XINLUDA Www．XINLUDA．COM 信路达

XD3525 DIP16 XL3525Z SOP16

－ 8 TO 35 V OPERATION
－5．1 V REFERENCE TRIMMED TO $\pm 1 \%$
－ 100 Hz TO 500 KHz OSCILLATOR RANGE
－SEPARATE OSCILLATOR SYNC TERMINAL
－ADJUSTABLE DEADTIME CONTROL
－INTERNAL SOFT－START
－PULSE－BY－PULSE SHUTDOWN
－INPUT UNDERVOLTAGE LOCKOUT WITH HYSTERESIS
－LATCHING PWM TO PREVENT MULTIPLE PULSES
－DUAL SOURCE／SINK OUTPUT DRIVERS

DESCRIPTION

The XD3525 series of pulse width modulator inte－ grated circuits are designed to offer improved per－ formance and lowered external parts count when used in designing all types of switching power sup－ plies．The on－chip +5.1 V reference is trimmed to \pm 1% and the input common－mode range of the error amplifier includes the reference voltage eliminating external resistors．A sync input to the oscillator al－ lows multiple units to be slaved or a single unit to be synchronized to an external system clock．A single resistor between the $\mathrm{C}_{\boldsymbol{\top}}$ and the discharge terminals provide a wide range of dead time ad－justment． These devices also feature built－in soft－start circuitry with only an external timing capacitor required．A shutdown terminal controls both the soft－start circu－ ity and the output stages，providing instantaneous
turn off through the PWM latch with pulsed shut－ down，as well as soft－start recycle with longer shut－ down commands．These functions are also control－ led by an undervoltage lockout which keeps the out－ puts off and the soft－start capacitor discharged for sub－normal input voltages．This lockout circuitry in－ cludes approximately 500 mV of hysteresis for jitter－ free operation．Another feature of these PWM cir－ cuits is a latch following the comparator．Once a PWM pulses has been terminated for any reason， the outputs will remain off for the duration of the pe－ riod．The latch is reset with each clock pulse．The output stages are totem－pole designs capable of sourcing or sinking in excess of 200 mA ．The XD3525 output stage features NOR logic，giving a LOW output for an OFF state．

XD3525 DIP16/XL3525Z SOP 16

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{i}	Supply Voltage	40	V
$\mathrm{~V}_{\mathrm{C}}$	Collector Supply Voltage	40	V
$\mathrm{I}_{\mathrm{OSC}}$	Oscillator Charging Current	5	mA
I_{o}	Output Current, Source or Sink	500	mA
I_{R}	Reference Output Current	50	mA
I_{T}	Current through C_{T} Terminal Logic Inputs	5	mA
	Analog Inputs	-0.3 to +5.5	V
$\mathrm{P}_{\text {tot }}$	Total Power Dissipation at $\mathrm{T}_{\text {amb }}=70^{\circ} \mathrm{C}$	-0.3 to V_{i}	V
T_{j}	Junction Temperature Range	-55 to 150	mW
$\mathrm{~T}_{\text {stg }}$	Storage Temperature Range	-65 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	Operating Ambient Temperature : XD3525		
	XL3525Z	-25 to 85	${ }^{\circ} \mathrm{C}$

THERMAL DATA

Symbol	Parameter	SO16	DIP16	Unit	
$R_{\text {th } j \text { j-pins }}$	Thermal Resistance Junction-pins	Max		50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th }} \mathrm{j}$-amb	Thermal Resistance Junction-ambient	Max		80	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th }} \mathrm{j}$-alumina	Thermal Resistance Junction-alumina $\left({ }^{*}\right)$	Max	50		${ }^{\circ} \mathrm{C} / \mathrm{W}$

* Thermal resistance junction-alumina with the device soldered on the middle of an alumina supporting substrate measuring $15 \times 20 \mathrm{~mm}$; 0.65 mm thickness with infinite heatsink.

BLOCK DIAGRAM

2

XD3525 DIP 16/XL3525Z SOP 16

ELECTRICAL CHARACTERISTICS
($\mathrm{V} \# \mathrm{i}=20 \mathrm{~V}$, and over operating temperature, unless otherwise specified)

Symbol	Parameter	Test Conditions	XD3525			XL3525Z			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
REFERENCE SECTION									
$\mathrm{V}_{\text {REF }}$	Output Voltage	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	5.05	5.1	5.15	5	5.1	5.2	V
$\Delta \mathrm{V}_{\text {REF }}$	Line Regulation	$\mathrm{V}_{\mathrm{i}}=8$ to 35 V		10	20		10	20	mV
$\Delta V_{\text {REF }}$	Load Regulation	$\mathrm{L}=0$ to 20 mA		20	50		20	50	mV
$\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{T}^{*}$	Temp. Stability	Over Operating Range		20	50		20	50	mV
*	Total Output Variation	Line, Load and Temperature	5		5.2	4.95		5.25	V
	Short Circuit Current	$V_{\text {REF }}=0 \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		80	100		80	100	mA
*	Output Noise Voltage	$\begin{aligned} & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}, \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		40	200		40	200	$\mu \mathrm{Vrms}$
$\Delta \mathrm{V}_{\text {REF }}{ }^{*}$	Long Term Stability	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}, 1000 \mathrm{hrs}$		20	50		20	50	mV
OSCILLATOR SECTION * *									
*, •	Initial Accuracy	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		± 2	± 6		± 2	± 6	\%
*, •	Voltage Stability	$\mathrm{V}_{\mathrm{i}}=8$ to 35 V		± 0.3	± 1		± 1	± 2	\%
$\Delta \mathrm{f} / \Delta \mathrm{T}^{*}$	Temperature Stability	Over Operating Range		± 3	± 6		± 3	± 6	\%
$\mathrm{f}_{\mathrm{MIN}}$	Minimum Frequency	$\mathrm{R}_{\mathrm{T}}=200 \mathrm{~K} \Omega \mathrm{C}_{T}=0.1 \mu \mathrm{~F}$			120			120	Hz
$\mathrm{f}_{\text {max }}$	Maximum Frequency	$\mathrm{R}_{\mathrm{T}}=2 \mathrm{~K} \Omega \mathrm{C}_{\mathrm{T}}=470 \mathrm{pF}$	400			400			KHz
	Current Mirror	$\mathrm{I}_{\text {RT }}=2 \mathrm{~mA}$	1.7	2	2.2	1.7	2	2.2	mA
*, •	Clock Amplitude		3	3.5		3	3.5		V
*, •	Clock Width	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	0.3	0.5	1	0.3	0.5	1	$\mu \mathrm{S}$
	Sync Threshold		1.2	2	2.8	1.2	2	2.8	V
	Sync Input Current	Sync Voltage $=3.5 \mathrm{~V}$		1	2.5		1	2.5	mA
ERROR AMPLIFIER SECTION ($\mathrm{V}_{\mathrm{CM}}=5.1 \mathrm{~V}$)									
Vos	Input Offset Voltage			0.5	5		2	10	mV
l_{b}	Input Bias Current			1	10		1	10	$\mu \mathrm{A}$
$\mathrm{l}_{\text {os }}$	Input Offset Current				1			1	$\mu \mathrm{A}$
	DC Open Loop Gain	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{M} \Omega$	60	75		60	75		dB
*	Gain Bandwidth Product	$\mathrm{G}_{\mathrm{v}}=0 \mathrm{~dB} \quad \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	1	2		1	2		MHz
*, 】	DC Transconduct.	$\begin{aligned} & 30 \mathrm{~K} \Omega \leq \mathrm{R}_{\mathrm{L}} \leq 1 \mathrm{M} \Omega \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	1.1	1.5		1.1	1.5		ms
	Output Low Level			0.2	0.5		0.2	0.5	V
	Output High Level		3.8	5.6		3.8	5.6		V
CMR	Comm. Mode Reject.	$\mathrm{V}_{\text {CM }}=1.5$ to 5.2 V	60	75		60	75		dB
PSR	Supply Voltage Rejection	$\mathrm{V}_{\mathrm{i}}=8$ to 35 V	50	60		50	60		dB

XD3525 DIP16/XL3525Z SOP 16

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions	XD3525			XL3525Z			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
PWM COMPARATOR									
	Minimum Duty-cycle				0			0	\%
\bullet	Maximum Duty-cycle		45	49		45	49		\%
-	Input Threshold	Zero Duty-cycle	0.7	0.9		0.7	0.9		V
		Maximum Duty-cycle		3.3	3.6		3.3	3.6	V
*	Input Bias Current			0.05	1		0.05	1	$\mu \mathrm{A}$
SHUTDOWN SECTION									
	Soft Start Current	$\mathrm{V}_{\mathrm{SD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$	25	50	80	25	50	80	$\mu \mathrm{A}$
	Soft Start Low Level	$\mathrm{V}_{\mathrm{SD}}=2.5 \mathrm{~V}$		0.4	0.7		0.4	0.7	V
	Shutdown Threshold	To outputs, $\mathrm{V}_{\mathrm{SS}}=5.1 \mathrm{~V}$ $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	0.6	0.8	1	0.6	0.8	1	V
	Shutdown Input Current	$\mathrm{V}_{\text {SD }}=2.5 \mathrm{~V}$		0.4	1		0.4	1	mA
*	Shutdown Delay	$\mathrm{V}_{\text {SD }}=2.5 \mathrm{~V} \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		0.2	0.5		0.2	0.5	$\mu \mathrm{s}$
OUTPUT DRIVERS (each output) ($\mathrm{V}_{\mathrm{C}}=20 \mathrm{~V}$)									
	Output Low Level	$\mathrm{I}_{\text {sink }}=20 \mathrm{~mA}$		0.2	0.4		0.2	0.4	V
		$\mathrm{I}_{\text {sink }}=100 \mathrm{~mA}$		1	2		1	2	V
	Output High Level	$\mathrm{I}_{\text {source }}=20 \mathrm{~mA}$	18	19		18	19		V
		$\mathrm{I}_{\text {source }}=100 \mathrm{~mA}$	17	18		17	18		V
	Under-Voltage Lockout	$\mathrm{V}_{\text {comp }}$ and $\mathrm{V}_{\text {ss }}=$ High	6	7	8	6	7	8	V
I_{C}	Collector Leakage	$\mathrm{V}_{\mathrm{C}}=35 \mathrm{~V}$			200			200	$\mu \mathrm{A}$
tr^{*}	Rise Time	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		100	600		100	600	ns
tf^{*}	Fall Time	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		50	300		50	300	ns
TOTAL STANDBY CURRENT									
$\mathrm{I}_{\text {s }}$	Supply Current	$\mathrm{V}_{\mathrm{i}}=35 \mathrm{~V}$		14	20		14	20	mA

* These parameters, although guaranteed over the recommended operating conditions, are not 100% tested in production.
- Tested at $\mathrm{f}_{\text {osc }}=40 \mathrm{KHz}\left(\mathrm{R}_{\mathrm{T}}=3.6 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{T}}=10 \mathrm{nF}, \mathrm{RD}_{\mathrm{D}}=0 \Omega\right)$. Approximate oscillator frequency is defined by :
$\mathrm{f}=$ \qquad 1 $\mathrm{C}_{\mathrm{T}}\left(0.7 \mathrm{R}_{\mathrm{T}}+3 \mathrm{R}_{\mathrm{D}}\right)$
- DC transconductance (g_{M}) relates to DC open-loop voltage gain (G_{v}) according to the following equation : $G_{v}=g_{M} R_{L}$ where R_{L} is the resistance from pin 9 to ground. The minimum g_{m} specification is used to calculate minimum G_{v} when the error amplifier output is loaded.

XD3525 DIP16/XL3525Z SOP 16

TEST CIRCUIT

XD3525 DIP 16/XL3525Z SOP 16

RECOMMENDED OPERATING CONDITIONS (॰)

Parameter	Value
Input Voltage $\left(\mathrm{V}_{\mathrm{i}}\right)$	8 to 35 V
Collector Supply Voltage $\left(\mathrm{V}_{\mathrm{C}}\right)$	4.5 to 35 V
Sink/Source Load Current (steady state)	0 to 100 mA
Sink/Source Load Current (peak)	0 to 400 mA
Reference Load Current	0 to 20 mA
Oscillator Frequency Range	100 Hz to 400 KHz
Oscillator Timing Resistor	$2 \mathrm{~K} \Omega$ to $150 \mathrm{~K} \Omega$
Oscillator Timing Capacitor	$0.001 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$
Dead Time Resistor Range	0 to 500Ω

(•) Range over which the device is functional and parameter limits are guaranteed.

Figure 1 : Oscillator Charge Time vs. R_{T} and C_{t}.

Figure 3 : Output Saturation Characteristics.

Figure 2 : Oscillator Discharge Time vs. RD and C_{t}.

Figure 4 : Error Amplifier Voltage Gain and Phase vs. Frequency.

XD3525 DIP 16/XL3525Z SOP 16

Figure 5 : Error Amplifier.

PRINCIPLES OF OPERATION

SHUTDOWN OPTIONS (see Block Diagram)

Since both the compensation and soft-start terminals (Pins 9 and 8) have current source pull-ups, either can readily accept a pull-down signal which only has to sink a maximum of $100 \mu \mathrm{~A}$ to turn off the outputs. This is subject to the added requirement of discharging whatever external capacitance may be attached to these pins.
An alternate approach is the use of the shutdown circuitry of Pin 10 which has been improved to enhance the available shutdown options. Activating this circuit by applying a positive signal on Pin 10 performs two functions : the PWM latch is immedi-
ately set providing the fastest turn-off signal to the outputs ; and a $150 \mu \mathrm{~A}$ current sink begins to discharge the external soft-start capacitor. If the shutdown command is short, the PWM signal is terminated without significant discharge of the soft-start capacitor, thus, allowing, for example, a convenient implementation of pulse-by-pulse current limiting. Holding Pin 10 high for a longer duration, however, will ultimately discharge this external capacitor, recycling slow turn-on upon release.
Pin 10 should not be left floating as noise pickup could conceivably interrupt normal operation.

XD3525 DIP16/XL3525Z SOP 16

Figure 6 : Oscillator Schematic.

Figure 7 : Output Circuit (1/2 circuit shown).

XD3525 DIP 16／XL3525Z SOP 16

Figure 8.

For single－ended supplies，the driver outputs are grounded．The V_{C} terminal is switched to ground by the totem－pole source transistors on alternate oscil－ lator cycles．
Figure 10.

The low source impedance of the output drivers pro－ vides rapid charging of Power Mos input capaci－ tance while minimizing external components．

Figure 9.

In conventional push－pull bipolar designs，forward base drive is controlled by $R_{1}-R_{3}$ ．Rapid turn－off times for the power devices are achieved with speed－up capacitors C_{1} and C_{2} ．

Figure 11.

Low power transformers can be driven directly． Automatic reset occurs during dead time，when both ends of the primary winding are switched to ground．

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by XINLUDA manufacturer:
Other Similar products are found below :
LV5065VB-TLM-H LV5066V-TLM-H LV5725JAZ-AH 633888R MP2908AGF AZ7500EP-E1 NCP1012AP133G NCP1217P133G
NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP1587GDR2G NCP6153MNTWG
NCP81005MNTWG NCP81101BMNTXG NCP81205MNTXG HV9123NG-G-M934 IR35207MTRPBF ISL6367HIRZ CAT874-80ULGT3
SJ6522AG SJE6600 TLE63893GV50XUMA1 IR35215MTRPBF SG3845DM NCP1216P133G NCP1236DD65R2G NCP1247BD100R2G
NCP1250BP65G NCP4202MNR2G NCP4204MNTXG NCP6132AMNR2G NCP81141MNTXG NCP81142MNTXG NCP81172MNTXG NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UC3845ADM UBA2051C IR35201MTRPBF MAX8778ETJ+ MAX17500AAUB+T MAX17411GTM+T MAX16933ATIR/V+ NCP1010AP130G NCP1063AD100R2G NCP1216AP133G NCP1217AP100G

