

XD74LS00 DIP14 / XL74LS00 SOP14

1 Features

- Package Options Include:
 - Plastic Small-Outline (D, NS, PS)
 - Shrink Small-Outline (DB)
 - Ceramic Flat (W)
 - Ceramic Chip Carriers (FK)
 - Standard Plastic (N)
 - Ceramic (J)
- Also Available as Dual 2-Input Positive-NAND Gate in Small-Outline (PS) Package
- Inputs Are TTL Compliant; $V_{IH} = 2 V$ and $V_{IL} = 0.8 V$
- Inputs Can Accept 3.3-V or 2.5-V Logic Inputs
- 5400, 54LS00, and 54S00 are Characterized For Operation Over the Full Military Temperature Range of –55°C to 125°C

5 Pin Configuration and Functions

2 Applications

- AV Receivers
- Portable Audio Docks
- Blu-Ray Players
- Home Theater
- MP3 Players or Recorders
- Personal Digital Assistants (PDAs)

Logic Diagram, Each Gate (Positive Logic)

		PIN				
NAME	CDIP, CFP, SOIC, PDIP, SO, SSOP	SO 74LS00	CFP (5400)	LCCC	I/O	DESCRIPTION
1A	1	1	1	2	I	Gate 1 input
1B	2	2	2	3	I	Gate 1 input
1Y	3	3	3	4	0	Gate 1 output
2A	4	6	6	6	I	Gate 2 input
2B	5	7	7	8	I	Gate 2 input
2Y	6	5	5	9	0	Gate 2 output
ЗA	10	_	9	13	I	Gate 3 input
3B	9	_	10	14	I	Gate 3 input

Pin Functions

Pin Functions (continued)

		PIN				
NAME	CDIP, CFP, SOIC, PDIP, SO, SSOP	SO (74LS00)	CFP (5400)	LCCC	I/O	DESCRIPTION
3Y	8	—	8	12	0	Gate 3 output
4A	13	_	12	18	I	Gate 4 input
4B	12	_	13	19	I	Gate 4 input
4Y	11	—	14	16	0	Gate 4 output
GND	7	4	11	10	—	Ground
NC	_	—	—	1, 5, 7, 11, 15, 17	_	No connect
V _{CC}	14	8	4	20	—	Power supply

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		N	11N N	IAX	UNIT
Supply voltage, V _{CC} ⁽²⁾				7	V
nput voltage	x400 and xS400			5.5	
input voltage	74LS00			7	V
Junction temperature, T _J				150	°C
Storage temperature, T _{stg}		-	65 ·	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Voltage values are with respect to network ground terminal.

6.2 ESD Ratings: 74LS00

			VALUE	UNIT
V	Electrostatic Human-body model (HBM), per ANSI/E	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±500	V
V(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±2000	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance. ESD Tested on 74LS00 package.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
V	Supply voltage	54xx00	4.5	5	5.5	V
VCC	Supply voltage	74xx00		5	5.25	v
VIH	High-level input voltage		2			V
V		x400, 7LS400, and x4S00			0.8	N/
V _{IL} LO	Low-level input voltage	54LS00			0.7	V
l link lau	High lovel output ourcont 5400, 54LS00, and 74LS00	5400, 54LS00, and 74LS00			-0.4	~ ^
ЮН	High-level output current	High-level output current x4S00			-1	mA
		x400			16	
		5LS400			4	
IOL	Low-level output current	7LS400			8	mA
		x4S00			20	

Recommended Operating Conditions (continued)

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM MAX	UNIT
т.	Operating free air temperature	54xx00	-55	125	°C
IA	Operating free-air temperature	74xx00	0	70	°C

6.4 Thermal Information

	THERMAL METRIC ⁽¹⁾⁽²⁾		DB (SSOP)	N (PDIP)	NS (SO)	UNIT
		14 PINS	14 PINS	14 PINS	14 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	90.9	102.8	54.8	89.7	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	51.9	53.3	42.1	48.1	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	48	53.4	34.8	50.1	°C/W
ΨJT	Junction-to-top characterization parameter	18.6	16.5	26.9	16.7	°C/W
ΨЈВ	Junction-to-board characterization parameter	47.8	52.9	34.7	49.8	°C/W

6.5 Electrical Characteristics: x400

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TE	EST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IK}	$V_{CC} = MIN$ and $I_I = -12$	mA			-1.5	V
V _{OH}	$V_{CC} = MIN, V_{IL} = 0.8 V,$	V_{CC} = MIN, V_{IL} = 0.8 V, and I_{OH} = -0.4 mA		3.4		V
V _{OL}	$V_{CC} = MIN, V_{IH} = 2 V$, and $I_{OL} = 16 mA$			0.2	0.4	V
l _l	$V_{CC} = MAX$ and $V_I = 5.5$	$V_{\rm CC}$ = MAX and V _I = 5.5 V			1	mA
I _{IH}	$V_{CC} = MAX$ and $V_I = 2.4$	$V_{CC} = MAX \text{ and } V_I = 2.4 \text{ V}$			40	μA
IIL	$V_{CC} = MAX$ and $V_I = 0.4$	4 V			-1.6	mA
		5400	-20		-55	~ ^
los	V _{CC} = MAX 7400		-18		-55	IIIA
I _{CCH}	$V_{CC} = MAX$ and $V_I = 0$	$V_{CC} = MAX \text{ and } V_I = 0 V$		4	8	mA
I _{CCL}	$V_{CC} = MAX$ and $V_I = 4.4$	5 V		12	22	mA

6.6 Electrical Characteristics: 74LS00

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST	TEST CONDITIONS		TYP	MAX	UNIT
V _{IK}	V_{CC} = MIN and I _I = -18 mA	$V_{CC} = MIN \text{ and } I_I = -18 \text{ mA}$			-1.5	V
V _{OH}	$V_{CC} = MIN, V_{IL} = MAX$, and	d I _{OH} = -0.4 mA	2.5	3.4		V
M		I _{OL} = 4 mA		0.25	0.4	V
VOL	$V_{\rm CC} = MIN \text{ and } V_{\rm IH} = 2 V$	I _{OL} = 8 mA (74LS00)		0.35	0.5	v
l _l	V_{CC} = MAX and V_{I} = 7 V	$V_{CC} = MAX$ and $V_1 = 7 V$			0.1	mA
I _{IH}	V_{CC} = MAX and V_{I} = 2.7 V				20	μA
IIL	V_{CC} = MAX and V_{I} = 0.4 V				-0.4	mA
I _{OS}	$V_{CC} = MAX$		-20		-100	mA
I _{ССН}	V_{CC} = MAX and V_{I} = 0 V			0.8	1.6	mA
I _{CCL}	V_{CC} = MAX and V_{I} = 4.5 V			2.4	4.4	mA

6.7 Electrical Characteristics: x4S00

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IK}	$V_{CC} = MIN$ and $I_I = -18$ mA			-1.2	V
V _{OH}	V_{CC} = MIN, V_{IL} = 0.8 V, and I_{OH} = -1 mA	2.5	3.4		V
V _{OL}	V_{CC} = MIN, V_{IH} = 2 V, and I_{OL} = 20 mA			0.5	V
l _l	V_{CC} = MAX and V_{I} = 5.5 V			1	mA
I _{IH}	V_{CC} = MAX and V_I = 2.7 V			50	μA
I	V_{CC} = MAX and V_{I} = 0.5 V			-2	mA

Electrical Characteristics: x4S00 (continued)

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{OS}	V _{CC} = MAX	-40		-100	mA
Іссн	$V_{CC} = MAX$ and $V_I = 0 V$		10	16	mA
I _{CCL}	V_{CC} = MAX and V_I = 4.5 V		20	36	mA

6.8 Switching Characteristics: x400

 V_{CC} = 5 V, T_A = 25°C, and over operating free-air temperature range (unless otherwise noted). See Figure 2.

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	A or D	V			11	22	20
t _{PHL}	AUB	Ť	$R_L = 400 \Omega$ and $C_L = 15 pF$		7	15	ns

6.9 Switching Characteristics: x4LS00

 V_{CC} = 5 V, T_A = 25°C, and over operating free-air temperature range (unless otherwise noted). See Figure 2.

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	A or D	A or B Y $R_L = 2 k\Omega$ and $C_L = 15$			9	15	ns
t _{PHL}	A OL R		$\kappa_L = 2 \kappa_2$ and $C_L = 15 \text{ pF}$		10	15	

6.10 Switching Characteristics: x4S00

 V_{CC} = 5 V, T_A = 25°C, and over operating free-air temperature range (unless otherwise noted). See Figure 2.

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	A or B	Y	$\textrm{R}_{\textrm{L}}$ = 280 Ω and $\textrm{C}_{\textrm{L}}$ = 15 pF		3	4.5	20
			$\textrm{R}_{\textrm{L}}$ = 280 Ω and $\textrm{C}_{\textrm{L}}$ = 50 pF		4.5		
t _{PHL}	A or B	Y	$\textrm{R}_{\textrm{L}}$ = 280 Ω and $\textrm{C}_{\textrm{L}}$ = 15 pF		3	5	ns
			$\rm R_L$ = 280 Ω and $\rm C_L$ = 50 pF		5		

6.11 Typical Characteristics

 $C_L = 15 \text{ pF}$

7 Parameter Measurement Information

7.1 Propagation Delays, Setup and Hold Times, and Pulse Width

- B. All diodes are 1N3064 or equivalent.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. S1 and S2 are closed for tp_{LH}, tp_{HL}, tp_{HZ}, and tp_{LZ}; S1 is open and S2 is closed for tp_{ZH}; S1 is closed and S2 is open for tp_{ZL}.
 E. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, Z_O ≈ 50 Ω; t_r and t_f ≤ 7 ns for Series 54/74 devices and t_r and t_f ≤ 2.5 ns for Series 54S/74S devices.
- F. The outputs are measured one at a time with one input transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms

8 Detailed Description

8.1 Overview

The 74LS00 devices are quadruple, 2-input NAND gates which perform the Boolean function $Y = \overline{A \cdot B}$ or $Y = \overline{A + B}$ in positive logic.

8.2 Functional Block Diagram

8.3 Feature Description

The operating voltage of 74LS00 is from 4.75-V to 5.25-V V_{CC}. The operating voltage of 54xx00 is from 4.5-V to 5.5-V V_{CC}. The 54xx00 devices are rated from –55°C to 125°C whereas 74LS00 device are rated from 0°C to 70°C.

8.4 Device Functional Modes

Table 1 lists the functions of the devices.

INP	OUTPUT			
Α	В	Y		
Н	Н	L		
L	Х	Н		
Х	L	Н		

Table 1. Functional Table (Each Gate)

XD74LS00 DIP14 / XL74LS00 SOP14

DIP14

DIMENSIONS ARE IN INCHES DIMENSIONS IN () FOR REFERENCE ONLY

以上信息仅供参考.如需帮助联系客服人员。谢谢 XINLUDA

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Inverters category:

Click to view products by XINLUDA manufacturer:

Other Similar products are found below :

E5-652Z NL17SGU04P5T5G NLX2G04BMX1TCG CD4009UBE TC4584BFN 022413E NL17SG14AMUTCG NLU2GU04BMX1TCG NLV14049UBDR2G NLV17SZ14DFT2G NLV17SZ06DFT2G NLV27WZ04DFT2G TC74VHC04FK(EL,K) NLV74HC04ADTR2G NLV17SZ04DFT2G NLU1G04AMUTCG NLX2G04CMUTCG NLX2G04AMUTCG NLV27WZ04DFT1G NLU1GT14AMUTCG NLU1G04CMUTCG NL17SZU04P5T5G 74LVC06ADTR2G 74LVC04ADR2G 6SL3210-5BB13-7BV1 NLV37WZ04USG NLX3G14FMUTCG NL17SZ04P5T5G NLV27WZU04DFT2G NLVVHC1GT14DFT1G NLV17SG14DFT2G TC7514F(TE85L,F) 74ACT14SC MM74HC14MTCX 74VHC14MX BU4069UBF-E2 EMPP008Z NC7WZ14P6X NL27WZU04DTT1G NLU3G14MUTAG NLV14106BDTR2G NLV74AC14DTR2G SN74HCT04DE4 ODE-3-120023-1F12 74LVC2G04GW-Q100H 74VHCT04AM TC74HC04APF TC7SH04F,LJ(CT CD74HC14M96 TC7W14FK,LF