DC-HVDC Converter

1 Watt

- +12VDC Input [11.5 to 16V]
- Voltage Regulated
- Output Voltages from 100V to 8000V
- 0 to 100% Programmable Output
- High Reliability 2.6MHrs MTBF
- <50ppm/°C Temperature Coefficient
- Shielded Case for Low EMI
- Low Ripple down to 0.002%
- 3 Year Warranty

The C Series is a line of miniature, regulated high voltage power supplies. Each model is programmed from 0 to 100% of rated output via a 0 to +5 volt, DAC-compatible, high-impedance programming input voltage. An externally accessible potentiometer provides adjustable gain trim, allowing for individual calibration of units.

These converters exhibit very low ripple, noise, and EMI/RFI by utilizing a quasi-sinewave oscillator, shielded transformer, excellent filtering techniques and an isolated steel enclosure featuring a separate grounding pin. A proprietary encapsulation process and a custom UL 94 V-0 listed, high-performance formula are used to achieve excellent high voltage and thermal properties. Temperature drift is typically less than 50ppm/°C.

Input					• EO Lenses
Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Input Voltage Range	11.5	13.75	16	VDC	Works with nominal 12V or 15V supply
Input Current, Full Load			250	mA	
Input Current, No Load			100	mA	
Programming Inputs	0		5	VDC	Analog DC Voltage Controls Output 0 to 100%
Input Capacitance		440		μA	Low ESR

Output

Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions	
Output Voltage			8000	VDC	See Models and Ratings Table	
Output Current			10	mA	See Models and Ratings Table	
Output Programming	0		100 % Output Voltage programmable via Analog DC Programm Voltage Input			
Setpoint Accuracy ⁽⁴⁾		±1		%	@ Max Vpgm, No Load	
Gain Adjust ⁽⁵⁾	±5 % Potentiometer, See Signals & Controls		Potentiometer, See Signals & Controls			
Linearity: Output vs Program ⁽⁶⁾			±1	%	15 to 100% Output	
Minimum Load	No minimum load required					
Start Up Response			250	msec	At Max Vout, Full Load	
Line Regulation	0.05		1.0	%	100% Vpgm, Full Load, [Min to Max Input]	
Load Regulation	0.07		0.75	%	100% Vpgm, 13.75Vin, [NL to FL]	
Ripple and Noise	0.002		0.75	%	1MHz bandwidth, See Models and Ratings Table	
Temperature Coefficient		50		ppm/°C		
Stability			100	ppm/hr	After 30 minute warm up	

Notes

1. Maximum current is available at maximum output voltage.

- 2. Specifications after 1 hour warm-up, full load, 25°C, unless otherwise noted. 3. Proper thermal management techniques are required to maintain safe case
- temperature.
- 5. GAIN ADJUST refers to the ability to alter the gain of the circuit to allow for
- set-point accuracy error.

6. LINEARITY refers to how much the transfer function can deviate from a straight line in the absence of any set-point error.

4. SET POINT ACCURACY refers to the ability of the unit to accurately deliver the programmed voltage.

1

Dimensions:

C01 - C20: 1.40 x 1.11x 0.50" (35.6 x 28.2 x 12.7mm)
C25 - C40: 1.75 x 1.11 x 0.50" (44.4 x 28.2 x 12.7mm)
C50 - C60: 2.10 x 1.11 x 0.50" (53.3 x 28.2 x 12.7mm)
C80: 2.50 x 1.25 x 0.60" (63.50 x 31.75 x 15.24mm)

Key Applications:

- Photo Multiplier Tube
- Solid State Detectors
- Electrophoresis
- Piezo Devices
- Capacitor Charging

Environmental

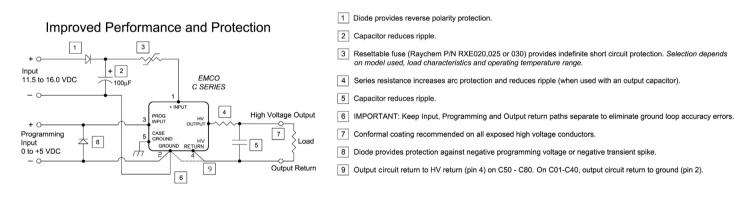
Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Operating Temperature	-10		+60	°C	Case Temperature
Storage Temperature	-20		+90	°C	
Humidity			95	%RH	Non-condensing
Cooling					Natural convection
Thermal Shock Limit			1	°C/10sec	Natural convection

Safety Approvals

General

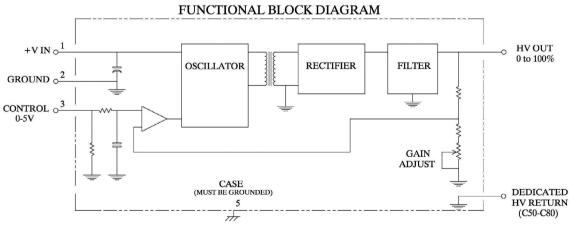
Characteristic

Safety Agency	Safety Standard	Notes & Conditions
UL	IEC/UL/CSA/EN 62368	
CE	CE Directive, RoHs and LVD	Where applicable
RoHS	RoHS 2 and 3 Directive (2011/65/EU)	Where applicable


Isolation: Input to Output	N/A – Input g	N/A – Input ground is connected to output ground				
Construction	Case materia	Case material is zinc plated steel. Solid vacuum encapsulation, UL 94 V-0 rated.				
Switching Frequency	50	50 350 kHz				
Mean Time Between Failure	2.6	2.6 MHrs Per Bellcore TR 332				

Maximum

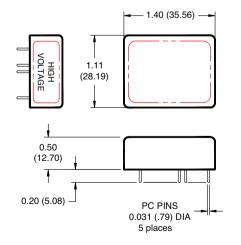
Units


Notes & Conditions

Application Notes

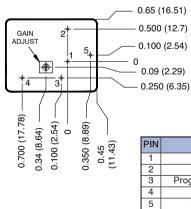
Typical

Minimum

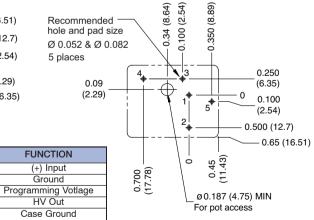

Models & Ratings

Output Voltage	Output Current ⁽¹⁾	Regu	lation	Ripple	Frequency	Model Number
		Load	Line			
0 to +100V	10mA	<0.1%	<0.1%	<0.75%	200-250kHz	C01
0 to +200V	5mA	<0.1%	<0.1%	<0.05%	250-350kHz	C02
0 to -200V	5mA	<0.1%	<1.0%	<0.05%	75-150kHz	C02N
0 to +300V	3.3mA	<0.1%	<0.1%	<0.03%	200-300kHz	C03
0 to +500V	2mA	<0.07%	<0.1%	<0.004%	250-350kHz	C05
0 to -500V	2mA	<0.5%	<0.5%	<0.005%	200-350kHz	C05N
0 to +600V	1.67mA	<0.1%	<0.1%	<0.003%	250-300kHz	C06
0 to -600V	1.67mA	<0.75%	<0.75%	<0.003%	125-300kHz	C06N
0 to +1000V	1mA	<0.3%	<0.3%	<0.005%	200-250kHz	C10
0 to -1000V	1mA	<0.5%	<0.3%	<0.002%	100-125kHz	C10N
0 to +1250V	1mA	<0.1%	<0.1%	<0.004%	200-250kHz	C12
0 to -1250V	1mA	<0.175%	<0.1%	<0.003%	100-125kHz	C12N
0 to +1500V	0.67mA	<0.1%	<0.1%	<0.002%	100-125kHz	C15
0 to -1500V	0.67mA	<0.2%	<0.2%	<0.002%	75-100kHz	C15N
0 to +2000V	0.5mA	<0.15%	<0.1%	<0.002%	75-100kHz	C20
0 to -2000V	0.5mA	<0.15%	<0.1%	<0.002%	75-100kHz	C20N
0 to +2500V	0.4mA	<0.03%	<0.2%	<0.1%	125-150kHz	C25
0 to -2500V	0.4mA	<0.5%	<0.2%	<0.2%	125-150kHz	C25N
0 to +3000V	0.33mA	<0.03%	<0.05%	<0.1%	75-100kHz	C30
0 to -3000V	0.33mA	<0.03%	<0.075%	<0.2%	75-100kHz	C30N
0 to +4000V	0.25mA	<0.25%	<0.2%	<0.1%	50-125kHz	C40
0 to -4000V	0.25mA	<0.2%	<0.1%	<0.1%	75-150kHz	C40N
0 to +5000V	0.2mA	<0.35%	<0.1%	<0.1%	75-150kHz	C50
0 to -5000V	0.2mA	<0.25%	<0.1%	<0.1%	125-175kHz	C50N
0 to +6000V	0.167mA	<0.25%	<0.1%	<0.1%	125-175kHz	C60
0 to -6000V	0.167mA	<0.25%	<0.15%	<0.1%	125-175kHz	C60N
0 to +8000V	0.125mA	<0.75%	<0.15%	<0.2%	100-150kHz	C80
0 to -8000V	0.125mA	<0.75%	<0.25%	<0.2%	100-150kHz	C80N

Mechanical Details


C01-C20

Top View



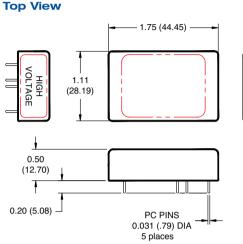
All dimensions are in inches (mm) Tolerance: X.XX ±0.02 (0.51) Pin Tolerance: ±0.005 (0.127) Weight: C01-C20: 1.1oz (31g)

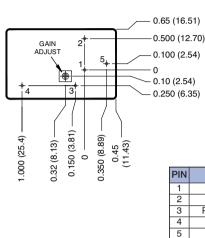
Bottom View

PCB Layout

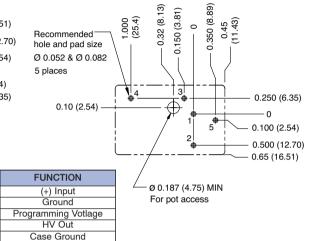
All grounds internally connected except case. Case ground (Pin5) must be connected to ground, with no more than 50V between case ground (Pin 5) and circuit ground (Pin 2).

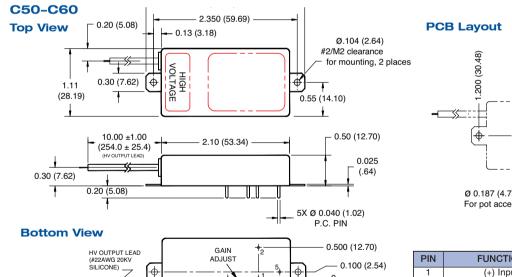
www.xppower.com


DC-HVDC Converter


PCB Layout

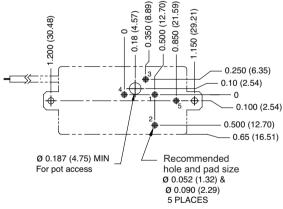
XP Power


Mechanical Details


C25-C40

Bottom View

۲


0.18 (4.57) 0.350 (8.89)

ò

3

0.500 (12.7) 0.850 (21.59)

1.15 (29.21)

PIN	FUNCTION			
1	(+) Input			
2	Ground			
3	Programming Votlage			
4	HV Return			
5	Case Ground			
LEAD	HV Out			

All dimensions are in inches (mm) Tolerance: X.XX ±0.02 (0.51) Pin Tolerance: ±0.005 (0.127) Weight: C25-C40: 1.3oz (36.8g) C50-C60: 1.8oz (51g)

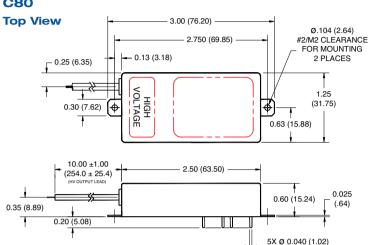
1.20 (30.48)

All grounds internally connected except case. Case ground (Pin5) must be connected to ground, with no more than 50V between case ground (Pin 5) and circuit ground (Pin 2).

www.xppower.com

- 0

0.10 (2.54)


0.250 (6.35)

DC-HVDC Converter

Mechanical Details

GAIN

BOTTOM

VIEW

ADJUST

[♦ 0

.60 (40.64)

P.C. PIN

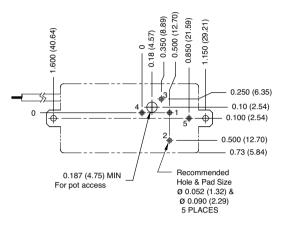
0.500 (12.70)

- 0.100 (2.54)

0.250 (6.35)

0.10 (2.54)

2


+1 ۲

3

0.18 (4.57) 0.350 (8.89) -0.500 (12.70) -0.850 (21.59) 1.15 (29.21)

c

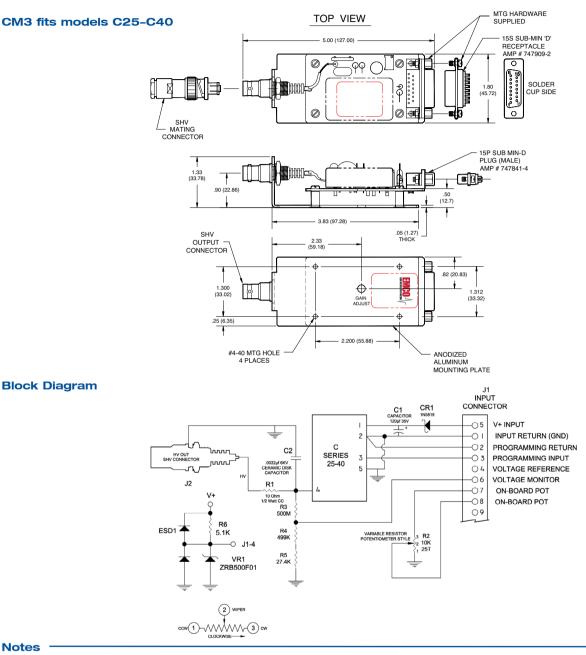
5 \$ **PCB** Layout

PIN	FUNCTION			
1	(+) Input			
2	Ground			
3	Programming Votlage			
4	HV Return			
5	Case Ground			
LEAD	HV Out			

HV OUTPUT LEAD

(#22AWG 20KV SILICONE)

Bottom View


All dimensions are in inches (mm) Tolerance: X.XX ±0.02 (0.51) Pin Tolerance: ±0.005 (0.127) Weight: C80: 2.0oz (57g)

All grounds internally connected except case. Case ground (Pin5) must be connected to ground, with no more than 50V between case ground (Pin 5) and circuit ground (Pin 2).

Mounting Kit

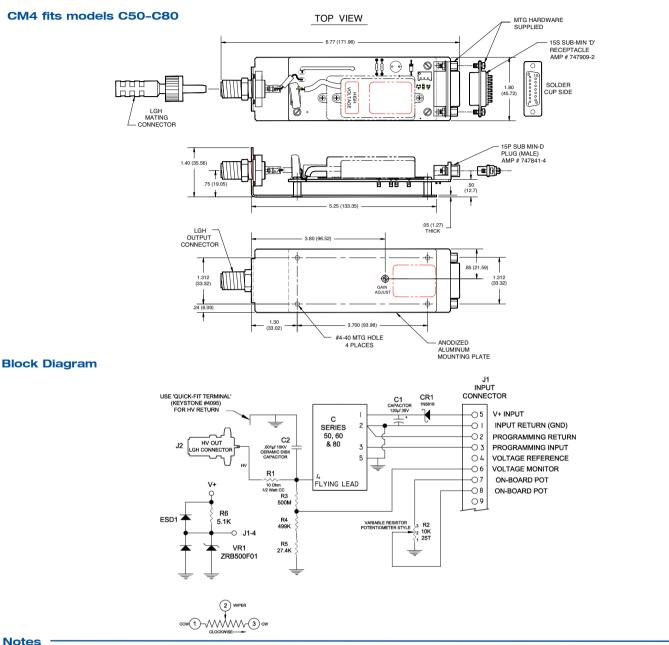
Notes

Dimensions are in inches (metric equivalents are in parentheses)

Dimensional tolerances: .xx +/- 0.02 (0.51mm) .xxx +/- 0.005 (0.127mm)

Product Description

These adapters provide convenient prototyping and evaluation during system development and integration. They allow C Series modules to be mounted to a chassis instead of designed into a PC board. Extra filtering on the input and output improves performance. A schottky diode on the input provides reverse polarity protection. Input connector is via a 15P SUB MIN-D plug (mate supplied) and output is via an SHV style coaxial connector (mate supplied). Please note when ordering a CM3 the C Series is not included and must be ordered separately.


Programming Instructions

Onboard Potentiometer: connect pins 7 to 4 and 8 to 3, turn potentiometer to adjust high voltage. Or Remote Potentiometer: connect wiper arm to pin 3, other sides to pins 4 and 2. Or Remote Analog Signal: apply programming voltage to pin 3, return to pin 2.

Mounting Kit

Dimensions are in inches (metric equivalents are in parentheses)

Dimensional tolerances: .xx +/- 0.02 (0.51mm) .xxx +/- 0.005 (0.127mm)

Product Description

These adapters provide convenient prototyping and evaluation during system development and integration. They allow C Series modules to be mounted to a chassis instead of designed into a PC board. Extra filtering on the input and output improves performance. A schottky diode on the input provides reverse polarity protection. Input connector is via a 15P SUB MIN-D plug (mate supplied) and output is via an SHV style coaxial connector (mate supplied). Please note when ordering a CM3 the C Series is not included and must be ordered separately.

Programming Instructions

Onboard Potentiometer: connect pins 7 to 4 and 8 to 3, turn potentiometer to adjust high voltage. Or Remote Potentiometer: connect wiper arm to pin 3, other sides to pins 4 and 2.

Or Remote Analog Signal: apply programming voltage to pin 3, return to pin 2.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Non-Isolated DC/DC Converters category:

Click to view products by XP Power manufacturer:

Other Similar products are found below :

 PSR152.5-7IR
 APTH003A0X-SRZ
 SPM1004-3V3C
 PJT020A0X43-SRZ
 1E24-P4-25PPM-SHV-5KV
 CA-17205-L4
 PROPOWER-3.3V

 MYGTM01210BZN
 40C24-N250-I5-H
 40A24-P30-E
 3V12-P0.8
 10C24-N250-I10-AQ-DA
 4AA24-P20-M-H
 3V12-N0.8

 T31SN24005NMFA
 6AA24-P30-I5-M
 6AA24-N30-I5-M
 BM2P101X-Z
 35A24-P30
 2.5M24-P1
 PTV05020WAH
 PTV12010LAH

 PTV12020WAD
 R-7212D
 R-7212P
 R-78AA15-0.5SMD
 R-78AA5.0-1.0SMD
 30A24-N15-E
 10C24-N250-I5
 10C24-P125
 10C24-P250-I5

 6A24-P20-I10-F-M-25PPM
 1A24-P30-F-M-C
 TSR 1-24150SM
 1C24-N125
 12C24-N250
 V7806-1500
 V7806W-500
 PTV12020LAH

 PTV05010WAH
 PTN04050CAZT
 PTH12020WAD
 PTH12020LAS
 PTH05050YAH
 PTH057210WAH
 PTH05030WAZ
 V7803-2000R

 AXA005A0XZ
 NSR020A0X43Z
 NID30824-15
 PTH05050YAH
 PTH057210WAH
 PTH05030WAZ
 V7803-2000R