu \mathrm{A}$
Receiver Input Resistance	RIN	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V}$		12		$\mathrm{k} \Omega$

DC ELECTRICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Current	Icc	No load,$\mathrm{DI}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}$	$\begin{aligned} & \mathrm{DE}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{RE}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$		1.1	2.2	mA
			$\begin{aligned} & \mathrm{DE}=0 \mathrm{~V}, \\ & \mathrm{RE}=0 \mathrm{~V} \end{aligned}$		0.95	1.9	
Supply Current in Shutdown Mode	ISHDN	$\mathrm{DE}=0 \mathrm{~V}, \overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{DI}=\mathrm{V}_{\mathrm{CC}}$ or 0 V			0.002	1	$\mu \mathrm{A}$
Driver Short-Circuit Output Current	IOSD	$V_{\text {OUT }}=-7 \mathrm{~V}$				-250	mA
		VOUT $=12 \mathrm{~V}$				250	
Receiver Short-Circuit Output Current	IOSR	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{RO}} \leq \mathrm{V}_{\mathrm{CC}}$		± 8		± 60	mA

DRIVER SWITCHING CHARACTERISTICS-3485

$\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Driver Differential Output Delay	tDD	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 5	1	22	35	ns
Driver Differential Output Transition Time	tTD	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 5	3	8	25	ns
Driver Propagation Delay, Low-to-High Level	tPLH	$\mathrm{R}_{\mathrm{L}}=27 \Omega$, Figure 6	7	22	35	ns
Driver Propagation Delay, High-to-Low Level	tPHL	$\mathrm{R}_{\mathrm{L}}=27 \Omega$, Figure 6	7	22	35	ns
\|tPLH - tphl ${ }^{\text {d }}$ Driver Propagation Delay Skew (Note 2)	tpDS	$R \mathrm{~L}=27 \Omega$, Figure 6			8	ns
DRIVER OUTPUT ENABLE/DISABLE TIMES (3485)						
Driver Output Enable Time to Low Level	tPZL	$\mathrm{R} \mathrm{L}=110 \Omega$, Figure 8		45	90	ns
Driver Output Enable Time to High Level	tpzH	$\mathrm{RL}=110 \Omega$, Figure 7		45	90	ns
Driver Output Disable Time from High Level	tPHZ	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 7		40	80	ns
Driver Output Disable Time from Low Level	tPLZ	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 8		40	80	ns

DRIVER SWITCHING CHARACTERISTICS—3483

$\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Driver Differential Output Delay	tDD	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 7	600	900	1400	ns
Driver Differential Output Transition Time	tTD	$\mathrm{R}_{\mathrm{L}}=60 \Omega$, Figure 7	400	700	1200	ns
Driver Propagation Delay, Low-to-High Level	tpLH	$\mathrm{R}_{\mathrm{L}}=27 \Omega$, Figure 8	700	1000	1500	ns
Driver Propagation Delay, High-to-Low Level	tpHL	$\mathrm{R}_{\mathrm{L}}=27 \Omega$, Figure 8	700	1000	1500	ns
\|tPLH - tphL ${ }^{\text {D }}$ Driver Propagation Delay Skew (Note 2)	tpDS	$\mathrm{R}_{\mathrm{L}}=27 \Omega$, Figure 8		100		ns
DRIVER OUTPUT ENABLE/DISABLE TIMES (3483 only)						
Driver Output Enable Time to Low Level	tPZL	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 10		900	1300	ns
Driver Output Enable Time to High Level	tpZH	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 9		600	800	ns
Driver Output Disable Time from High Level	tPHZ	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 9		50	80	ns
Driver Output Disable Time from Low Level	tpLZ	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 10		50	80	ns
Driver Output Enable Time from Shutdown to Low Level	tpSL	$R_{L}=110 \Omega$, Figure 10		1.9	2.7	$\mu \mathrm{s}$
Driver Output Enable Time from Shutdown to High Level	tPSH	$\mathrm{R}_{\mathrm{L}}=110 \Omega$, Figure 9		2.2	3.0	$\mu \mathrm{s}$

RECEIVER SWITCHING CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Time to Shutdown	tSHDN	$\begin{aligned} & \hline 3483 / 3485 \\ & \text { (Note 3) } \end{aligned}$	80	190	300	ns	
Receiver Propagation Delay, Low-to-High Level	trPLH	$\mathrm{V}_{\mathrm{ID}}=0 \mathrm{~V}$ to 3.0V, $\mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$, Figure 9	25	65	90	ns	
		3483	25	75	120		
Receiver Propagation Delay, High-to-Low Level	trPHL	$\mathrm{V}_{\mathrm{ID}}=0 \mathrm{~V}$ to 3.0V, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Figure 9	25	65	90	ns	
		3483	25	75	120		
\|tPLH - tPHL	Receiver Propagation Delay Skew	trPDS	$\mathrm{V}_{\mathrm{ID}}=0 \mathrm{~V}$ to 3.0V, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Figure 9			10	ns
		3483			20		
Receiver Output Enable Time to Low Level	tPRZL	$\begin{aligned} & C_{L}=15 p F, \text { Figure 10, } \\ & 3483 / 3485 \end{aligned}$		25		ns	
Receiver Output Enable Time to High Level	tprzH	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \text { Figure } 10, \\ & 3483 / 3485 \end{aligned}$		25		ns	
Receiver Output Disable Time from High Level	tPRHZ	$\begin{aligned} & C_{L}=15 p F, \text { Figure } 10, \\ & 3483 / 3485 \end{aligned}$		25		ns	
Receiver Output Disable Time from Low Level	tPRLZ	$\begin{aligned} & \hline C_{L}=15 \mathrm{pF} \text {, Figure } 10, \\ & 3483 / 3485 \end{aligned}$		25		ns	
Receiver Output Enable Time from Shutdown to Low Level	tPRSL	$\begin{aligned} & C_{L}=15 p F, \text { Figure 10, } \\ & 3483 / 3485 \end{aligned}$		720		ns	
Receiver Output Enable Time from Shutdown to High Level	tPRSH	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \text { Figure } 10, \\ & 3483 / 3485 \end{aligned}$		720		ns	

Note 1: $\Delta \mathrm{V}_{\mathrm{OD}}$ and $\Delta \mathrm{V}_{\mathrm{OC}}$ are the changes in $\mathrm{V}_{O D}$ and V_{OC}, respectively, when the DI input changes state.
Note 2: Measured on |tpLH (Y) - tphl (Y)| and |tpLH (Z) - tphl (Z)|.
Note 3: The transceivers are put into shutdown by bringing RE high and DE low. If the inputs are in this state for less than 80 ns , the parts are guaranteed not to enter shutdown. If the inputs are in this state for at least 300 ns , the parts are guaranteed to have entered shutdown. See Low-Power Shutdown Mode section.

Typic al Operating Characteristics

$\left(\mathrm{V} C \mathrm{C}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Typical Operating Characteristics (continued)

Pin Description

PIN					
$\mathbf{3 4 8 3 / 3 4 8 5}$	NAME	\quad FUNCTION	$	$	RO
:---					
1					

Figure 1. 3483/3485 Pin Configuration and Typical Operating Circuit

Figure 2. Driver $V_{O D}$ and $V_{O C}$

Figure 4. Receiver $V_{O H}$ and $V_{O L}$

Figure 5. Driver Differential Output Delay and Transition Times

Figure 6. Driver Propagation Times

in

Figure 7. Driver Enable and Disable Times ($t_{\text {PZH }}, t_{P S H}, t_{\text {PHZ }}$)

Figure 8. Driver Enable and Disable Times ($\left.t_{\text {PZL }}, t_{P S L}, t_{P L Z}\right)$

Figure 9. Receiver Propagation Delay

Figure 10. Receiver Enable and Disable Times

Note 4: The input pulse is supplied by a generator with the following characteristics: $\mathrm{PRR}=250 \mathrm{kHz}, 50 \%$ duty cycle, $\mathrm{tr} \leq 6.0 \mathrm{~ns}, \mathrm{ZO}=50 \Omega$. Note 5: C_{L} includes probe and stray capacitance.

以上信息仅供参考．如需帮助联系客服人员。谢谢 XINLUDA

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RS-422/RS-485 Interface IC category:
Click to view products by XINLUDA manufacturer:
Other Similar products are found below :
SP3494CN-L/TR CA-IS3082WX CA-IS3088WX CA-IS3092W XR33038IDTR-F SIT3485ISO XR3077XID-F ADM2687EBRIZ-RL7 SP483EEN-L/TR SN75LBC175ADR SN65ALS1176DR MAX489CPD+ MAX3080CPD+ MXL1535EEWI+ SP483EN-L/TR SP483CNL/TR SP3483CN-L/TR XR3072XID-F DS16F95J/883 SP1485EEN-L/TR MAX490ESA+T ISL3179EIUZ-T7A ISL3179EIRZ-T7A ISL3179EFRZ-T7A XR33193ESBTR XR33194ESBTR XR3074XID-F XR3082XID-F SP1481EEN-L SP3490EN-L ADM485JN ADM1485JNZ ADM2687EBRIZ ADM3491ARZ-REEL7 ADM489ABRZ ADM3073EARZ ADM4850ACPZ-REEL7 ADM4853ACPZREEL7 ADM485ANZ ADM3072EARZ-REEL7 ADM3075EARZ-REEL7 ADM3486EARZ-REEL7 ADM3493ARZ-REEL7 ADM4856ARZ-REEL7 ADM487EARZ-REEL7 ADM1485JRZ-REEL ADM3490ARZ-REEL7 ADM3490EARZ-REEL7 ADM4850ARZREEL7 ADM1485ARZ-REEL

