

DATA SHEET THICK FILM CHIP RESISTORS AUTOMOTIVE GRADE AC series

1101

2R20

Ь,

100

221

 $\pm 5\%, \pm 1\%, \pm 0.5\%$ Sizes 0201/0402/0603/0805/1206/ 1210/1218/2010/2512

RoHS compliant & Halogen free

Product specification – January 04, 2023 V.10

YAGEO

SCOPE

This specification describes AC0201 to AC2512 chip resistors with leadfree terminations made by thick film process.

APPLICATIONS

- All general purpose applications
- Car electronics, industrial application

FEATURES

- AEC-Q200 gualified
- Moisture sensitivity level: MSL I
- AC series soldering is compliant with J-STD-020D
- Halogen free epoxy
- RoHS compliant
 - Products with lead-free terminations meet RoHS requirements
 - Pb-glass contained in electrodes, resistor element and glass are exempted by RoHS
- Reduce environmentally hazardous waste
- High component and equipment reliability
- The resistors are 100% performed by automatic optical inspection prior to taping.

ORDERING INFORMATION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

AC XXXX X X X XX XXXX L

(1) (2) (3) (4) (5) (6)	(7)
-------------------------	-----

(I) SIZE

0201/0402/0603/0805/1206/1210/1218/2010/2512

(2) TOLERANCE

D	$= \pm 0.5\%$	
F	$= \pm 1\%$	

 $J = \pm 5\%$ (for Jumper ordering, use code of J)

(3) PACKAGING TYPE

R = Paper taping reelK = Embossed taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec

(5) TAPING REEL

07 = 7 inch dia. Reel & Standard power 13 = 13 inch dia. Reel

- 7W = 7 inch dia. Reel & 2 x standard power
- 3W = 13 inch dia. Reel & 2 x standard power

(6) RESISTANCE VALUE

I Ω to 22 M Ω

There are 2~4 digits indicated the resistance value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. I K2, not I K20.

Detailed coding rules of resistance are shown in the table of "Resistance rule of global part number".

(7) DEFAULT CODE

Letter L is the system default code for ordering only. ^(Note)

Resistance rule number Resistance coding rule	of global part Example
XRXX (I to 9.76Ω)	R = Ω R5 = .5Ω 9R76 = 9.76Ω
XXRX	10R = 10Ω
(10 to 97.6Ω)	97R6 = 97.6Ω
XXXR	100R = 100Ω
(100 to 976Ω)	976R = 976Ω
XKXX	K = 1,000Ω
(Ι to 9.76 K Ω)	9K76 = 9760Ω
XMXX	$IM = I,000,000\Omega$
(I to 9.76 MΩ)	9M76= 9,760,000 Ω
XXMX (10 MΩ)	10M = 10,000,000Ω

ORDERING EXAMPLE

The ordering code for an AC0402 chip resistor, value 100 K Ω with ±1% tolerance, supplied in 7-inch tape reel is: AC0402FR-07100KL.

NOTE

- I. All our R-Chip products are RoHS compliant and Halogen free. "LFP" of the internal 2D reel label states "Lead-Free Process"
- 2. On customized label, "LFP" or specific symbol can be printed.
- 3. AC series with $\pm 0.5\%$ tolerance is also available. For further information, please contact sales.

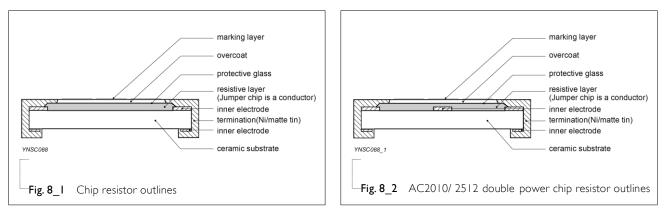
- 10 = 10 inch dia. Reel

MARKING

AC0201	/ AC0402	
Fig. 1		No marking
AC0603	/ AC0805 / AC1206 / A	C1210 / AC2010 / AC2512
Fig. 2	103 Value=10 KΩ	E-24 series: 3 digits, ±5% First two digits for significant figure and 3rd digit for number of zeros
<u>AC0603</u>		
Fig. 3	2<u>μ</u>Ω Value = 24 Ω	E-24 series: 3 digits, ±1% & ±0.5% One short bar under marking letter
Fig. 4	Value = 12.4 KΩ	E-96 series: 3 digits, $\pm 1\%$ & $\pm 0.5\%$ First two digits for E-96 marking rule and 3rd letter for number of zeros
AC0805	/ AC1206 / AC1210 / A	C2010 / AC2512
Fig. 5	1002 Value = 10 KΩ	Both E-24 and E-96 series: 4 digits, $\pm 1\%$ & $\pm 0.5\%$ First three digits for significant figure and 4th digit for number of zeros
AC1218		
Fig. 6	103 Value = 10 KΩ	E-24 series: 3 digits, ±5% First two digits for significant figure and 3rd digit for number of zeros
Fig. 7	1002 Value = 10 KΩ	Both E-24 and E-96 series: 4 digits, $\pm 1\% \& \pm 0.5\%$ First three digits for significant figure and 4th digit for number of zeros

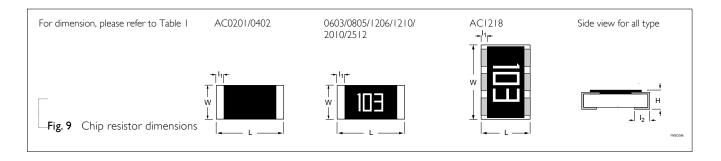
ΝΟΤΕ

For further marking information, please refer to data sheet "Chip resistors marking". Marking of AC series is the same as RC series.



CONSTRUCTION

The resistors are constructed on top of an automotive grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a protective glass. The composition of the glaze is adjusted to give the approximately required resistance value and laser trimming of this resistive glaze achieves the value within tolerance. The whole element is covered by a protective overcoat. Size 0603 and bigger is marked with the resistance value on top. Finally, the two external terminations (Ni / matte tin) are added, as shown in Fig.8.


OUTLINES

DIMENSIONS

Table I For outlines, please refer to Fig. 9

ТҮРЕ	L (mm)	W (mm)	H (mm)	lı (mm)	l ₂ (mm)
AC0201	0.60 ±0.03	0.30 ±0.03	0.23 ±0.03	0.12 ±0.05	0.15 ±0.05
AC0402	1.00 ±0.05	0.50 ±0.05	0.32 ±0.05	0.20 ±0.10	0.25 ±0.10
AC0603	1.60 ±0.10	0.80 ±0.10	0.45 ±0.10	0.25 ±0.15	0.25 ±0.15
AC0805	2.00 ±0.10	1.25 ±0.10	0.50 ±0.10	0.35 ±0.20	0.35 ±0.20
AC1206	3.10 ±0.10	1.60 ±0.10	0.55 ±0.10	0.45 ±0.20	0.45 ±0.20
AC1210	3.10 ±0.10	2.60 ±0.15	0.55 ±0.10	0.45 ±0.15	0.50 ±0.20
AC1218	3.10 ±0.10	4.60 ±0.10	0.55 ±0.10	0.45 ±0.20	0.40 ±0.20
AC2010	5.00 ±0.10	2.50 ±0.15	0.55 ±0.10	0.55 ±0.15	0.55 ±0.20
AC2512	6.35 ±0.10	3.10 ±0.15	0.55 ±0.10	0.60 ±0.20	0.60 ±0.20

ELECTRICAL CHARACTERISTICS

ТҮРЕ	POWER	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	CHARACT Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient	Jumper Criteria											
						5% (E24)	$ \Omega \le R \le 0\Omega $	Rated Current											
						$I\Omega \leq R \leq I0M\Omega$	-100/+350ppm° C	0.5A											
						1% (E24/E96)	$10\Omega < R \le 10M$	Maximum											
AC0201	1/20 W	-55 °C to I55 °C	25V	50V	50V	$ \Omega \le R \le 0M\Omega $	±200ppm°C	Current											
					0.5% (E24/E96)		1.0A												
						$10\Omega \le R \le 1M\Omega$													
						Jumper<50m Ω													
						5% (E24)	$ \Omega \le R \le 0\Omega $	Rated Current											
				501/ 1001/	(100)	$I\Omega \le R \le 22M\Omega$	±200ppm°C	IA											
AC0402			50) (0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	Maximum											
	I/I6₩ -55°C to I55°C	50V	100V	00V 100V	$I\Omega \leq R \leq I0M\Omega$	±100ppm°C	Current												
					Jumper<50m Ω	$10M\Omega < R \le 22M\Omega$	2A												
							±200ppm°C												
-						5% (E24)	$ \Omega \leq R < 0\Omega $												
				100		$I\Omega \leq R \leq I0M\Omega$	±200 ppm°C												
	I/8₩ -55° C to I 55°	-55 C to 155 C	75V	1000	1000	1000	1000	1000	1000	TUUV	1000	1000	TUUV	100V	100V	100V	0.5%, 1% (E24/E96)	$10\Omega \le R \le 10M\Omega$	
										$ \Omega \le R \le 0M\Omega $	±100 ppm°C								
						5% (E24)	$ \Omega \leq R < 0\Omega $	Rated Current											
						$I\Omega \leq R \leq 22M\Omega$	±200ppm°C	IA											
						0.5%, 1% (E24/E96)	$10\Omega \le R \le 10M\Omega$	Maximum											
	1/10 W	-55°C to I55°C	75V	150V	150V	$I\Omega \leq R \leq I0M\Omega$	±100ppm°C	Current											
						Jumper<50m Ω	$10M\Omega < R \le 22M\Omega$	2A											
AC0603							±200ppm°C												
-						5% (E24)	$ \Omega \leq R < 0\Omega $												
						$ \Omega \leq R \leq 0M\Omega $	±200 ppm°C												
	1/5 W	-55°C to 155°C	75V	150V	150V	0.5%, 1% (E24/E96)	$10\Omega \le R \le 10M\Omega$												
						$I\Omega \le R \le I0M\Omega$	±100 ppm°C												

	CHARACTERISTICS							
TYPE	POWER	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient	Jumper Criteria
						5% (E24)	$ \Omega \le R < 0\Omega $	Rated Current
						$ \Omega \le R \le 22 M\Omega$	±200ppm°C	2A
	1/8 \۸/	-55°C to 155°C	150V	300V	300V	0.5%, 1% (E24/E96)	$10\Omega \le R \le 10M\Omega$	Maximum
	170 • •	-55 C 10 155 C	1500	5004	5001	$ \Omega \le R \le 0M\Omega $	±100ppm°C	Current
						Jumper < 50m Ω	$10M\Omega < R \le 22M\Omega$	5A
AC0805							±200ppm°C	
						5% (E24)	$ \Omega \le R < 0\Omega $	
	I/4 ₩ -55 °		150V	300V	300V	$ \Omega \le R \le 10M\Omega$	±200 ppm°C	
		-55 C to 155 C	1500	2000	2000	0.5%, 1% (E24/E96)	$10\Omega \le R \le 10M\Omega$	
						$ \Omega \le R \le 0M\Omega $	±100 ppm°C	
,						5% (E24)	$ \Omega \le R < 0\Omega $	Rated Current
	I/4 ₩ -	-55 °C to 155 °C	200V	∨ 400∨	∕ 500∨	$I\Omega \le R \le 22M\Omega$	±200ppm°C	2A
						0.5%, 1% (E24/E96)	$10\Omega \le R \le 10M\Omega$	Maximum
						$ \Omega \le R \le 0M\Omega $	±100ppm°C	Current
						Jumper<50m Ω	$10M\Omega < R \le 22M\Omega$	10A
AC1206							±200ppm°C	
			_			5% (E24)	$ \Omega \leq R < 0\Omega $	
		-55 °C to 155 °C	200V	400V	500V	$ \Omega \le R \le 0M\Omega $	±200 ppm°C	
	1/2 VV					0.5%, 1% (E24/E96)	$10\Omega \le R \le 10M\Omega$	
						$ \Omega \le R \le 0M\Omega $	±100 ppm°C	
						5% (E24)	$ \Omega \leq R < 0\Omega $	Rated Current
						$ \Omega \le R \le 22M\Omega$	±200ppm°C	2A
			2001/	F00V		0.5%, 1% (E24/E96)	$10\Omega \le R \le 10M\Omega$	Maximum
	1/2 VV	-55°C to 155°C	200V	500V	500V	$ \Omega \le R \le 0M\Omega $	±100ppm°C	Current
						Jumper<50m Ω	$10M\Omega < R \le 22M\Omega$	10A
AC1210							±200ppm°C	
						5% (E24)	$ \Omega \leq R < 0\Omega $	
		0				$ \Omega \le R \le 0M\Omega $	±200 ppm°C	
	IW	-55°C to 155°C	200V	500V	500V	0.5%, 1% (E24/E96)	$10\Omega \le R \le 10M\Omega$	
						$I\Omega \le R \le I0M\Omega$	±100 ppm°C	

$\begin{array}{ c c c c c c } \hline \mbox{TYPE} & \mbox{POWER} & \mbox{Temperature} & \mbox{Working} & \mbox{Overload} & \mbox{Withstanding} & \mbox{Range} & \mbox{Coefficient} & Coeffic$	6A aximum Current
$\begin{array}{c} \label{eq:constraint} I\Omega \leq R \leq IM\Omega & \pm 200 \text{ppm}^\circ\text{C} \\ I \end{tabular} = 100 \text{ cm}^\circ\text{C} & 100 \text{ cm}^\circ\text{C} \leq 1100 \text{ cm}^\circ\text{C} & 100 \text{ cm}^\circ\text{C} \leq 1100 \text{ cm}^\circ\text{C} & 100 $	6A aximum Current
$\begin{array}{c} 1 & \forall -55 \ ^{\circ} \ C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	aximum Current
$\begin{array}{c} AC1218 \\ & \qquad \qquad$	Current
$AC1218 = \frac{Jumper<50m\Omega}{10 \le R < 10\Omega}$ $I.5W -55^{\circ} C to 155^{\circ} C 200V 500V 500V 500V 500V \frac{I\Omega \le R \le IM\Omega}{0.5\%, 1\% (E24/E96)} I\Omega \le R \le IM\Omega}{I\Omega \le R \le IM\Omega} = \frac{100 \text{ pm}^{\circ}\text{C}}{10 \le R \le IM\Omega}$ $I\Omega \le R \le IM\Omega \pm 100 \text{ pm}^{\circ}\text{C}$ $I\Omega \le IM\Omega \pm IM\Omega = IM\Omega = IM\Omega \pm IM\Omega \pm IM\Omega = $	
$\begin{array}{c} \textbf{AC1218} \\ \hline \textbf{AC1218} \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C } 200 \\ \hline \textbf{I.5W} -55^{\circ} \text{ C } 100 \\ \hline \textbf{I.5W} -55^{\circ} \text$	
$1.5 \text{W} -55^{\circ} \text{C to } 155^{\circ} \text{C} 200 \text{V} 500 V$	10A
$1.5W -55 \degree C to 155 \degree C 200V 500V 500V 0.5\%, 1\% (E24/E96) 10\Omega \le R \le IM\Omega 100 \text{ ppm}^{\circ}C$ $I\Omega \le R \le IM\Omega \pm 100 \text{ ppm}^{\circ}C$ $S\% (E24) I\Omega \le R < I0\Omega \text{ Rated } \Omega$ $I\Omega \le R \le 22M\Omega \pm 200\text{ ppm}^{\circ}C$ $0.5\%, 1\% (E24/E96) I0\Omega \le R \le 10M\Omega \text{ Ma}$ $I\Omega \le R \le 10M\Omega \pm 100\text{ ppm}^{\circ}C$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
AC2010 = 1000000000000000000000000000000000000	
$AC2010 = \frac{10 \le R \le 22M\Omega}{3/4 \lor -55 \degree C to 155 \degree C} = 200 \lor 500 \lor 500 \lor 500 \lor 10\Omega \le R \le 10M\Omega} = \frac{10 \le R \le 22M\Omega}{10 \le R \le 10M\Omega} = \frac{100 \ Ppm^{\circ}C}{10 \ Q \le R \le 10M\Omega} = \frac{100 \ Ppm^{\circ}C}{10M\Omega < R \le 22M\Omega} = \frac{100 \ Ppm^{\circ}C}{10M\Omega < R \le 10M\Omega} = \frac{100 \ Ppm^{\circ}C}{10M\Omega < $	
$AC2010 = \frac{3/4 \text{ W} -55^{\circ} \text{ C to } 155^{\circ} \text{ C } 200 \text{ V} 500 \text{ V} 10 \Omega \leq R \leq 10 \text{ M}\Omega \pm 100 \text{ ppm}^{\circ}\text{C} 10 \Omega \leq R \leq 22 \text{ M}\Omega \pm 200 \text{ ppm}^{\circ}\text{C} 10 \text{ M}\Omega \leq R \leq 22 \text{ M}\Omega \pm 200 \text{ ppm}^{\circ}\text{C} 5\% (\text{E24}) \text{ I} \Omega \leq R \leq 10 \text{ M}\Omega \pm 100 \text{ ppm}^{\circ}\text{C} 10 \Omega \leq R \leq 10 \Omega 10 \Omega \leq R \leq 10 \Omega \Omega 10 \Omega \leq R \leq 10 \Omega \Omega$	Current
3/4 W -55 ° C to 155 ° C 200V 500V 500V IΩ ≤ R ≤ I0MΩ ±100ppm°C Q Jumper<50mΩ	2A
AC2010 $I\Omega \le R \le 10M\Omega$ $\pm 100ppm^{\circ}C$ G $Jumper<50m\Omega$ $I0M\Omega < R \le 22M\Omega$ $\pm 200ppm^{\circ}C$ 5% (E24) $I\Omega \le R < 10\Omega$	aximum
AC2010 ±200ppm°C 5% (E24) IΩ ≤ R < I0Ω	Current
5% (E24) $\Omega \le R < 10\Omega$	10A
$I\Omega \le R \le I0M\Omega$ ±200 ppm°C	
1.25W -55° C to 155° C 200V 500V 500V 500V 0.5%, 1% (E24/E96) $10\Omega ≤ R ≤ 10M\Omega$	
$I\Omega \le R \le 10M\Omega$ ±100 ppm°C	
5% (E24) $I\Omega \le R < I0\Omega$ Rated 0	Current
$I\Omega \le R \le 22M\Omega$ ±200ppm°C	2A
0.5% , 1% (E24/E96) $10\Omega \le R \le 10M\Omega$ Ma	aximum
$I W -55 \degree C to I 55 \degree C 200V 500V 500V I \Omega \le R \le I0M\Omega \pm I00 ppm \degree C C C$	Current
$Jumper<50m\Omega I0M\Omega < R \le 22M\Omega$	10A
AC2512 ±200ppm°C	
$5\% (E24) \qquad \Omega \le R < 0\Omega$	
$I\Omega \le R \le I0M\Omega$ ±200 ppm°C	
2 W -55° C to I 55° C 200V 500V 500V 0.5%, I% (E24/E96) I0Ω ≤ R ≤ I0MΩ	
$I\Omega \le R \le 10M\Omega$ ±100 ppm°C	

FOOTPRINT AND SOLDERING PROFILES

Recommended footprint and soldering profiles of AC-series is the same as RC-series. Please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	reel Dimension	AC0201	AC0402	AC0603	AC0805	AC1206	AC1210	AC1218	AC2010	AC2512
Paper taping reel (R)	7" (178 mm)	10,000	10,000	5,000	5,000	5,000	5,000			
	10" (254 mm)	20,000	20,000	10,000	10,000	10,000	10,000			
	13" (330 mm)	50,000	50,000	20,000	20,000	20,000	20,000			
Embossed taping reel (K)	7" (178 mm)							4,000	4,000	4,000
	13" (330 mm)								16,000	

NOTE

I. For paper/embossed tape and reel specifications/dimensions, please refer to data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

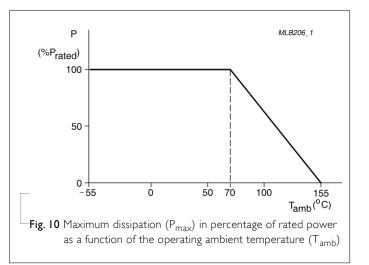
Range: -55 °C to +155 °C

POWER RATING

Each type rated power at 70 °C: AC0201=1/20W (0.05W) AC0402=1/16W (0.0625W); 1/8W (0.125W) AC0603=1/10W (0.1W); 1/5W (0.2W) AC0805=1/8W (0.125W); 1/4 W(0.25 W) AC1206=1/4W (0.25W); 1/2 W (0.5 W) AC1210=1/2W (0.5W); 1/2 W (0.5 W) AC1218=1W; 1.5W AC2010=3/4W (0.75W); 1.25W AC2512=1 W; 2W

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:


$$V = \sqrt{(P \times R)}$$

Or Maximum working voltage whichever is less

Where

V = Continuous rated DC or AC (rms) working voltage (V) P = Rated power (W)

 $R = Resistance value (\Omega)$

YAGEO

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS	
High Temperature Exposure				
Moisture Resistance	MIL-STD-202 Method 106	Each temperature / humidity cycle is defined at 8 hours, 3 cycles / 24 hours for 10d. with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered	$\pm (0.5\% \pm 0.05\Omega)$ for D/F tol $\pm (2.0\% \pm 0.05\Omega)$ for J tol <100 m Ω for Jumper	
Biased Humidity	AEC-Q200 Test 7 MIL-STD-202 Method 103			
		1,000 hours at 125 °C, derated voltage applied for 1.5 hours on, 0.5 hour off, still-air required	±(1.0%+0.05Ω) for D/F to ±(3.0%+0.05Ω) for J tol <100 mΩ for Jumper	
Resistance to Soldering Heat	AEC-Q200 Test 15 MIL-STD-202 Method 210	Condition B, no pre-heat of samples Lead-free solder, 260±5 °C, 10±1 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	$\pm (0.5\% + 0.05\Omega)$ for D/F tol $\pm (1.0\% + 0.05\Omega)$ for J tol $<50 \text{ m}\Omega$ for Jumper No visible damage	
Thermal Shock	MIL-STD-202 Method 107	-55/+125 °C Number of cycles is 300. Devices mounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	±(0.5%+0.05Ω) for D/F tol ±(1.0%+0.05Ω) for J tol <50 mΩ for Jumper	
ESD	AEC-Q200 Test 17 AEC-Q200-002	Human Body Model, I _{pos.} + I _{neg} discharges 0201: 500V 0402/0603: IKV 0805 and above: 2KV	±(3.0%+0.05Ω) <50 mΩ for Jumper	

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability - Wetting	AEC-Q200 Test 18 J-STD-002	Electrical Test not required Magnification 50X SMD conditions:	Well tinned (≥95% covered) No visible damage
		(a) Method B, aging 4 hours at 155 °C dry heat, dipping at 235±3 °C for 5±0.5 seconds.	NO VISIDIE Galliage
		(b) Method B, steam aging 8 hours, dipping at 215±3 °C for 5±0.5 seconds.	
		(c) Method D, steam aging 8 hours, dipping at 260±3 ℃ for 30±0.5 seconds.	
Board Flex	AEC-Q200 Test 21	Chips mounted on a 100mm × 40mm glass	±(1.0%+0.05Ω)
	AEC-Q200-005	epoxy resin PCB (FR4)	$<$ 50 m Ω for Jumper
		Bending for 0201/0402: 5 mm 0603/0805: 3 mm 1206 and above: 2 mm	
		Holding time: minimum 60 seconds	
Temperature Coefficient of	MIL-STD-202 Method 304	At +25/–55 °C and +25/+125 °C	Refer to table 2
Resistance (T.C.R.)		Formula:	
		T.C.R= $\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (ppm/°C)}$	
		Where t ₁ =+25 °C or specified room temperature	
		t_2 =–55 °C or +125 °C test temperature	
		$R_I \texttt{=} resistance$ at reference temperature in ohms	
		R_2 =resistance at test temperature in ohms	
Short Time Overload	IEC60115-18.1	2.5 times of rated voltage or maximum overload voltage whichever is less for 5 sec at room temperature	$\pm (1.0\% + 0.05\Omega)$ for D/F tol $\pm (2.0\% + 0.05\Omega)$ for J tol <50 m Ω for Jumper
FOS	ASTM-B-809-95	Sulfur (saturated vapor) 500 hours, 60±2°C, unpowered	±(1.0%+0.05Ω)

YAGEO

Chip Resistor Surface Mount	AC	SERIES	0201 to 2512
------------------------------------	----	--------	--------------

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 10	Jan. 04, 2023	-	 10ohm TCR upgrade to 100ppm, for 0603~2512 normal power and 0402~2512 double power.
Version 9	Aug. 02, 2022	-	- 12 dimension updated, for size 1206, size 2010, size 2512.
Version 8	Mar. 19, 2021	-	- Upgrade the working voltage of 0402 double power to 75V
Version 7	July 10, 2017	-	- Add "3W" part number coding for 13" Reel & double power
Version 6	May 31, 2017	-	- Add 10" packing
Version 5	Dec. 07, 2015	-	- Add in AC double power
Version 4	May 25, 2015	-	- Remove 7D packing - Extend resistance range - Add in AC0201 - Update FOS test and requirements
Version 3	Feb 13, 2014	-	- Feature description updated - add ±0.5% - delete 10" taping reel
Version 2	Feb. 10, 2012	-	- Jumper criteria added - AC1218 marking and outline figure updated
Version I	Feb. 01, 2011	-	- Case size 1210, 1218, 2010, 2512 extended - Test method and procedure updated - Packing style of 7D added
Version 0	Nov. 10, 2010	-	- First issue of this specification

LEGAL DISCLAIMER

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non -infringement and merchantability.

YAGEO products are designed for general purpose applications under normal operation and usage conditions. Please contact YAGEO for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property: Aerospace equipment (artificial satellite, rocket, etc.), Atomic energy-related equipment, Aviation equipment, Disaster prevention equipment, crime prevention equipment, Electric heating apparatus, burning equipment, Highly public information network equipment, data-processing equipment, Medical devices, Military equipment, Power generation control equipment, Safety equipment, Traffic signal equipment, Transportation equipment and Undersea equipment, or for any other application or use in which the failure of YAGEO products could result in personal injury or death, or serious property damage. Particularly **YAGEO Corporation and its affiliates do not recommend the use of commercial or automotive grade products for high reliability applications or manned space flight.**

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Thick Film Resistors - SMD category:

Click to view products by Yageo manufacturer:

Other Similar products are found below :

CR-05FL7--150R CR-05FL7--698K CR-12JP4--680R CRCW04021K20FKEE CRCW04028R20JNEE CRCW06032K10FKEC CRCW06036K80FKEE M55342K03B499DRS6 M55342K06B6E19RWL M55342K09B5D62RS6 M55342M06B26E7RS3 742C083750JTR MCR01MRTF1001 MCR01MZPF1202 MCR01MZPF1601 MCR01MZPF1800 MCR01MZPF6201 MCR01MZPF9102 MCR01MZPJ121 MCR01MZPJ125 MCR01MZPJ751 MCR03EZHJ103 MCR03EZPFX2004 MCR03EZPJ270 MCR03EZPJ821 MCR10EZPF1102 MCR18EZPJ330 RC1005F1152CS RC1005F1372CS RC1005F2052CS RC1005F471CS RC1005F4751CS RC1005F5621CS RC1005F6041CS RC1005J121CS RC1005J122CS RC1005J180CS RC1005J181CS RC1005J202CS RC1005J391CS RC1005J512CS RC1005J683CS RC1005J823CS RC1608F333CS RC1608F5110CS RC1608J121CS RC2012F2493CS RC2012F2740CS RC2012J105CS RC2012J470CS