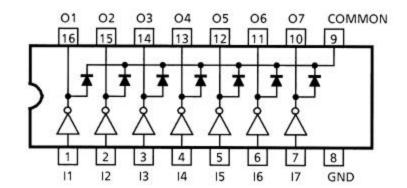


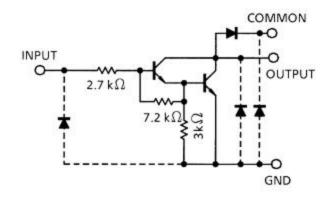
The XDXL62003 Series are high-voltage, high-current darlington drivers comprised of seven NPN darlington pairs. All units feature integral clamp diodes for switching inductive loads.


Applications include relay, hammer, lamp and display (LED) drivers.

The suffix (G) appended to the part number represents a Lead (Pb)-Free product.

Features

- Output current (single output): 500 mA max
- High sustaining voltage output: 50 V min
- Output clamp diodes
- Inputs compatible with various types of logic


Pin Connection (top view)

Туре	Input Base Resistor	Designation
XDXL62003	2.7 kΩ	TTL, 5 V CMOS

Schematics (each driver)

XDXL62003

Note: The input and output parasitic diodes cannot be used as clamp diodes.

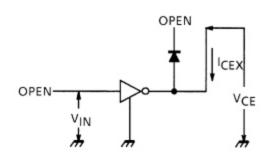
Absolute Maximum Ratings (Ta = 25°C)

Characteristic		Symbol	Rating	Unit	
Output sustaining volta	ge	V _{CE} (SUS)	-0.5~50	٧	
Output current		lout	500	mA/ch	
Input voltage		V _{IN}	-0.5~30	٧	
Clamp diode reverse vo	oltage	V_{R}	50	٧	
Clamp diode forward co	urrent	lF	500	mA	
Dawer dissination	XD62003	D	1.47	W	
Power dissipation	XL62003	P_{D}	1.25 (Note)		
Operating temperature		Topr	-4 0~85	°C	
Storage temperature		T _{stg}	- 55~150	°C	

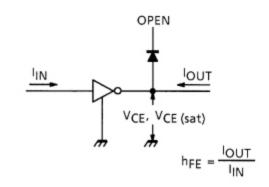
Note: On PCB (Test Board: JEDEC 2s2p)

Recommended Operating Conditions (Ta = -40 to 85° C)

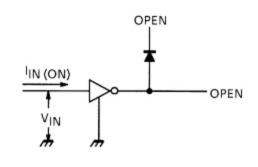
Charac	cteristic	Symbol	Test Condition		Min	Тур.	Max	Unit	
Output sustaining v	/oltage	V _{CE (SUS)}			0	_	50	V	
Output current	XD62003	l _{OUT}	T_{pw} = 25 ms 7 Circuits Ta = 85°C T_j = 120°C	Duty = 10%	0	_	350	- mA/ch	
				Duty = 50%	0	_	100		
	XL62003			Duty = 10%	0	_	300		
				Duty = 50%	0	_	90		
Input voltage		V _{IN}	·		0	_	24	V	
Input voltage	VDVI 62002	V	$V_{\text{IN (ON)}}$ $I_{\text{OUT}} = 400 \text{ mA}$ $h_{\text{FE}} = 800$		2.8	_	24	V	
(output on)	XDXL62003	VIN (ON)				_			
Input voltage		V			0	_	0.7	V	
(output off)	XDXL62003	V _{IN} (OFF)				_			
Clamp diode reverse voltage		V _R			_	_	50	V	
Clamp diode forward current		I _F			_	_	350	mA	
Dower dissipation	XD62003		Ta = 85°C		_	_	0.76	W	
Power dissipation	XL62003	P_{D}	Ta = 85°C	(Not	e) —	_	0.65	\ \v	

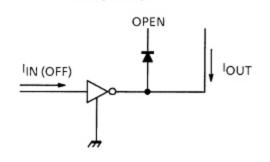

Note: On PCB (Test Board: JEDEC 2s2p)

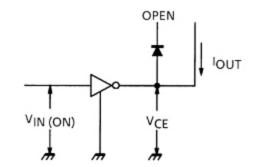
Electrical Characteristics (Ta = 25°C unless otherwise noted)

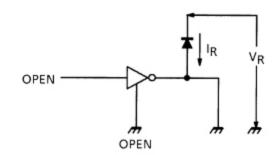

Characteri	stic	Symbol	Test Circuit	Test Condition		Min	Тур.	Max	Unit
Output leakage current		Lame	1	V _{CE} = 50 V, Ta = 25°C		_	_	50	μА
		ICEX		V _{CE} = 50 V, Ta = 85°C		_	_	100	
Collector-emitter saturation voltage			2	$I_{OUT} = 350 \text{ mA}, I_{IN} = 500 \mu\text{A}$		_	1.3	1.6	V
		V _{CE (sat)}		I _{OUT} = 200 mA, I _{IN} = 350 μA		-	1.1	1.3	
				I _{OUT} = 100 mA, I _{IN} = 250 μA		_	0.9	1.1	
DC Current transfer rat	tio	h _{FE}	2	V _{CE} = 2 V, I _{OUT} = 350 mA		1000	1	l	
Input current	Input current XDXL62003 I _{IN} (c		3	V _{IN} = 2.4 V, I _{OUT} = 350 mA		_	0.4	0.7	mA
(output on)	ADAL02003	IN (ON)	3			_			IIIA
Input current (output off)		I _{IN (OFF)}	4	I _{OUT} = 500 μA, Ta = 85°C		50	65	l	μА
	XDXL62003	V _{IN (ON)}		V _{CE} = 2 V h _{FE} = 800	$I_{OUT} = 350 \text{ mA}$		1	2.6	V
Input voltage			5		$I_{OUT} = 200 \text{ mA}$		1	2.0	
(output on)									
Clamp diode reverse current		I _R	6	V _R = 50 V, Ta = 25°C		_	_	50	^
				V _R = 50 V, Ta = 85°C		_	_	100	μА
Clamp diode forward voltage		V _F	7	I _F = 350 mA		_	_	2.0	V
Input capacitance		C _{IN}	_			_	15	1	pF
Turn-on delay		t _{ON}	8	$V_{OUT} = 50 \text{ V}, R_L = 125 \Omega$ $C_L = 15 \text{ pF}$			0.1		μS
Tum-off delay		t _{OFF}	8	$V_{OUT} = 50 \text{ V}, R_L = 125 \Omega$ $C_L = 15 \text{ pF}$			0.2		μэ

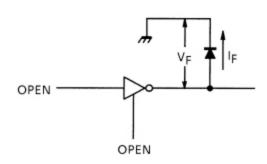
Test Circuit

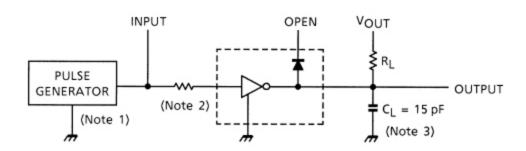

1. I_{CEX}

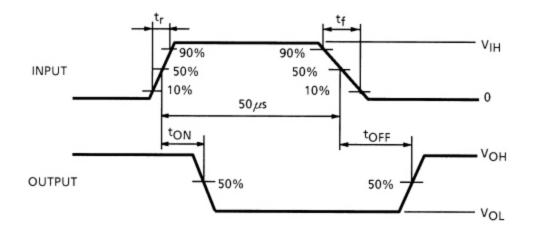

2. V_{CE (sat),} h_{FE}


3. I_{IN (ON)}


4. I_{IN (OFF)}


5. V_{IN (ON)}


6. I_R



7. V_F

8. t_{ON}, t_{OFF}

Note 1: Pulse width 50 µs, duty cycle 10%

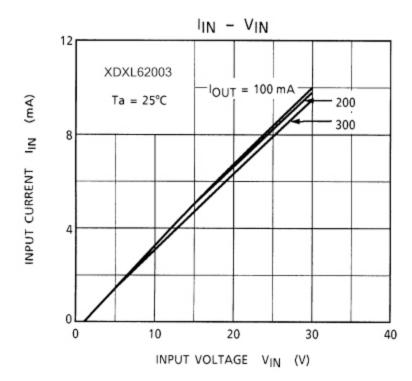
Output impedance 50 Ω , $t_f \le 5$ ns, $t_f \le 10$ ns

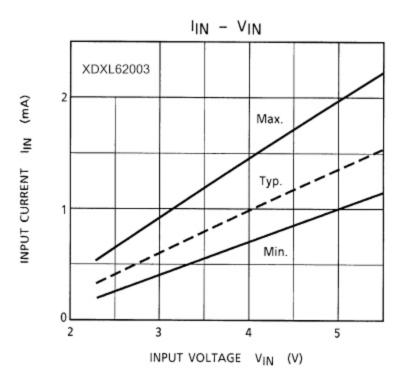
Note 2: See below

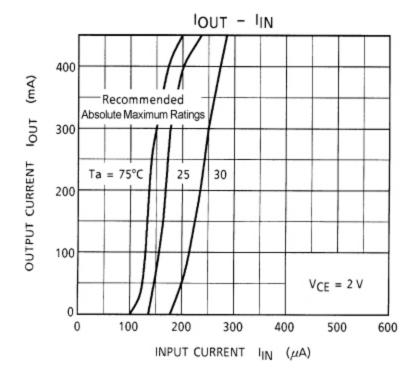
Input Condition

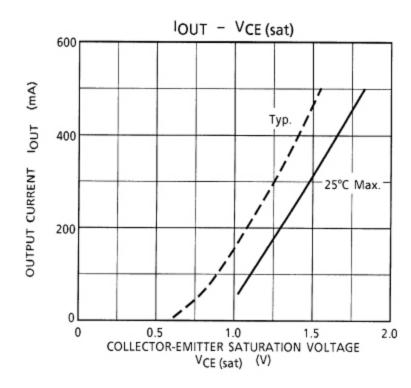
Type Number	R1	V _{IH}
XDXL62003	0	3 V

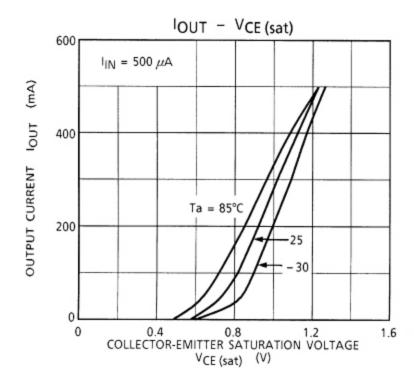
Note 3: CL includes probe and jig capacitance.

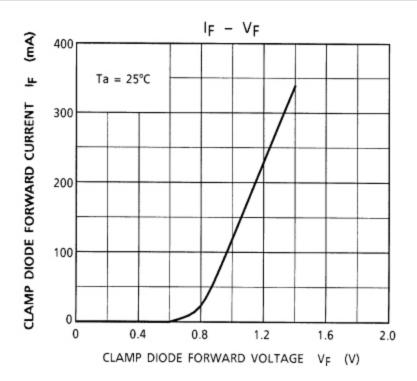

Precautions for Using

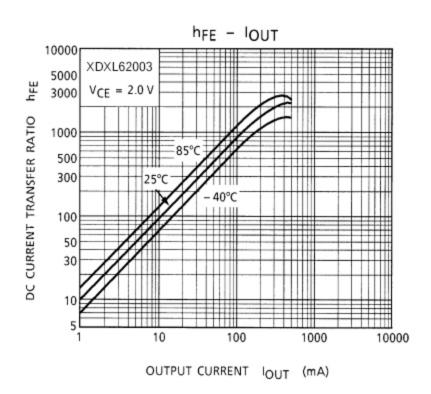

This IC does not include built-in protection circuits for excess current or overvoltage.

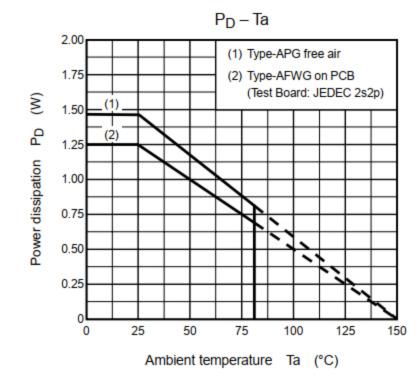

If this IC is subjected to excess current or overvoltage, it may be destroyed.

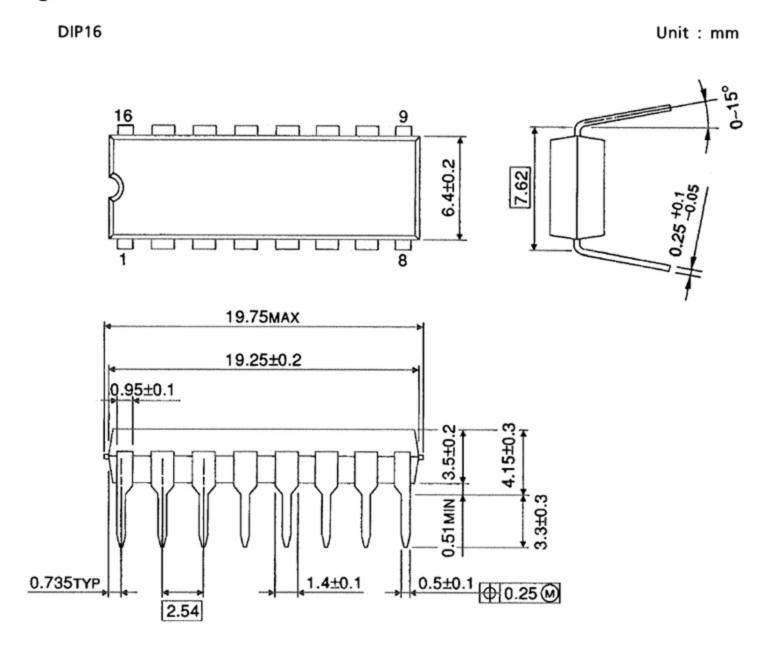

Hence, the utmost care must be taken when systems which incorporate this IC are designed.

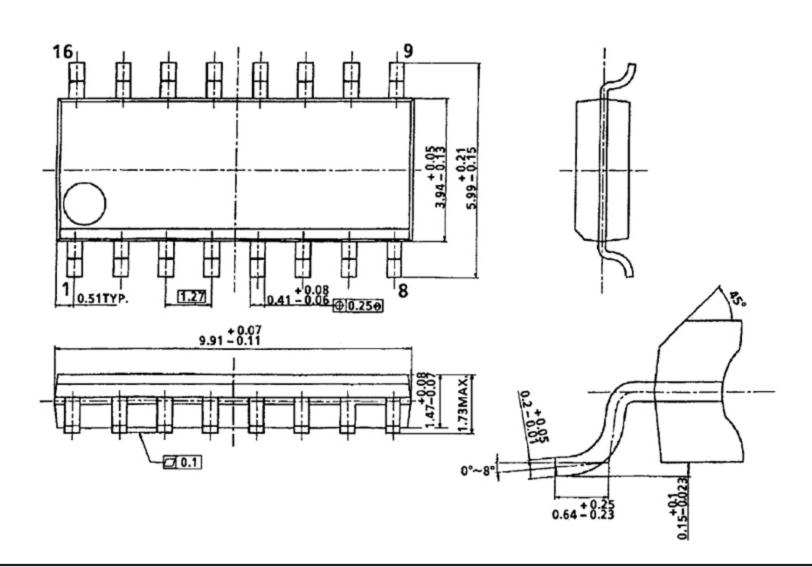

Utmost care is necessary in the design of the output line, COMMON and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.











Package Dimensions

Package Dimensions

SOP16 Unit: mm

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Darlington Transistors category:

Click to view products by XINLUDA manufacturer:

Other Similar products are found below:

281287X SMMBT6427LT1G 2N7371 BDV64B JANTXV2N6287 028710A SMMBTA64LT1G 2N6350 2SB1214-TL-E

SMMBTA14LT1G SBSP52T1G NJVMJD117T4G Jantx2N6058 2N6353 LB1205-L-E 500-00005 2N6053 NJVMJD112G Jan2N6350

Jantx2N6352 Jantx2N6350 BULN2803LVS ULN2001N 2SB1383 2SB1560 2SB852KT146B TIP112TU TIP122TU BCV27 MMBTA13
TP MMBTA14-TP MMSTA28T146 BSP50H6327XTSA1 KSH122TF NTE2557 NJVNJD35N04T4G TIP115 MPSA29-D26Z MJD127T4

FJB102TM BCV26E6327HTSA1 BCV46E6327HTSA1 BCV47E6327HTSA1 BSP61H6327XTSA1 BU941ZPFI 2SB1316TL 2SD1980TL

NTE2350 NTE245 NTE246