

DATA SHEET

THICK FILM WIDE TERMINAL CHIP RESISTORS AUTOMOTIVE GRADE

AC series ±5%, ±1%, ±0.5%

Sizes 0612/1020/1225 RoHS compliant & Halogen free

YAGEO Phícomp

SCOPE

This specification describes AC0612 to AC1225 chip resistors with lead-free terminations made by thick film process.

APPLICATIONS

- All general purpose applications
- Car electronics, industrial application

FEATURES

- AEC-Q200 qualified
- Moisture sensitivity level: MSL I
- AC series soldering is compliant with J-STD-020D
- Halogen free epoxy
- RoHS compliant
 - Products with lead-free terminations meet RoHS requirements
 - Pb-glass contained in electrodes, resistor element and glass are exempted by RoHS
- Reduce environmentally hazardous waste
- High component and equipment reliability
- The resistors are 100% performed by automatic optical inspection prior to taping.

ORDERING INFORMATION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

AC XXXX X X X XX XXXX L

(1) (2) (3) (4) (5) (6) (7)

(I) SIZE

0612/1020/1225

(2) TOLERANCE

 $D = \pm 0.5\%$

 $F = \pm 1\%$

 $J = \pm 5\%$ (for Jumper ordering, use code of J)

(3) PACKAGING TYPE

R = Paper taping reel

K = Embossed taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec

(5) TAPING REEL

07 = 7 inch dia. Reel

13 = 13 inch dia. Reel

(6) RESISTANCE VALUE

 $I\,\Omega$ to $I\,\,M\Omega$

There are $2\sim4$ digits indicated the resistance value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. IK2, not IK20.

Detailed coding rules of resistance are shown in the table of "Resistance rule of global part number".

(7) DEFAULT CODE

Letter L is the system default code for ordering only. ^(Note)

number Resistance coding rule	Example
XRXX (I to 9.76 Ω)	IR = I Ω IR5 = I.5 Ω 9R76 = 9.76 Ω
XXRX	$10R = 10 \Omega$
(10 to 97.6 Ω)	$97R6 = 97.6 \Omega$
XXXR	$100R = 100 \Omega$
(100 to 976 Ω)	976R = 976 Ω
XKXX	IK = 1,000 Ω
(1 to 9.76 KΩ)	9K76 = 9760 Ω
XMXX	IM = 1,000,000 Ω
(1 to 9.76 MΩ)	9M76 = 9,760,000 Ω
XXMX (10 MΩ)	10Μ = 10,000,000 Ω

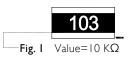
Resistance rule of global part

ORDERING EXAMPLE

The ordering code for an AC0612 chip resistor, value $100 \text{ K}\Omega$ with $\pm 1\%$ tolerance, supplied in 7-inch tape reel is: AC0612FR-07100KL.

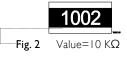
NOTE

- All our R-Chip products are RoHS compliant and Halogen free. "LFP" of the internal 2D reel label states "Lead-Free Process".
- 2. On customized label, "LFP" or specific symbol can be printed.
- 3. AC series with ±0.5% tolerance is also available. For further information, please contact sales.



Chip Resistor Surface Mount

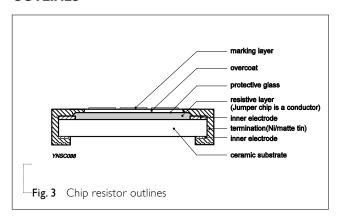
AC | SERIES | 0612/1020/1225


MARKING

AC0612 / AC1020 / AC1225

E-24 series: 3 digits, ±5%

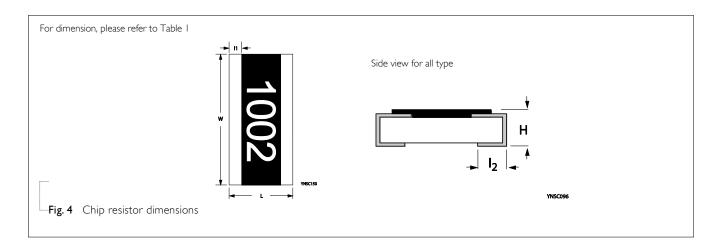
First two digits for significant figure and 3rd digit for number of zeros


E-24/ E-96 series: 4 digits, ±1% & ±0.5%

First three digits for significant figure and 4th digit for number of zeros

CONSTRUCTION

The resistors are constructed on top of a high-grade ceramic body. Internal metal electrodes are added at each end and connected by the resistive glaze. The resistive glaze is covered by a leadfree glass. The composition of the glaze is adjusted to give the approximate required resistance value and laser trimming of this resistive glaze achieves the value inside tolerance. The whole element is covered by a protective overcoat. Size 0508 and bigger is marked with the resistance value on top. Finally, the two external terminations (Ni / matte tin) are added. See fig.3.


OUTLINES

DIMENSIONS

Table I For outlines, please refer to Fig. 4

TYPE	L (mm)	W (mm)	H (mm)	I _I (mm)	l ₂ (mm)
AC0612	1.60±0.20	3.20 ±0.20	0.55±0.10	0.18±0.15	0.40±0.15
AC1020	2.50 ±0.20	5.00 ±0.20	0.55±0.10	0.25 ±0.20	0.90 ±0.20
AC1225	3,20 ±0,20	6.40 ±0.20	0.55±0.10	0.45 ±0.20	0.75 ±0.20

Chip Resistor Surface Mount AC SERIES 0612/1020/1225

ELECTRICAL CHARACTERISTICS

Table 2

		CHARACTERISTICS					
TYPE	RESISTANCE RANGE	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Temperature Coefficient of Resistance	Jumper Criteria
AC0612	F9/ /F24) I Q +- IM Q		200V	400V	500V		
AC1020	5% (E24) $I\Omega$ to $IM\Omega$ 0.5%, $I\%$ (E24/E96) $I\Omega$ to $IM\Omega$ Jumper < 50mΩ	–55 °C to +155 °C	200V	400V	500V		Rated Current 2A Max Current 10A
AC1225	oumper < 50mz2	JUI1122	200V	400V	500V	±100ppm/°C	

FOOTPRINT AND SOLDERING PROFILES

Recommended footprint and soldering profiles of AC-series is the same as RC-series. Please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	AC0612	AC1020	AC1225
Paper taping reel (R)	7" (178 mm)	5,000		===
	13" (330 mm)	20,000		
Embossed taping reel (K)	7" (178 mm)		4,000	4,000

NOTE

1. For paper/embossed tape and reel specifications/dimensions, please refer to data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

Range: -55 °C to +155 °C

POWER RATING

Each type rated power at 70 °C:

AC0612 = 3/4W (0.75W)

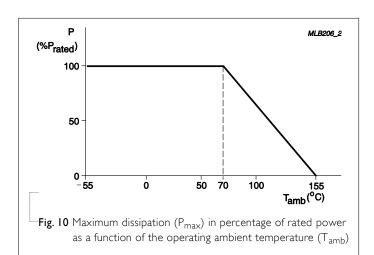
AC1020 = IW

AC1225 = 2W

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

$$V = \sqrt{(P \times R)}$$

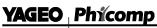

Or Maximum working voltage whichever is less

Where

V = Continuous rated DC or AC (rms) working voltage (V)

P = Rated power (W)

 $R = Resistance value (\Omega)$



TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
High Temperature Exposure	AEC-Q200 Test 3 MIL-STD-202 Method 108	1,000 hours at T_A = 155 °C, unpowered	$\pm (1.0\% + 0.05 \Omega)$ for D/F tol $\pm (2.0\% + 0.05 \Omega)$ for J tol <50 m Ω for Jumper
Moisture Resistance	AEC-Q200 Test 6 MIL-STD-202 Method 106	Each temperature / humidity cycle is defined at 8 hours (method 106F), 3 cycles / 24 hours for 10d. with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered Parts mounted on test-boards, without condensation on parts	$\pm (0.5\% + 0.05 \Omega)$ for D/F tol $\pm (2.0\% + 0.05 \Omega)$ for J tol $<$ 100 m Ω for Jumper
Biased Humidity	AEC-Q200 Test 7 MIL-STD-202 Method 103	I,000 hours; 85 °C / 85% RH I0% of operating power Measurement at 24±4 hours after test conclusion.	$\pm (1.0\% + 0.05\Omega)$ for D/F tol $\pm (3.0\% + 0.05\Omega)$ for J tol $<$ 100 m Ω for Jumper
Operational Life	AEC-Q200 Test 8 MIL-STD-202 Method 108	1,000 hours at 125 °C, derated voltage applied for 1.5 hours on, 0.5 hour off, still-air required	$\pm (1.0\% + 0.05\Omega)$ for D/F tol $\pm (3.0\% + 0.05\Omega)$ for J tol $<$ 100 m Ω for Jumper
Resistance to Soldering Heat	AEC-Q200 Test 15 MIL-STD-202 Method 210	Condition B, no pre-heat of samples Lead-free solder, 260±5 °C, 10±1 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	$\pm (0.5\% + 0.05\Omega)$ for D/F tol $\pm (1.0\% + 0.05\Omega)$ for J tol <50 m Ω for Jumper No visible damage
Thermal Shock	AEC-Q200 Test 16 MIL-STD-202 Method 107	-55/+125 °C Number of cycles is 300. Devices mounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	$\pm (0.5\% + 0.05\Omega)$ for D/F tol $\pm (1.0\% + 0.05\Omega)$ for J tol <50 m Ω for Jumper
ESD	AEC-Q200 Test 17 AEC-Q200-002	Human Body Model, I pos. + I neg. discharges 0612 and above: 2KV	$\pm (3.0\% + 0.05 \ \Omega)$ <50 m Ω for Jumper

Chip Resistor Surface Mount	AC	SERIES	0612/1020/1225
------------------------------------	----	--------	----------------

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability			
- Wetting	AEC-Q200 Test 18 J-STD-002	 Electrical Test not required Magnification 50X SMD conditions: (a) Method B, aging 4 hours at 155 °C dry heat, dipping at 235±3 °C for 5±0.5 seconds. (b) Method B, steam aging 8 hours, dipping at 215±3 °C for 5±0.5 seconds. 	Well tinned (≥95% covered) No visible damage
		(c) Method D, steam aging 8 hours, dipping at 260±3 °C for 7±0.5 seconds.	
Board Flex	AEC-Q200 Test 21 AEC-Q200-005	Chips mounted on a 90mm glass epoxy resin PCB (FR4) Bending for 0612 and above: 2 mm Holding time: minimum 60 seconds	\pm (1.0%+0.05 Ω) <50 m Ω for Jumper
Temperature Coefficient of Resistance (T.C.R.)	MIL-STD-202 Method 304	At +25/–55 °C and +25/+125 °C Formula: T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (ppm/°C)}$ Where t_1 =+25 °C or specified room temperature t_2 =-55 °C or +125 °C test temperature R_1 =resistance at reference temperature in ohms R_2 =resistance at test temperature in ohms	Refer to table 2
Short Time Overload	IEC60115-1 4.13	2.5 times of rated voltage or maximum overload voltage whichever is less for 1225 : 2s 0612/2010: 5s at room temperature	$\pm (1.0\% + 0.05\Omega)$ for D/F tol $\pm (2.0\% + 0.05\Omega)$ for J tol <50 m Ω for Jumper
FOS	ASTM-B-809-95	Sulfur (saturated vapor) 500 hours, 60±2°C, unpowered	±(1.0%+0.05Ω)

Product specification 8/9

Chip Resistor Surface Mount AC SERIES 0612/1020/1225

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version I	Dec. 11, 2015	-	- Tests and requirements update
Version 0	Aug. 21, 2015	-	- First issue of this specification

p Resistor Surface Mount

AC SERIES 0612/1020/1225

LEGAL DISCLAIMER

Yageo, its distributors and agents (collectively, "Yageo"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. Yageo may make changes, modifications and/or improvements to product related information at any time and without notice.

Yageo makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, Yageo disclaims (i) any and all liability arising out of the application or use of any Yageo product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non-infringement and merchantability.

Yageo statements regarding the suitability of products for certain types of applications are based on Yageo's knowledge of typical operating conditions for such types of applications in a generic nature. Such statements are neither binding statements of Yageo nor intended to constitute any warranty concerning the suitability for a specific customer application or use. They are intended for use only by customers with requisite knowledge and experience for determining whether Yageo products are the correct products for their application or use. In addition, unpredicatable and isolated cases of product failure may still occur, therefore, customer application or use of Yageo products which requires higher degree of reliability or safety, shall employ additional protective safeguard measures to ensure that product failure would not result in personal injury or property damage.

Yageo products are not designed for application or use in medical, life-saving, or life-sustaining devices or for any other application or use in which the failure of Yageo products could result in personal injury or death. Customers using or selling Yageo products not expressly indicated for above-mentioned purposes shall do so at their own risk and agree to fully indemnify Yageo and hold Yageo harmless.

Information provided here is intended to indicate product specifications only. Yageo reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Thick Film Resistors - SMD category:

Click to view products by Yageo manufacturer:

Other Similar products are found below:

CR-05FL7--19K6 CR-05FL7--243R CR-05FL7--40K2 CR-12JP4--680R CRCW06036K80FKEE M55342K06B2E94RS2

M55342K06B309DRS3 M55342K06B6E81RS3 M55342K08B100DRWB M55342M05B200DRWB MC0603-511-JTW 742C083750JTR

MCR01MZPF1202 MCR01MZPF1800 MCR01MZPF6201 MCR01MZPF9102 MCR01MZPJ113 MCR01MZPJ121 MCR01MZPJ125

MCR01MZPJ203 MCR01MZPJ751 MCR01MZPJ822 MCR03EZHJ103 MCR03EZPFX1272 MCR03EZPJ123 MCR03EZPJ270

MCR03EZPJ821 MCR10EZPF1102 MCR10EZPF2003 MCR10EZPF2700 MCR18EZPJ330 RC0603F1473CS RC0603F150CS

RC1005F1152CS RC1005F1182CS RC1005F1372CS RC1005F183CS RC1005F1911CS RC1005F1912CS RC1005F203CS

RC1005F2052CS RC1005F241CS RC1005F2431CS RC1005F3011CS RC1005F303CS RC1005F4321CS RC1005F4642CS

RC1005F471CS RC1005F4751CS RC1005F5621CS