1 Features

－Equivalent Input Noise Voltage： $5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Typ at 1 kHz
－Unity－Gain Bandwidth： 10 MHz Typ
－Common－Mode Rejection Ratio： 100 dB Typ
－High DC Voltage Gain： $100 \mathrm{~V} / \mathrm{mV}$ Typ
－Peak－to－Peak Output Voltage Swing 26 V Typ With $\mathrm{V}_{\mathrm{CC} \pm}= \pm 15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=600 \Omega$
－High Slew Rate： $9 \mathrm{~V} / \mu \mathrm{s}$ Typ

2 Applications

－AV Receivers
－Embedded PCs
－Netbooks
－Video Broadcasting and Infrastructure：Scalable Platforms
－DVD Recorders and Players
－Multichannel Video Transcoders
－Pro Audio Mixers

4 Simplified Schematic

5 Pin Configuration and Functions

	XDXL/5532 (TOP VIEW)		
1OUT -	-	8	$\square \mathrm{V}_{\mathrm{cc}+}$
$1 \mathrm{IN}-$	2	7	$\square 204 T$
$1 \mathrm{IN}+\square$		6	$\square 21 \mathrm{~N}$ -
$\mathrm{V}_{\text {cc. }} \square^{\text {b }}$			$\square 2 \mathrm{~N}+$

Pin Functions

PIN		TYPE	DESCRIPTION
NAME	NO.		
$1 \mathrm{~N}+$	3	1	Noninverting input
1IN-	2	I	Inverting Input
OUT1	1	0	Output
$2 \mathrm{~N}+$	5	I	Noninverting input
2IN-	6	I	Inverting Input
2OUT	7	0	Output
VCC+	8	-	Positive Supply
VCC-	4	-	Negative Supply

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

			MIN	MAX	UNIT
	Supply voltage ${ }^{(2)}$	$\mathrm{V}_{\text {CC+ }}$	0	22	V
V_{cc}	Supply volage	$\mathrm{V}_{\text {CC- }}$	-22	0	V
	Input voltage, either input ${ }^{(2)(3)}$		V_{CC}	$\mathrm{V}_{\mathrm{CC}+}$	V
	Input current ${ }^{(4)}$		-10	10	mA
	Duration of output short circuit ${ }^{(5)}$			mited	
T_{J}	Operating virtual-junction temperature			150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values, except differential voltages, are with respect to the midpoint between $\mathrm{V}_{\mathrm{CC}+}$ and $\mathrm{V}_{\mathrm{CC}-}$.
(3) The magnitude of the input voltage must never exceed the magnitude of the supply voltage.
(4) Excessive input current will flow if a differential input voltage in excess of approximately 0.6 V is applied between the inputs, unless some limiting resistance is used.
(5) The output may be shorted to ground or either power supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation rating is not exceeded.

6.2 ESD Ratings

			VALUE	UNIT
$\mathrm{V}_{\text {(ESD) }}$	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ${ }^{(1)}$	2000	V
		Charged device model (CDM), per JEDEC specification JESD22C101, all pins ${ }^{(2)}$	1000	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

		MIN	MAX	UNIT
$\mathrm{V}_{\mathrm{CC}+}$	Supply voltage	5	15	V
$\mathrm{~V}_{\mathrm{CC}-}$	Supply voltage	-5	-15	V
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	$\mathrm{XDXL} / 5532$	0	70
		${ }^{\circ} \mathrm{C}$		

6.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		XDXL/5532			UNIT
		D	P	PS	
		8 PINS			
$\mathrm{R}_{\text {өJA }}$	Junction-to-ambient thermal resistance ${ }^{(2)(3)}$	97	85	95	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^0]
6.5 Electrical Characteristics

PARAMETER		TEST CONDITIONS ${ }^{(1)}$		MIN	TYP	MAX	UNIT
V_{10}	Input offset voltage	$\mathrm{V}_{\mathrm{O}}=0$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.5	4	
			$\mathrm{T}_{\mathrm{A}}=$ Full range $^{(2)}$			5	mV
10	Input offset current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			10	150	nA
		$\mathrm{T}_{\mathrm{A}}=$ Full range $^{(2)}$				200	
I_{B}	Input bias current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			200	800	nA
		$\mathrm{T}_{\mathrm{A}}=$ Full range $^{(2)}$				1000	
VICR	Common-mode input-voltage range			± 12	± 13		V
$\mathrm{V}_{\text {OPP }}$	Maximum peak-to-peak output-voltage swing	$\mathrm{R}_{\mathrm{L}} \geq 600 \Omega, \mathrm{~V}_{\mathrm{CC} \pm}= \pm 15$		24	26		V
A_{VD}	Large-signal differential-voltage amplification	$\mathrm{R}_{\mathrm{L}} \geq 600 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	15	50		V/mV
			$\mathrm{T}_{\mathrm{A}}=$ Full range ${ }^{(2)}$	10			
		$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}} \pm 10 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	25	100		
			$\mathrm{T}_{\mathrm{A}}=$ Full range ${ }^{(2)}$	15			
A_{vd}	Small-signal differential-voltage amplification	$\mathrm{f}=10 \mathrm{kHz}$			2.2		V/mV
Bом	Maximum output-swing bandwidth	$\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$			140		kHz
B_{1}	Unity-gain bandwidth	$\mathrm{R}_{\mathrm{L}}=600 \Omega, C_{L}=100 \mathrm{pF}$			10		MHz
r_{i}	Input resistance	$A_{V D}=30 \mathrm{~dB}, \mathrm{R}_{L}=600 \Omega, \mathrm{f}=10 \mathrm{kHz}$		30	300		k Ω
z_{0}	Output impedance				0.3		Ω
CMRR	Common-mode rejection ratio	$V_{\text {IC }}=\mathrm{V}_{\text {ICR }}$ min		70	100		dB
$\mathrm{k}_{\text {SVR }}$	Supply-voltage rejection ratio ($\Delta \mathrm{V}_{\mathrm{CC} \pm} / \Delta \mathrm{V}_{\mathrm{IO}}$)	$\mathrm{V}_{\mathrm{CC} \pm}= \pm 9 \mathrm{~V}$ to $\pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0$		80	100		dB
los	Output short-circuit current			10	38	60	mA
I_{CC}	Total supply current	$V_{O}=0$, No load			8	16	mA
	Crosstalk attenuation ($\mathrm{V}_{\mathrm{O} 1} / \mathrm{V}_{\mathrm{O} 2}$)	$\mathrm{V}_{01}=10 \mathrm{~V}$ peak, $\mathrm{f}=1 \mathrm{kHz}$			110		dB

(1) All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified.
(2) Full temperature ranges are: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ for the XDXL/5532 devices.

6.6 Operating Characteristics

$\mathrm{V}_{\mathrm{CC} \pm}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

6.7 Typical Characteristics

Figure 1. Equivalent Input Noise Voltage vs Frequency

Figure 2. Equivalent Input Noise Current vs Frequency

Figure 3. Output Swing Bandwidth vs Temperature at $\mathrm{V}_{\mathrm{Cc}}= \pm 10 \mathrm{~V}$

7 Detailed Description

7.1 Overview

The XDXL/5532 devices are high-performance operational amplifiers combining excellent dc and ac characteristics. They feature very low noise, high output-drive capability, high unity-gain and maximum-output-swing bandwidths, low distortion, high slew rate, input-protection diodes, and output shortcircuit protection. These operational amplifiers are compensated internally for unity-gain operation. These devices have specified maximum limits for equivalent input noise voltage.

7.2 Functional Block Diagram

Component values shown are nominal.

7.3 Feature Description

7.3.1 Unity-Gain Bandwidth

The unity-gain bandwidth is the frequency up to which an amplifier with a unity gain may be operated without greatly distorting the signal. The XDXL/5532 devices have a $10-\mathrm{MHz}$ unity-gain bandwidth.

7.3.2 Common-Mode Rejection Ratio

The common-mode rejection ratio (CMRR) of an amplifier is a measure of how well the device rejects unwanted input signals common to both input leads. It is found by taking the ratio of the change in input offset voltage to the change in the input voltage and converting to decibels. Ideally the CMRR would be infinite, but in practice, amplifiers are designed to have it as high as possible. The CMRR of the XDXL/5532 devices is 100 dB .

7.3.3 Slew Rate

The slew rate is the rate at which an operational amplifier can change its output when there is a change on the input. The XDXL/5532 devices have a $9-\mathrm{V} / \mathrm{ms}$ slew rate.

7.4 Device Functional Modes

The XDXL/5532 devices are powered on when the supply is connected. Each of these devices can be operated as a single supply operational amplifier or dual supply amplifier depending on the application.

8 Application and Implementation

8.1 Typical Application

Some applications require differential signals. Figure 4 shows a simple circuit to convert a single-ended input of 2 V to 10 V into differential output of $\pm 8 \mathrm{~V}$ on a single $15-\mathrm{V}$ supply. The output range is intentionally limited to maximize linearity. The circuit is composed of two amplifiers. One amplifier acts as a buffer and creates a voltage, $\mathrm{V}_{\text {OUt+ }}$. The second amplifier inverts the input and adds a reference voltage to generate $\mathrm{V}_{\text {OUT- }}$. Both $\mathrm{V}_{\text {OUT+ }}$ and $\mathrm{V}_{\text {OUT- }}$ range from 2 V to 10 V . The difference, $\mathrm{V}_{\text {DIFF, }}$, is the difference between $\mathrm{V}_{\text {OUT+ }}$ and $\mathrm{V}_{\text {OUT-. }}$

Figure 4. Schematic for Single-Ended Input to Differential Output Conversion

8.1.1 Design Requirements

The design requirements are as follows:

- Supply voltage: 15 V
- Reference voltage: 12 V
- Input: 2 V to 10 V
- Output differential: $\pm 8 \mathrm{~V}$

Typical Application (continued)

8.1.2 Detailed Design Procedure

The circuit in Figure 4 takes a single-ended input signal, $\mathrm{V}_{\text {IN }}$, and generates two output signals, $\mathrm{V}_{\text {OUT+ }}$ and $\mathrm{V}_{\text {OUT- }}$ using two amplifiers and a reference voltage, $\mathrm{V}_{\text {REF }}$. $\mathrm{V}_{\text {OUT+ }}$ is the output of the first amplifier and is a buffered version of the input signal, $\mathrm{V}_{\text {IN }}$ Equation 1. $\mathrm{V}_{\text {OUT- }}$ is the output of the second amplifier which uses $\mathrm{V}_{\text {REF }}$ to add an offset voltage to $\mathrm{V}_{\mathbb{I N}}$ and feedback to add inverting gain. The transfer function for $\mathrm{V}_{\text {OUT- }}$ is Equation 2.
$\mathrm{V}_{\mathrm{OUT}+}=\mathrm{V}_{\text {IN }}$
$V_{\text {out }}=V_{\text {ref }} \times\left(\frac{R_{4}}{R_{3}+R_{4}}\right) \times\left(1+\frac{R_{2}}{R_{1}}\right)-V_{\text {in }} \times \frac{R_{2}}{R_{1}}$
The differential output signal, $\mathrm{V}_{\text {DIFF }}$, is the difference between the two single-ended output signals, $\mathrm{V}_{\text {OUT+ }}$ and $V_{\text {OUT_. }}$ Equation 3 shows the transfer function for $\mathrm{V}_{\text {DIFF. }}$. By applying the conditions that $\mathrm{R}_{1}=\mathrm{R}_{2}$ and $\mathrm{R}_{3}=\mathrm{R}_{4}$, the transfer function is simplified into Equation 6. Using this configuration, the maximum input signal is equal to the reference voltage and the maximum output of each amplifier is equal to the $V_{\text {REF }}$. The differential output range is $2 \times V_{\text {REF }}$. Furthermore, the common mode voltage will be one half of $\mathrm{V}_{\text {REF }}$ (see Equation 7).
$V_{\text {DIFF }}=V_{\text {OUT }+}-V_{\text {OUT }-}=V_{\text {IN }} \times\left(1+\frac{R_{2}}{R_{1}}\right)-V_{\text {REF }} \times\left(\frac{R_{4}}{R_{3}+R_{4}}\right)\left(1+\frac{R_{2}}{R_{1}}\right)$
$\mathrm{V}_{\mathrm{OUT}+}=\mathrm{V}_{\mathrm{IN}}$
$\mathrm{V}_{\text {OUT- }}=\mathrm{V}_{\text {REF }}-\mathrm{V}_{\text {IN }}$
$V_{\text {DIFF }}=2 \times V_{\text {IN }}-V_{\text {REF }}$
$V_{\mathrm{cm}}=\left(\frac{\mathrm{V}_{\text {OUT }+}+\mathrm{V}_{\text {OUT- }}}{2}\right)=\frac{1}{2} \mathrm{~V}_{\text {REF }}$

8.1.2.1 Amplifier Selection

Linearity over the input range is key for good dc accuracy. The common mode input range and the output swing limitations determine the linearity. In general, an amplifier with rail-to-rail input and output swing is required. Bandwidth is a key concern for this design. Since the 5532 has a bandwidth of 10 MHz , this circuit will only be able to process signals with frequencies of less than 10 MHz .

81.2.2 Passive Component Selection

Because the transfer function of $V_{\text {OUT- }}$ is heavily reliant on resistors $\left(R_{1}, R_{2}, R_{3}\right.$, and $\left.R_{4}\right)$, use resistors with low tolerances to maximize performance and minimize error. This design used resistors with resistance values of 36 $\mathrm{k} \Omega$ with tolerances measured to be within 2%. But, if the noise of the system is a key parameter, the user can select smaller resistance values ($6 \mathrm{k} \Omega$ or lower) to keep the overall system noise low. This ensures that the noise from the resistors is lower than the amplifier noise.

8.1.3 Application Curves

The measured transfer functions in Figure 5, Figure 6, and Figure 7 were generated by sweeping the input voltage from 0 V to 12 V . However, this design should only be used between 2 V and 10 V for optimum linearity.

Typical Application (continued)

Figure 5. Differential Output Voltage vs Input Voltage

Figure 6. Positive Output Voltage Node vs Input Voltage

Figure 7. Positive Output Voltage Node vs Input Voltage

9 Power Supply Recommendations

The XDXL/5532 devices are specified for operation over the range of ± 5 to $\pm 15 \mathrm{~V}$; many specifications apply from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (XDXL/5532) The Typical Characteristics section presents parameters that can exhibit significant variance with regard to operating voltage or temperature.

Place $0.1-\mu \mathrm{F}$ bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high impedance power supplies. For more detailed information on bypass capacitor placement, refer to the Layout Guidelines.

10 Layout

10.1 Layout Guidelines

For best operational performance of the device, use good PCB layout practices, including:

- Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low impedance power sources local to the analog circuitry.
- Connect low-ESR, $0.1-\mu \mathrm{F}$ ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from $\mathrm{V}+$ to ground is applicable for single supply applications.
- Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds, paying attention to the flow of the ground current. For more detailed information, refer to Circuit Board Layout Techniques, SLOA089.
- To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as opposed to in parallel with the noisy trace.
- Place the external components as close to the device as possible. Keeping RF and RG close to the inverting input minimizes parasitic capacitance, as shown in Layout Example.
- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.
- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

10.2 Layout Example

Figure 8. Operational Amplifier Schematic for Noninverting Configuration

Layout Example (continued)

Figure 9. Operational Amplifier Board Layout for Noninverting Configuration

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
$P(R-P D I P-T 8)$

NOTES：A．All linear dimensions are in inches（millimeters）．
B．This drawing is subject to change without notice．
C．Falls within JEDEC MS－001 variation BA．

以上信息仅供参考．如需帮助联系客服人员。谢谢 XINLUDA

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by XINLUDA manufacturer:
Other Similar products are found below :
OPA2991IDSGR OPA607IDCKT 007614D 633773R 635798C 635801A 702115D 709228FB 741528D NCV33072ADR2G
SC2902DTBR2G SC2903DR2G SC2903VDR2G LM258AYDT LM358SNG 430227FB 430228DB 460932C AZV831KTR-G1 409256CB 430232AB LM2904DR2GH LM358YDT LT1678IS8 042225DB 058184EB 070530X SC224DR2G SC239DR2G SC2902DG

SCYA5230DR2G 714228XB 714846BB 873836HB MIC918YC5-TR TS912BIYDT NCS2004MUTAG NCV33202DMR2G
M38510/13101BPA NTE925 SC2904DR2G SC358DR2G LM358EDR2G AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E NJM358CG-TE2 HA1630S01LPEL-E LM324AWPT HA1630Q06TELL-E

[^0]: (1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
 (2) The package thermal impedance is calculated in accordance with JESD 51-7.
 (3) Maximum power dissipation is a function of $T_{J}(\max), \theta_{\mathrm{JA}}$, and T_{A}. The maximum allowable power dissipation at any allowable ambient temperature is $P_{D}=\left(T_{J}(\max)-T_{A}\right) / \theta_{J A}$. Operating at the absolute maximum T_{J} of $150^{\circ} \mathrm{C}$ can affect reliability.

