These Schottky－clamped TTL MSI circuits are designed to be used in high－performance memory－decoding or data－routing applications requiring very short propagation delay times．In high－performance memory systems，these decoders can be used to minimize the effects of system decoding．When employed with high－ speed memories utilizing a fast－enable circuit， the delay times of these decoders and the enable time of the memory are usually less than the typical access time of the memory．This means that the effective system delay introduced by the Schottky－clamped system decoder is negligible．

The circuit comprises two individual two－line to four－line decoders in a single package．The active－low enable input can be used as a data line in demultiplexing applications．
All of these decoders／demultiplexers feature fully buffered inputs，each of which represents only one normalized load to its driving circuit．All inputs are clamped with high－performance Schottky diodes to suppress line－ringing and to simplify system design．The XD74LS139 and XL74LS139 are characterized for operation range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ ．The XD74LS139 and XL74LS139 are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ．

FUNCTION TABLE

INPUTS				OUTPUTS			
ENABLE	SELECT						
$\mathbf{~ G}$	B	A	Y0	Y1	Y2	Y3	
H	X	X	H	H	H	H	
L	L	L	L	H	H	H	
L	L	H	H	L	H	H	
L	H	L	H	H	L	H	
L	H	H	H	H	H	L	

[^0]XD74LS139 ．．．J OR W PACKAGE
XL74LS139 ．．．D OR N PACKAGE
（TOP VIEW）

．．．FK PACKAGE
（TOP VIEW）

$\mathrm{NC}-\mathrm{No}$ internal connection

logic symbols（alternatives）${ }^{\boldsymbol{\dagger}}$

XD74LS139 DIP16 / XL74LS139 SOP16

logic diagram (positive logic)

Pin numbers shown are for D, J, N, and W packages.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.

XD74LS139 DIP16 / XL74LS139 SOP16

recommended operating conditions

		XD74LS139			XL74LS139			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V_{Cc}	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.7			0.8	V
1 OH	High-level output current			-0.4			-0.4	mA
IOL	Low-level output current			4			8	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$			XD74LS139			XL74LS139			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\text {t }}$	MAX	
$V_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$					-1.5			-1.5	V
VOH	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{IOH}=-0.4 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V} .$	$V_{\mathrm{IL}}=\mathrm{MAX}$	2.5	3.4		2.7	3.4		V
$\mathrm{V}_{\text {OL }}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{H}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX} & \end{array}$		$1 \mathrm{OL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
			$1 \mathrm{OL}=8 \mathrm{~mA}$					0.35	0.5	
1	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7 \mathrm{~V}$					0.1			0.1	mA
${ }_{1 / \mathrm{H}}$	$\mathrm{V}_{\text {CC }}=$ MAX,,$\quad \mathrm{V}_{1}=2.7 \mathrm{~V}$					20			20	$\mu \mathrm{A}$
ILL	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$					-0.4			-0.4	mA
los ${ }^{5}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-20		-100	-20		-100	mA
ICC	$\mathrm{V}_{C C}=$ MAX, Outputs enabled and open				6.8	11		6.8	11	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time, and duration of the short circuit test should not exceed one second.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see Note 2)

PARAMETER9	FROM (INPUT)	то (OUTPUT)	LEVELS of delay	TEST CONDITIONS	$\begin{aligned} & \hline \text { XD74LS139 } \\ & \text { XL74LS139 } \\ & \hline \end{aligned}$			UNIT
					MIN	TYP	MAX	
tPLH	Binary Select	Any	2	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega . \quad \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		13	20	ns
tPHL						22	33	ns
tpLH			3			18	29	ns
tPHL						25	38	ns
tPLH	Enable	Any	2			16	24	ns
tPHL						21	32	ns

$\mathbf{I}_{\text {tpLH }}=$ propagation delay time, low-to-high-level output
tpHL $=$ propagation delay time, high-to-low-level output
NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

XD74LS139 DIP16／XL74LS139 SOP16

recommended operating conditions

		XD74LS139			XL74LS139			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
$V_{C C}$	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High－level input voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low－level input voltage			0.8			0.8	V
IOH	High－level output current			－1			－1	mA
IOL．	Low－level output current			20			20	mA
TA	Operating free－air temperature	－55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free－air temperature range \｛unless otherwise noted）

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		$\begin{aligned} & \hline \text { XD74LS139 } \\ & \text { XL74LS139 } \end{aligned}$			UNIT
			MIN	TYPt	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				－1．2	V
VOH	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ ．	XD74LS139	2.5	3.4		V
	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	XL74LS139	2.7	3.4		
V_{OL}	$\begin{array}{lll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{array}$				0.5	\checkmark
1	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
1 IH	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
1 LL	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.5 \mathrm{~V}$				－2	mA
$1 \mathrm{SS}^{5}$	$V_{C C}=$ MAX		－40		－100	mA
ICC	Outputs enabled and open			60	90	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX，use the appropriate value specified under recommended operating conditions．
$\ddagger_{\text {All typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ．
§ Not more than one output should be shorted at a time，and duration of the short circuit test should not exceed one second．
switching characteristics， $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（see Note 2）

PARAMETER 1	FROM （INPUT）	то （OUTPUT）	Levels of delay	TEST CONDITIONS	$\begin{aligned} & \text { XD74LS139 } \\ & \text { XL74LS139 } \end{aligned}$			UNIT
					MIN	TYP	MAX	
tplH	Binary Select	Any	2	$\mathrm{R}_{\mathrm{L}}=280 \mathrm{n}, \quad \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		5	7.5	ns
tPHL						6.5	10	ns
tPLH			3			7	12	ns
tPHL						8	12	ns
tPLH	Enable	Any	2			5	8	ns
${ }_{\text {t PHL }}$						6.5	10	ns

$\mathrm{I}_{\mathrm{tPLH}}=$ propagation delay time，low－to－high－level output
${ }^{\text {tPHL }}=$ propagation delay time，high－to－low－level output
NOTE 2：Load circuits and voltage waveforms are shown in Section 1.

以上信息仅供参考．如需帮助联系客服人员。谢谢 XINLUDA

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switch ICs - Various category:
Click to view products by XINLUDA manufacturer:

Other Similar products are found below :
BCM56226B0IPBG LC824206XA-VH 80HCPS1432RM FSA806UMX BCM56152A0IFSBLG 80HCPS1432CHMHI MAX4936ACTO+ 80HSPS1616CHMGI NL3S325FCT2G BCM56152A0KFSBLG BCM56150A0KFSBLG BCM56024B0KPBG CPC7583BA NC7SZ157P6X ACST12-7CG-TR FSA9280AUMX MAX14626ETT+T NL7SZ19DFT2G SRC0CS25D MAX14808ETK MAX4937CTN+ DG2788ADN-T1-GE4 DGQ2788AEN-T1-GE4 LTC6943IGN\#PBF MCZ33999EKR2 LTC1471CS\#PBF LTC1472CS\#PBF LTC1043CSW\#PBF PI4MSD5V9548ALEX NCX8200UKZ LTC6943HGN\#PBF PI3CH480QE HT1204 89H48T12G2ZCBLG PI3C3245QE ADG409BRZREEL7 ADG5462FBRUZ-RL7 ADN4604ASVZ LTC1043CN LTC1043CN\#PBF LTC1470ES8\#PBF PI4MSD5V9548AZDEX AP2280-2FMG-7 AZV5001RA4-7 PI3B3253QEX PI3CH480QEX 74HC4053N 74HC139N 74HC138N XD74LS138

[^0]: $H=$ high level，$L=$ low level，$X=$ irrelevant

