## Single Supply Dual Operational Amplifiers

Utilizing the circuit designs perfected for Quad Operational Amplifiers，these dual operational amplifiers feature low power drain， acommon mode input voltage range extending to ground／VEE，and single supply or split supply operation．
These amplifiers have several distinct advantages over standard operational amplifier types in single supply applications．They can operate at supply voltages as low as 3.0 V or as high as 32 V ，with quiescent currents about one－fifth of those associated with the MC1741（on a per amplifier basis）．The common mode input range includes the negative supply，thereby eliminating the necessity for external biasing components in many applications．The output voltage range also includes the negative power supply voltage．

## Features

－Short Circuit Protected Outputs
－True Differential Input Stage
－Single Supply Operation：3．0 V to 32 V
－Low Input Bias Currents
－Internally Compensated
－Common Mode Range Extends to Negative Supply
－Single and Split Supply Operation
－ESD Clamps on the Inputs Increase Ruggedness of the Device without Affecting Operation

PIN CONNECTIONS


## 2583582904



Figure 1.


Figure 2．Representative Schematic Diagram
（One－Half of Circuit Shown）

## 信路达

## $258 \quad 358 \quad 2904$

MAXIMUM RATINGS（ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．）

| Rating |  | Symbol | Value | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Power Supply Voltages Single Supply Split Supplies |  | $\begin{gathered} \mathrm{v}_{\mathrm{CC}} \\ \mathrm{v}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{EE}} \end{gathered}$ | $\begin{gathered} 32 \\ \pm 16 \end{gathered}$ | Vdc |
| Input Differential Voltage Range（Note 1） |  | VIDR | $\pm 32$ | Vdc |
| Input Common Mode Voltage Range（Note 2） |  | $V_{\text {ICR }}$ | －0．3 to 32 | Vdc |
| Output Short Circuit Duration |  | $\mathrm{t}_{\text {SC }}$ | Continuous |  |
| Junction Temperature |  | $\mathrm{T}_{J}$ | 150 | ${ }^{\circ} \mathrm{C}$ |
| Thermal Resistance，Junction－to－Air（Note 3） | Case 846A <br> Case 751 <br> Case 626 | $\mathrm{R}_{\theta \mathrm{JA}}$ | $\begin{aligned} & 238 \\ & 212 \\ & 161 \end{aligned}$ | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Storage Temperature Range |  | $\mathrm{T}_{\text {stg }}$ | -65 to＋150 | ${ }^{\circ} \mathrm{C}$ |
| ESD Protection at any Pin Human Body Model Machine Model |  | $V_{\text {esd }}$ | $\begin{gathered} 2000 \\ 200 \end{gathered}$ | V |
| Operating Ambient Temperature Range | $\begin{array}{r} 258 \\ 358 \\ 2904 \end{array}$ | $\mathrm{T}_{\text {A }}$ | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |

Stresses exceeding Maximum Ratings may damage the device．Maximum Ratings are stress ratings only．Functional operation above the Recommended Operating Conditions is not implied．Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability．
1．Split Power Supplies．
2．For supply voltages less than 32 V the absolute maximum input voltage is equal to the supply voltage．
3．All $\mathrm{R}_{\theta \mathrm{JA}}$ measurements made on evaluation board with 1 oz ．copper traces of minimum pad size．All device outputs were active．

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ ，unless otherwise noted．）

| Characteristic | Symbol | 258 |  |  | 358 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max |
| $\begin{aligned} & \text { Input Offset Voltage } \\ & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{IC}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}-1.7 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}} \simeq 1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}(\text { Note 5) } \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { (Note 5) } \end{aligned}$ | $\mathrm{V}_{10}$ |  | 2.0 | $\begin{aligned} & 5.0 \\ & 7.0 \\ & 7.0 \end{aligned}$ | － | 2.0 | $\begin{aligned} & 7.0 \\ & 9.0 \\ & 9.0 \end{aligned}$ |
| Average Temperature Coefficient of Input Offset Voltage $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }}(\text { Note 5) }$ | $\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$ | － | 7.0 | － | － | 7.0 | － |
| Input Offset Current <br> $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}$ to $\mathrm{T}_{\text {low }}$（Note 5） Input Bias Current <br> $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}$ to $\mathrm{T}_{\text {low }}$（Note 5） | $I_{10}$ $I_{B}$ |  | $\begin{gathered} \hline 3.0 \\ - \\ -45 \\ -50 \end{gathered}$ | $\begin{array}{\|c} \hline 30 \\ 100 \\ -150 \\ -300 \end{array}$ |  | $\begin{gathered} 5.0 \\ - \\ -45 \\ -50 \end{gathered}$ | $\begin{array}{\|c} \hline 50 \\ 150 \\ -250 \\ -500 \end{array}$ |
| Average Temperature Coefficient of Input Offset Current $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }} \text { (Note 5) }$ | $\Delta \mathrm{l}_{10} / \Delta \mathrm{T}$ | － | 10 | － | － | 10 | － |
| Input Common Mode Voltage Range（Note 6）， $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }} \end{aligned}$ | VICR | $0$ |  | $\begin{array}{\|c\|} \hline 28.3 \\ 28 \end{array}$ | 0 0 |  | $\begin{array}{\|c\|} \hline 28.3 \\ 28 \\ \hline \end{array}$ |
| Differential Input Voltage Range | $V_{\text {IDR }}$ | － | － | $\mathrm{V}_{\text {CC }}$ | － | － | $\mathrm{V}_{\mathrm{CC}}$ |
| Large Signal Open Loop Voltage Gain $\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$ ，For Large $\mathrm{V}_{\mathrm{O}}$ Swing， $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}$ to $\mathrm{T}_{\text {low }}$（Note 5） | Avol | $\begin{aligned} & 50 \\ & 25 \end{aligned}$ | 100 | － |  |  |  |
| Channel Separation <br> $1.0 \mathrm{kHz} \leq \mathrm{f} \leq 20 \mathrm{kHz}$ ，Input Referenced | CS | － | －120 | － | － | －120 | － |
| Common Mode Rejection $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$ | CMR | 70 | 85 | － | 65 | 70 | － |
| Power Supply Rejection | PSR | 65 | 100 | － | 65 | 100 | － |
| $\begin{aligned} & \text { Output Voltage-High Limit } \\ & T_{A}=T_{\text {high }} \text { to } T_{\text {low }}(\text { Note } 5) \\ & V_{C C}=5.0 \mathrm{~V}, R_{L}=2.0 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$ | $\mathrm{V}_{\mathrm{OH}}$ | $\begin{aligned} & 3.3 \\ & 26 \\ & 27 \end{aligned}$ | $\begin{gathered} 3.5 \\ - \\ 28 \end{gathered}$ | － | 3.3 26 27 | $\begin{gathered} 3.5 \\ - \\ 28 \end{gathered}$ | － |
| Output Voltage－Low Limit $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }} \text { (Note 5) } \end{aligned}$ | $\mathrm{V}_{\text {OL }}$ | － | 5.0 | 20 | － | 5.0 | 20 |
| Output Source Current $\begin{aligned} & \mathrm{V}_{I D}=+1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }} \text { (LM358A Only) } \end{aligned}$ | $\mathrm{I}_{0}+$ | 20 | 40 | － | 20 | 40 | － |
| $\begin{aligned} & \text { Output Sink Current } \\ & \mathrm{V}_{I D}=-1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }}(\mathrm{LM} 358 \mathrm{~A} \text { Only) } \\ & \mathrm{V}_{I D}=-1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=200 \mathrm{mV} \end{aligned}$ | $\mathrm{l}_{0}$ | $\begin{aligned} & 10 \\ & 12 \end{aligned}$ | $\begin{aligned} & 20 \\ & 50 \end{aligned}$ | － | 10 12 | $\begin{aligned} & 20 \\ & 50 \end{aligned}$ | － |
| Output Short Circuit to Ground（Note 7） | Isc | － | 40 | 60 | － | 40 | 60 |
| Power Supply Current（Total Device） <br> $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}$ to $\mathrm{T}_{\text {low }}$（Note 5） $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty \end{aligned}$ | ICC | － | 1.5 | 3.0 1.2 | － | 1.5 0.7 | 3.0 1.2 |

4．The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V ．The upper end of the common mode voltage range is $\mathrm{V}_{\mathrm{CC}}-1.7 \mathrm{~V}$ ．
5．Short circuits from the output to $\mathrm{V}_{\mathrm{CC}}$ can cause excessive heating and eventual destruction．Destructive dissipation can result from simultaneous shorts on all amplifiers．

2583582904
ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Gnd}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ ，unless otherwise noted．）

| Characteristic | Symbol | 2904 |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |
| $\begin{aligned} & \text { Input Offset Voltage } \\ & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{~V}_{\text {IC }}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}-1.7 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}} \simeq 1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { (Note 8) } \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { (Note 8) } \end{aligned}$ | $\mathrm{V}_{10}$ |  | $2.0$ | $\begin{aligned} & 7.0 \\ & 10 \\ & 10 \end{aligned}$ |
| Average Temperature Coefficient of Input Offset Voltage $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }} \text { (Note 8) }$ | $\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$ | － | 7.0 | － |
| Input Offset Current <br> $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}$ to $\mathrm{T}_{\text {low }}$（Note 8） Input Bias Current <br> $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }}$ to $\mathrm{T}_{\text {low }}$（Note 8） | $I_{10}$ $I_{B}$ |  | $\begin{gathered} 5.0 \\ 45 \\ -45 \\ -50 \end{gathered}$ | $\begin{gathered} 50 \\ 200 \\ -250 \\ -500 \end{gathered}$ |
| Average Temperature Coefficient of Input Offset Current $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }}(\text { Note 8) }$ | $\Delta l_{10} / \Delta T$ | － | 10 | － |
| Input Common Mode Voltage Range（Note 9）， $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }} \end{aligned}$ | VICR | 0 <br> 0 | $-$ | $\begin{gathered} \hline 28.3 \\ 28 \end{gathered}$ |
| Differential Input Voltage Range | $\mathrm{V}_{\text {IDR }}$ | － | － | $\mathrm{V}_{\mathrm{CC}}$ |
| $\begin{aligned} & \text { Large Signal Open Loop Voltage Gain } \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \text {, For Large } \mathrm{V}_{\mathrm{O}} \text { Swing, } \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }}(\text { Note } 8) \end{aligned}$ | AvoL | $\begin{aligned} & 25 \\ & 15 \end{aligned}$ | 100 | － |
| Channel Separation <br> $1.0 \mathrm{kHz} \leq \mathrm{f} \leq 20 \mathrm{kHz}$ ，Input Referenced | CS | － | －120 | － |
| Common Mode Rejection $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$ | CMR | 50 | 70 | － |
| Power Supply Rejection | PSR | 50 | 100 | － |
| $\begin{aligned} & \text { Output Voltage-High Limit } \\ & T_{A}=T_{\text {high }} \text { to } T_{\text {low }}(\text { Note } 8) \\ & V_{C C}=5.0 \mathrm{~V}, R_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$ | $\mathrm{V}_{\mathrm{OH}}$ | $\begin{aligned} & 3.3 \\ & 26 \\ & 27 \end{aligned}$ | $\begin{gathered} 3.5 \\ - \\ 28 \end{gathered}$ | - |
| Output Voltage－Low Limit $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {high }} \text { to } \mathrm{T}_{\text {low }} \text { (Note 8) } \end{aligned}$ | $\mathrm{V}_{\text {OL }}$ | － | 5.0 | 20 |
| Output Source Current $\mathrm{V}_{\mathrm{ID}}=+1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}$ | $\mathrm{I}_{+}$ | 20 | 40 | － |
| Output Sink Current $\begin{aligned} & \mathrm{V}_{I D}=-1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{ID}}=-1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=200 \mathrm{mV} \end{aligned}$ | $\mathrm{l}_{0}$ | 10 | 20 | － |
| Output Short Circuit to Ground（Note 10） | Isc | － | 40 | 60 |
| $\begin{aligned} & \text { Power Supply Current (Total Device) } \\ & T_{A}=T_{\text {high }} \text { to } T_{\text {low }} \text { (Note 8) } \\ & V_{C C}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, R_{\mathrm{L}}=\infty \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, R_{\mathrm{L}}=\infty \end{aligned}$ | Icc | － | 1.5 0.7 | 3.0 1.2 |

7．The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V ．The upper end of the common mode voltage range is $\mathrm{V}_{\mathrm{CC}}-1.7 \mathrm{~V}$ ．
8．Short circuits from the output to $\mathrm{V}_{\mathrm{CC}}$ can cause excessive heating and eventual destruction．Destructive dissipation can result from simultaneous shorts on all amplifiers．

# XINLUDA 

## 信路达

## 2583582904 <br> CIRCUIT DESCRIPTION

The 358 series is made using two internally compensated，two－stage operational amplifiers．The first stage of each consists of differential input devices Q20 and Q18 with input buffer transistors Q21 and Q17 and the differential to single ended converter Q3 and Q4．The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions．By reducing the transconductance，a smaller compensation capacitor（only 5.0 pF ）can be employed，thus saving chip area．The transconductance reduction is accomplished by splitting the collectors of Q20 and Q18． Another feature of this input stage is that the input common mode range can include the negative supply or ground，in single supply operation，without saturating either the input devices or the differential to single－ended converter．The second stage consists of a standard current source load amplifier stage．

Each amplifier is biased from an internal－voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection．


Figure 4．Input Voltage Range


Figure 3．Large Signal Voltage Follower Response


Figure 5．Large－Signal Open Loop Voltage Gain

2583582904


Figure 6．Large－Signal Frequency Response


Figure 8．Power Supply Current versus Power Supply Voltage


Figure 7．Small Signal Voltage Follower Pulse Response（Noninverting）


Figure 9．Input Bias Current versus Supply Voltage

## 2583582904



$$
\mathrm{V}_{0}=2.5 \mathrm{~V}\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)
$$

Figure 10．Voltage Reference


Figure 11．Wien Bridge Oscillator


$$
e_{0}=C(1+a+b)\left(e_{2}-e_{1}\right)
$$

Figure 12．High Impedance Differential Amplifier


Figure 13．Comparator with Hysteresis


Figure 14．Bi－Quad Filter

## 2583582904


$f=\frac{R 1+R_{C}}{4 C R_{f} R 1} \quad$ if，$R 3=\frac{R 2 R 1}{R 2+R 1}$
Figure 15．Function Generator


$$
\text { Given: } \begin{aligned}
f_{0} & =\text { center frequency } \\
A\left(f_{0}\right) & =\text { gain at center frequency }
\end{aligned}
$$

Choose value $f_{0}, C$
Then：$\quad R 3=\frac{Q}{\pi f_{0} C}$
$R 1=\frac{R 3}{2 A\left(f_{0}\right)}$
$R 2=\frac{R 1 R 3}{4 Q^{2} R 1-R 3}$
For less than $10 \%$ error from operational amplifier．$\frac{\mathrm{Q}_{0} \underline{f}_{0}}{B W}<0.1$
Where $\mathrm{f}_{0}$ and BW are expressed in Hz ．

If source impedance varies，filter may be preceded with voltage follower buffer to stabilize filter parameters．

Figure 16．Multiple Feedback Bandpass Filter

| $\begin{array}{c}\text { Ord } \\ \text { Number }\end{array}$ |  | $\begin{array}{c}\text { Device } \\ \text { Marking }\end{array}$ | $\begin{array}{c}\text { Package } \\ \text { type }\end{array}$ | $\begin{array}{c}\text { Body size } \\ \text {（mm）}\end{array}$ | $\begin{array}{c}\text { Temperatur } \\ \left.\text { e（ }{ }^{\circ} \mathrm{C}\right)\end{array}$ | MSL | $\begin{array}{c}\text { Transport } \\ \text { Media }\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Package |  |  |  |  |  |  |  |
| Quantity |  |  |  |  |  |  |  |$]$

## 信路达

## SOP8는



## DI P8ㄴ․․



| 单位：mm |  |  |  |
| :---: | :---: | :---: | :---: |
| － | MIN | NOM | MAX |
| A | 3.600 | 3.800 | 4.000 |
| A1（站高） | 3． 786 | 3.886 | 3.986 |
| A2（厚度） | 3． 200 | 3.300 | 3.400 |
| A3 | 1.550 | 1.600 | 1．650 |
| b | 0.440 | － | 0.490 |
| e（脚间距） | 2． 510 | 2.540 | 2． 570 |
| D（长度） | 9.150 | 9． 250 | 9.350 |
| E（跨度） | 7.800 | 8． 500 | 9． 200 |
| E1（宽度） | 6． 280 | 6． 380 | 6.480 |
| L（脚长） | 3.000 | － | － |

VSSOP8는


Xinluda reserves the right to change the above information without prior notice．

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by XINLUDA manufacturer:
Other Similar products are found below :
430227FB AZV831KTR-G1 UPC451G2-A UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC258G2-A NCS5651MNTXG NCV33202DMR2G NJM324E NTE925 5962-9080901MCA* AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM2902EDR2G NTE778S NTE871 NTE924 NTE937 MCP6V16UT-E/OT MCP6V17T-E/MS MCP6V19T-E/ST SCY6358ADR2G LTC2065IUD\#PBF NCS20282FCTTAG LM4565FVT-GE2 EL5420CRZ-T7A TSV791IYLT TSV772IQ2T TLV2772QPWR NJM2100M-TE1 NJM4556AM-TE1 MCP6487-E/SN MCP6487-E/MS AS324MTR-E1 AS358MMTR-G1 MCP6232T-EMNY MCP662-E/MF TLC081AIP TLC082AIP TLE2074ACDW
TLV07IDR TLV2170IDGKT

