SS34 THRU SS320

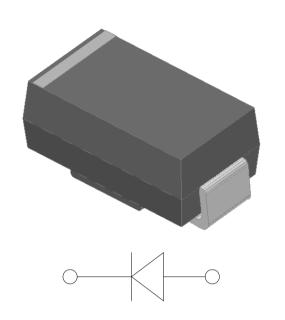
Schottky Diodes Reverse Voltage-40to200v Forward current-3A

Features

Schottky chip
Ldeal for surface mounted applications
Low forward voltage drop,Low power loss, high efficiency
Plastic Case Material has UL Flammability

Mechanical Data

Package: SMA


Terminals:Tin Plated leads, solderable per

Mil-STD-750 Method 2026

Polarity: As marked

Molding compound meets UL 94 V-0 flammability rating,

ROHS-compliant

Maximum Ratings (Ta=25℃ Unless otherwise specified)

SYMBOL	SS34	SS36	SS38	SS310	SS315	SS320	Umit
V_{RRM}	40	60	80	100	150	200	V
V_{RMS}	28	42	56	70	105	140	V
V_{DC}	40	60	80	100	150	200	V
IO _(AV)	3.0				Α		
IFSM	60.0					Α	
II OIVI	120.0				Α		
I ² t	14.9			A^2S			
V_{FM}	0.55	0.75	0.	85	0.	92	V
ID.	0.1		0.05			mA	
- IK	10 5					mA	
R_{QJA}	65.0				°C/W		
T _J				$^{\circ}$ C			
T _{STG}			—55to+150			$^{\circ}\!\mathbb{C}$	
	$\begin{array}{c c} V_{RRM} \\ V_{RMS} \\ V_{DC} \\ \hline \\ IO_{(AV)} \\ \hline \\ IFSM \\ \hline \\ I^2t \\ V_{FM} \\ \hline \\ IR \\ R_{QJA} \\ T_J \\ \hline \end{array}$	V _{RM} 40 V _{RMS} 28 V _{DC} 40 O IO _(AV) IFSM I ² t V _{FM} 0.55 IR R _{QJA} T _J	V _{RRM} 40 60 V _{RMS} 28 42 V _{DC} 40 60 IO _(AV) IFSM I ² t V _{FM} 0.55 0.75 IR 0.1 10 R _{QJA} T _J	V _{RM} 40 60 80 V _{RMS} 28 42 56 V _{DC} 40 60 80 O IO _(AV) 3 FSM 12 IFSM O .55 0.75 0. IR 0.1 T _J 66 T _J -55t	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{RRM} 40 60 80 100 150 200 V _{RMS} 28 42 56 70 105 140 V _{DC} 40 60 80 100 150 200 ICAL 10 3.0

SS34 THRU SS320

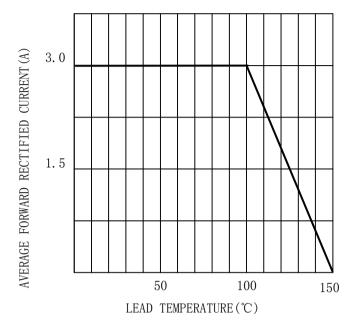


FIG. 2TYPICAL FORWARD CHARACTERISTICS

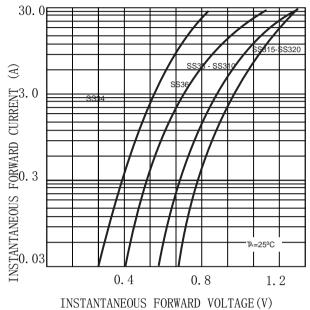


FIG. 3MAXIMUM NON-REPEITIVE SURGE CURRENT

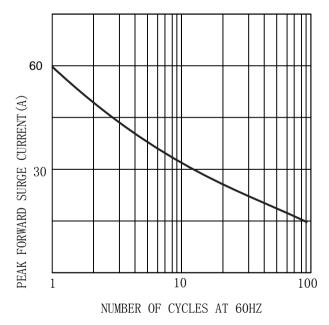
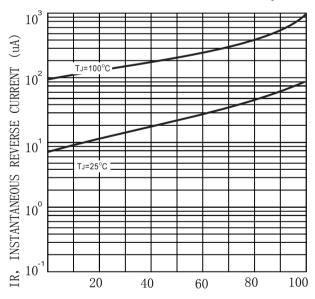
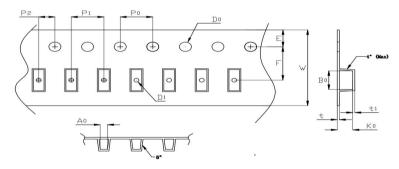



FIG. 4 TYPICAL REVERSE CHARACTERISTICS (per element)

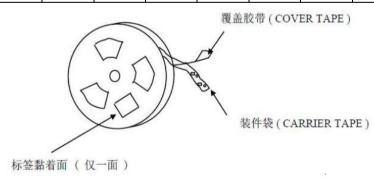
PERCENT OF RATED PEAK REVERSE VOLTAGE (%)

MARKING INFORMATION

= Logo


**** = Date Code Marking

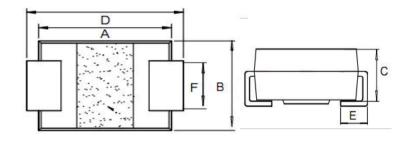
SS*** = Marking Code


Print according to customer request

PACKING REQUIRMENTS

Carrier tape packing

Specificati ons	Carrier tape type	Ao	Во	Ко	Ро	W	t	Exiplain
SMA	Anti-static	2.65± 0.10	5.20± 0.10	2.30± 0.10	4.00± 0.10	12.0± 0.10	0.20± 0.05	



DEVICE TYPE	Tape width	11"Reel			11"Reel			
		Q'TY/REEL (pcs)	BOX/CAR TOON	Q'TY/REEL (pcs)	Q'TY/REEL (pcs)	BOX/CAR TOON	Q'TY/REEL (pcs)	
	SMA	12mm	5000	20	100000	5000	18	90000

Outline Dimensions

SMA

SMA								
DTM	INC	HES	MM					
DIM	MIN	MAX	MIN	MAX				
A	0. 16	0. 18	4.05	4.65				
В	0.09	0. 11	2.4	2.8				
С	0.07	0.09	1.8	2. 3				
D	0.18	0.21	4.67	5. 27				
Е	0.04	0.06	1	1.4				
F	0.05	0.06	1.2	1.6				

SS34 THRU SS320

Important Statements and disclaimers.

Do not copy or modify file information without permission.

Xumao Micro reserves the right to modify this document and its products.

Specifications are available without prior notice. Customer shall 。 obtain and confirm the latest product information and specifications prior to final design, purchase or use.

Xumao Micro does not assume any implied warranties, including warranties of fitness for special purposes, non-infringement and merchantability.

The products shown here are not designed and licensed for demanding equipment at a level of reliability or for human life and any life-saving related applications or life-sustaining, such as medical devices, transportation equipment, aerospace machinery, and so on. Customers who use or sell these products for such applications do so at their own risk.

As Xumao Micro uses batch number as tracking benchmark, please provide batch number for tracking in case of exception.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Schottky Diodes & Rectifiers category:

Click to view products by XUMAO manufacturer:

Other Similar products are found below:

MA4E2039 MMBD301M3T5G HFA35HB60C RB160M-50TR D83C BAS16E6433HTMA1 BAS 3010S-02LRH E6327 BAT 54-02LRH E6327 NRVBAF360T3G NSR05F40QNXT5G NTE555 JANS1N6640 SS3003CH-TL-E GA01SHT18 CRS10I30A(TE85L,QM MBRA140TRPBF MBRB30H30CT-1G BAT 15-04R E6152 JANTX1N5712-1 DMJ3940-000 SB007-03C-TB-E NRVBB20100CTT4G NRVBM120LT1G NTSB30U100CT-1G CRG04(T5L,TEMQ) ACDBA1100LR-HF ACDBA1200-HF ACDBA240-HF ACDBA3100-HF CDBQC0530L-HF ACDBA260LR-HF ACDBA1100-HF 10BQ015-M3/5BT NRVBM120ET1G VSSB410S-M3/5BT 1N5819T-G PDS1040Q-13 B160BQ-13-F SDM05U20CSP-7 BAS 70-07 E6433 B140S1F-7 HSM560Je3/TR13 DDB2265-000 ZHCS506QTA HSM190Je3/TR13 B330AF-13 ACDBUC0230-HF SDM1U100S1F-7 MBR10200CTF-G1 CDLL5712