1 Features

－3－State Outputs Drive Bus Lines Directly
－PNP Inputs Reduce DC Loading on Bus Lines
－Hysteresis at Bus Inputs Improves Noise Margins
－Typical Propagation Delay Times Port to Port， 8 ns

2 Applications

－Building Automation
－Electronic Point of Sale
－Factory Automation and Control
－Test and Measurement

3 Description

These octal bus transceivers are designed for asynchronous two－way communication between data buses．The control－function implementation minimizes external timing requirements．
The 74 HC 245 devices allow data transmission from the A bus to the B bus or from the B bus to the A bus，depending on the logic level at the direction－ control（DIR）input．The output－enable（ $\overline{\mathrm{OE}}$ ）input can disable the device so that the buses are effectively isolated．

4 Logic Diagram（Positive Logic）

XL74HC245 SOP-20
 XD74HC245 DIP-20

5 Device Comparison Table

TYPE	I IOL (SINK CURRENT)	$\mathbf{I}_{\text {OH }}$ (SOURCE CURRENT)
74 HC 245	24 mA	-15 mA

6 Pin Configuration and Functions

	SOP/DIP		
DIR		20	VCC
A1	2	19	$\overline{\mathrm{OE}}$
A2	3	18	B1
A3	4	17	B2
A4	5	16	B3
A5	6	15	B4
A6	7	14	B5
A7	8	13	B6
A8	9	12	B7
GND	10	11	B8

Pin Functions

PIN		I/O	
NO.	NAME		
1	DIR	I	Controls signal direction; Low $=$ Bx to Ax, High $=$ Ax to Bx
2	A1	I/O	Channel 1, A side
3	A2	I/O	Channel 2, A side
4	A3	I/O	Channel 3, A side
5	A4	I/O	Channel 4, A side
6	A5	I/O	Channel 5, A side
7	A6	I/O	Channel 6, A side
8	A7	I/O	Channel 7, A side
9	A8	I/O	Channel 8, A side
10	GND	-	Ground
11	B8	O/I	Channel 8, B side
12	B7	O/I	Channel 7, B side
13	B6	O/I	Channel 6, B side
14	B5	O/I	Channel 5, B side
15	B4	O/I	Channel 4, B side
16	B3	O/I	Channel 3, B side
17	B2	O/I	Channel 2, B side
18	B1	O/I	Channel 1, B side
19	OE	I	Active low output enable; Low $=$ all channels active, High $=$ all channels disabled (high impedance $)$ 20

XL74HC245 SOP-20
 XD74HC245 DIP-20

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX
V_{CC}	Supply voltage	UNIT	
V_{I}	Input voltage ${ }^{(1)}$	7	V
$\mathrm{~T}_{\mathrm{J}}$	Operating virtual junction temperature	7	V
$\mathrm{~T}_{\text {stg }}$	Storage temperature	-65	150

(1) All voltage values are with respect to GND.

7.2 ESD Ratings

$\mathrm{V}_{(\text {(ESD })}$		Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ${ }^{(1)}$

7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{(1)}$			MIN	TYP ${ }^{(1)}$	MAX	UNIT	
V_{IH}	High-level input voltage					2			V	
VIL	Low-level input voltage			74HC245				0.8	V	
V_{IK}	Input clamp voltage		$\begin{array}{ll} \\ V_{C C}=\mathrm{MIN}, & \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN} & \end{array}$					-1.5	V	
	Hysteresis $\left(\mathrm{V}_{\mathrm{T}_{+}}-\mathrm{V}_{\mathrm{T}-}\right)$	A or B				0.2	0.4		V	
$\mathrm{V}_{\text {OH }}$	High-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}(\max)} \\ & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$		2.4	3.4		V	
			$\mathrm{IOH}^{\text {a }}$ MAX	2						
$\mathrm{V}_{\text {OL }}$	Low-level output voltage			$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}(\max)} \\ \hline \end{array}$	$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$				0.4	V
			$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		74HC245			0.5		
lozh	Off-state output current, high-level voltage applied		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \\ & \mathrm{OE} \text { at } 2 \mathrm{~V}, \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$	
$\mathrm{l}_{\text {OzL }}$	Off-state output current, low-level voltage applied		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \\ & \mathrm{OE} \text { at } 2 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				-200	$\mu \mathrm{A}$	
1	Input current at maximum input voltage	A or B	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$				0.1	mA	
		DIR or $\overline{O E}$		$\mathrm{V}_{1}=7 \mathrm{~V}$				0.1		
I_{H}	High-level input current		$V_{C C}=$ MAX,	$\mathrm{V}_{\mathrm{HH}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$	
IIL	Low-level input current		$V_{C C}=\mathrm{MAX}$,	$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$				-0.2	mA	
los	Short-circuit output current ${ }^{(2)}$		$V_{C C}=M A X$			-40		-225	mA	
I Cc	Supply current	Total, outputs high	$V_{C C}=\mathrm{MAX}$	Outputs open			48	70	mA	
		Total, outputs low					62	90		
		Outputs at high Z					64	95		

[^0]
XL74HC245 SOP-20 XD74HC245 DI P-20

7.6 Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see Figure 2)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
tpLH	Propagation delay time, low- to high-level output	$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega$		8	12	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay time, high- to low-level output			8	12	
$\mathrm{t}_{\text {PZL }}$	Output enable time to low level	$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega$		27	40	ns
$\mathrm{t}_{\text {PZH }}$	Output enable time to high level			25	40	
tpLZ	Output disable time from low level	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega$		15	25	ns
$\mathrm{t}_{\text {PHZ }}$	Output disable time from high level			15	28	

7.7 Typical Characteristics

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega$

Figure 1. Simulated Propagation Delay From Input to Output

XL74HC245 SOP-20
 XD74HC245 DIP-20

8 Parameter Measurement Information

LOAD CIRCUIT
FOR 2-STATE TOTEM-POLE OUTPUTS

LOAD CIRCUIT
FOR OPEN-COLLECTOR OUTPUTS

LOAD CIRCUIT FOR 3-STATE OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All diodes are 1N3064 or equivalent.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. S 1 and $S 2$ are closed for $t_{P L H}, t_{P H L}, t_{P H Z}$, and $t_{P L Z} ; S 1$ is open and $S 2$ is closed for $t_{P Z H}$; $S 1$ is closed and $S 2$ is open for $t_{P Z L}$.
E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
F. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}} \approx 50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 1.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.6 \mathrm{~ns}$.
G. The outputs are measured one at a time with one input transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms

XL74HC245 SOP-20
 XD74HC245 DIP-20

9 Detailed Description

9.1 Overview

The 74 HC 245 uses Schottky transistor logic to perform the standard ' 245 transceiver function. This standard logic function has a common pinout, direction select pin, and active-low output enable. When the outputs are disabled, the A and B sides of the device are effectively isolated.

9.2 Functional Block Diagram

To Seven Other Channels

Figure 3. Logic Diagram (Positive Logic)

9.3 Feature Description

9.3.1 3-State outputs

The 3-state outputs can drive bus lines directly. All outputs can be put into high impedance mode through the $\overline{\mathrm{OE}}$ pin.

9.3.2 PNP Inputs

This device has PNP inputs which reduce dc loading on bus lines.

9.3.3 Hysteresis on Bus Inputs

The bus inputs have built-in hysteresis that improves noise margins.

9.4 Device Functional Modes

The 74 HC 245 performs the standard ' 245 logic function. Data can be transmitted from A to B or from B to A depending on the DIR pin value, or the A and B sides can be isolated from one another by setting the $\overline{O E}$ pin HIGH.

Table 1．Function Table

INPUTS		OPERATION
$\mathbf{O E}$	$\mathbf{D I R}$	
L	L	B data to A bus
L	H	A data to B bus
H	X	Isolation

Figure 4．Schematics of Inputs and Outputs

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Buffers \& Line Drivers category:
Click to view products by XINLUDA manufacturer:

Other Similar products are found below :
5962-9217601MSA 634810D 875140G HEF4022BP HEF4043BP NL17SG125DFT2G NL17SZ126P5T5G NLU1GT126CMUTCG NLU3G16AMX1TCG NLV27WZ125USG MC74HCT365ADTR2G BCM6306KMLG 54FCT240CTDB Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB 065312DB 091056E 098456D NL17SG07DFT2G NL17SG17DFT2G NL17SG34DFT2G NL17SZ07P5T5G NL17SZ125P5T5G NLU1GT126AMUTCG NLV27WZ16DFT2G 5962-8982101PA 5962-9052201PA 74LVC07ADR2G MC74VHC1G125DFT1G NL17SH17P5T5G NL17SZ125CMUTCG NLV17SZ07DFT2G NLV37WZ17USG NLVHCT244ADTR2G NC7WZ17FHX 74HCT126T14-13 NL17SH125P5T5G NLV14049UBDTR2G NLV37WZ07USG 74VHC541FT(BE) RHFAC244K1 74LVC1G17FW4-7 74LVC1G126FZ4-7 BCM6302KMLG 74LVC1G07FZ4-7 74LVC1G125FW4-7

[^0]: (1) All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 (2) Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.

